Nonlinear dynamic systems and optimal control problems on time scales
ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 3, p. 654-681

This paper is mainly concerned with a class of optimal control problems of systems governed by the nonlinear dynamic systems on time scales. Introducing the reasonable weak solution of nonlinear dynamic systems, the existence of the weak solution for the nonlinear dynamic systems on time scales and its properties are presented. Discussing L1-strong-weak lower semicontinuity of integral functional, we give sufficient conditions for the existence of optimal controls. Using integration by parts formula and Hamiltonian function on time scales, the necessary conditions of optimality are derived respectively. Some examples on continuous optimal control problems, discrete optimal control problems, mathematical programming and variational problems are also presented for demonstration.

DOI : https://doi.org/10.1051/cocv/2010022
Classification:  37M10,  35D05,  49K25,  90C46
Keywords: time scale, weak solution, optimal control, subdifferentials, existence, necessary conditions of optimality
@article{COCV_2011__17_3_654_0,
     author = {Peng, Yunfei and Xiang, Xiaoling and Jiang, Yang},
     title = {Nonlinear dynamic systems and optimal control problems on time scales},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {3},
     year = {2011},
     pages = {654-681},
     doi = {10.1051/cocv/2010022},
     zbl = {1223.37105},
     mrnumber = {2826974},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2011__17_3_654_0}
}
Peng, Yunfei; Xiang, Xiaoling; Jiang, Yang. Nonlinear dynamic systems and optimal control problems on time scales. ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 3, pp. 654-681. doi : 10.1051/cocv/2010022. http://www.numdam.org/item/COCV_2011__17_3_654_0/

[1] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusion. Hindawi Publishing Corporation, New York (2006). | MR 2322133 | Zbl 1130.34003

[2] R.A.C. Ferreira and D.F.M. Torres, Higher-order calculus of variations on time scales, in Mathematical control theory and finance, Springer, Berlin (2008) 149-159. | MR 2484109 | Zbl 1191.49017

[3] Y. Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. J. Ind. Manag. Opt. 5 (2009) 1-13. | MR 2470701 | Zbl 1158.39300

[4] G.S. Guseinov, Integration on time scales. J. Math. Anal. Appl. 285 (2003) 107-127. | MR 2000143 | Zbl 1039.26007

[5] R. Hilscher and V. Zeidan, Weak maximum principle and accessory problem for control problems on time scales. Nonlinear Anal. 70 (2009) 3209-3226. | MR 2503067 | Zbl 1157.49030

[6] S. Hu and N.S. Papageoriou, Handbook of Multivalued Analysis. Kluwer Academic Publishers, Dordrecht (1997). | Zbl 0887.47001

[7] V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynamical Systems on Measure Chains. Kluwer Acadamic Publishers, Dordrecht (1996). | MR 1419803 | Zbl 0869.34039

[8] H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales. Nonlinear Anal. 69 (2008) 2803-2811. | MR 2452091 | Zbl 1159.34005

[9] A.B. Malinowska and D.F.M. Torres, Strong minimizers of the calculus of variations on time scales and the Weierstrass condition, in Proceedings of the Estonian Academy of Sciences 58 (2009) 205-212. | MR 2604248 | Zbl 1179.49025

[10] Y. Peng and X. Xiang, Necessary conditions of optimality for a class of optimal control problem on time scales. Comp. Math. Appl. 58 (2009) 2035-2045. | MR 2557525 | Zbl 1189.34172

[11] B.P. Rynne, L2 spaces and boundary value problems on time-scales. J. Math. Anal. Appl. 328 (2007) 1217-1236. | MR 2290047 | Zbl 1116.34021

[12] S.I. Suslov, Semicontinuouity of an integral functional in Banach space. Sib. Math. J. 38 (1997) 350-359. | MR 1457790 | Zbl 0868.49009

[13] C.C. Tisdell and A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 68 (2008) 3504-3524. | MR 2401364 | Zbl 1151.34005

[14] D.-B. Wang, Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales. Comp. Math. Appl. 56 (2008) 1496-1504. | MR 2440567 | Zbl 1155.34313

[15] E. Zeidler, Nonlinear Functional Analysis and its Applications III. Springer-Verlag, New York (1985). | MR 768749 | Zbl 0583.47051

[16] Z. Zhan and W. Wei, Necessary conditions for a class of optimal control problems on time scales. Abstr. Appl. Anal. 2009 (2009) e1-e14. | MR 2506995 | Zbl 1163.49013

[17] Z. Zhan and W. Wei, On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales. Appl. Math. Comput. 215 (2009) 2070-2081. | MR 2557091 | Zbl 1183.49005

[18] Z. Zhan, W. Wei and H. Xu, Hamilton-Jacobi-Bellman equations on time scales. Math. Comp. Model. 49 (2009) 2019-2028. | MR 2532106 | Zbl 1171.39302