The maximum principle for optimal control problems of fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in short) in the global form is obtained, under the assumptions that the diffusion coefficients do not contain the control variable, but the control domain need not to be convex. We apply our stochastic maximum principle (SMP in short) to investigate the optimal control problems of a class of stochastic partial differential equations (SPDEs in short). And as an example of the SMP, we solve a kind of forward-backward doubly stochastic linear quadratic optimal control problems as well. In the last section, we use the solution of FBDSDEs to get the explicit form of the optimal control for linear quadratic stochastic optimal control problem and open-loop Nash equilibrium point for nonzero sum stochastic differential games problem.
Mots-clés : maximum principle, stochastic optimal control, forward-backward doubly stochastic differential equations, spike variations, variational equations, stochastic partial differential equations, nonzero sum stochastic differential game
@article{COCV_2011__17_4_1174_0, author = {Zhang, Liangquan and Shi, Yufeng}, title = {Maximum principle for forward-backward doubly stochastic control systems and applications}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1174--1197}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010042}, mrnumber = {2859871}, zbl = {1236.93155}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2010042/} }
TY - JOUR AU - Zhang, Liangquan AU - Shi, Yufeng TI - Maximum principle for forward-backward doubly stochastic control systems and applications JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1174 EP - 1197 VL - 17 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2010042/ DO - 10.1051/cocv/2010042 LA - en ID - COCV_2011__17_4_1174_0 ER -
%0 Journal Article %A Zhang, Liangquan %A Shi, Yufeng %T Maximum principle for forward-backward doubly stochastic control systems and applications %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1174-1197 %V 17 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2010042/ %R 10.1051/cocv/2010042 %G en %F COCV_2011__17_4_1174_0
Zhang, Liangquan; Shi, Yufeng. Maximum principle for forward-backward doubly stochastic control systems and applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1174-1197. doi : 10.1051/cocv/2010042. http://archive.numdam.org/articles/10.1051/cocv/2010042/
[1] Point de Nash dans le cas de fonctionnelles quadratiques et jeux différentiels à N personnes. SIAM J. Control 12 (1974) 460-499. | MR | Zbl
,[2] Lectures on stochastic control, in Nonlinear Filtering and Stochastic Control, S.K. Mitter and A. Moro Eds., Lecture Notes in Mathematics 972, Springer-verlag, Berlin (1982). | MR | Zbl
,[3] Stochastic maximum principle for distributed parameter system. J. Franklin Inst. 315 (1983) 387-406. | MR | Zbl
,[4] Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992). | MR | Zbl
,[5] An introductory approach to duality in optimal stochastic control. SIAM Rev. 20 (1978) 62-78. | MR | Zbl
,[6] Stochstic linear quadratic regulators with indefinite control weight cost. SIAM J. Control Optim. 36 (1998) 1685-1702. | MR | Zbl
, and ,[7] Nonexistence and nonuniqueness of open-loop equilibria in linear-quadratic differential games. J. Math. Anal. Appl. 37 (1982) 443-468. | MR | Zbl
,[8] Differential Games. Wiley-Interscience, New York (1971). | MR | Zbl
,[9] Nonzero sum linear-quadratic stochastic differential games and backwad-forward equations. Stoch. Anal. Appl. 17 (1999) 117-130. | MR | Zbl
,[10] General necessary conditions for optimal control of stochastic systems. Math. Program. Stud. 6 (1976) 34-48. | MR | Zbl
,[11] A stochastic maximum principle for optimal control of diffusions, Pitman Research Notes in Mathematics 151. Longman (1986). | MR | Zbl
,[12] A maximum principle for stochastic optimal control with terminal state constraints, and its applications. Commun. Inf. Syst. 6 (2006) 321-338. | MR | Zbl
and ,[13] Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control Optim. 10 (1972) 550-565. | MR | Zbl
,[14] Stochastic optimal control with noisy observations. Int. J. Control 4 (1966) 455-464. | MR | Zbl
,[15] Optimal control for stochastic partial differential equations and viscosity solutions of Bellman equations. Nagoya Math. J. 123 (1991) 13-37. | MR | Zbl
,[16] Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields 78 (1988) 535-581. | MR | Zbl
and ,[17] Optimal control of stochastic partial differential equations. Stoch. Anal. Appl. 23 (2005) 165-179. | Zbl
,[18] Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55-61. | MR | Zbl
and ,[19] Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Relat. Fields 98 (1994) 209-227. | MR | Zbl
and ,[20] A general stochastic maximum principle for optimal control problem. SIAM J. Control Optim. 28 (1990) 966-979. | MR | Zbl
,[21] Backward stochastic differential equations and application to optimal control. Appl. Math. Optim. 27 (1993) 125-144. | MR | Zbl
,[22] A type of time-symmetric forward-backward stochastic differential equations. C. R. Acad. Sci. Paris, Sér. I 336 (2003) 773-778. | MR | Zbl
and ,[23] Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825-843. | MR | Zbl
and ,[24] The Mathematical Theory of Optimal Control Processes. Interscience, John Wiley, New York (1962).
, , and ,[25] The maximum principle for fully coupled forward-backward stochastic control system. Acta Automatica Sinica 32 (2006) 161-169. | MR
and ,[26] Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems. Systems Sci. Math. Sci. 11 (1998) 249-259. | MR | Zbl
,[27] Forward-backward stochastic differential equation linear quadratic stochastic optimal control and nonzero sum differential games. Journal of Systems Science and Complexity 18 (2005) 179-192. | MR | Zbl
,[28] Stochastic maximum principle for optimal control problem of forward and backward system. J. Austral. Math. Soc. B 37 (1995) 172-185. | MR | Zbl
,[29] Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999). | MR | Zbl
and ,Cité par Sources :