Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method
ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 4, p. 931-954

The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space leading to a discrete variational inequality of saddle point type in each time step. In each iteration of the primal-dual active set method a linearized system resulting from the discretization of two coupled elliptic equations which are defined on different sets has to be solved. We show local convergence of the primal-dual active set method and demonstrate its efficiency with several numerical simulations.

DOI : https://doi.org/10.1051/cocv/2010032
Classification:  35K55,  35K85,  90C33,  49N90,  80A22,  82C26,  65M60
Keywords: Cahn-Hilliard equation, active-set methods, semi-smooth Newton methods, gradient flows, PDE-constraint optimization, saddle point structure
@article{COCV_2011__17_4_931_0,
     author = {Blank, Luise and Butz, Martin and Garcke, Harald},
     title = {Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {4},
     year = {2011},
     pages = {931-954},
     doi = {10.1051/cocv/2010032},
     zbl = {1233.35132},
     mrnumber = {2859859},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2011__17_4_931_0}
}
Blank, Luise; Butz, Martin; Garcke, Harald. Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method. ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 4, pp. 931-954. doi : 10.1051/cocv/2010032. http://www.numdam.org/item/COCV_2011__17_4_931_0/

[1] R.A. Adams, Sobolev spaces, Pure and Applied Mathematics 65. Academic Press, New York-London (1975). | MR 450957 | Zbl 0314.46030

[2] L. Banas and R. Nürnberg, A multigrid method for the Cahn-Hilliard equation with obstacle potential. Appl. Math. Comput. 213 (2009) 290-303. | MR 2536652 | Zbl 1168.65386

[3] J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286-318. | MR 1742748 | Zbl 0947.65109

[4] J.W. Barrett, R. Nürnberg and V. Styles, Finite element approximation of a void electromigration model. SIAM J. Numer. Anal. 42 (2004) 738-772. | MR 2084234 | Zbl 1076.78012

[5] L. Blank, H. Garcke, L. Sarbu and V. Styles, Primal-dual active set methods for Allen-Cahn variational inequalities with non-local constraints. Preprint SPP1253-09-01 (2009). | MR 3039798 | Zbl 1272.65060

[6] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. Eur. J. Appl. Math. 2 (1991) 233-280. | MR 1123143 | Zbl 0797.35172

[7] J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis. Eur. J. Appl. Math. 3 (1992) 147-179. | MR 1166255 | Zbl 0810.35158

[8] J.F. Blowey and C.M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems, in Degenerate Diffusions, W.-M. Ni, L.A. Peletier and J.L. Vazquez Eds., IMA Vol. Math. Appl. 47, Springer, New York (1993) 19-60. | MR 1246337 | Zbl 0794.35092

[9] J.F. Blowey and C.M. Elliott, A phase field model with a double obstacle potential, in Motion by mean curvature, G. Buttazzo and A. Visintin Eds., de Gruyter (1994) 1-22. | MR 1277388 | Zbl 0809.35168

[10] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958) 258-267.

[11] I. Capuzzo Dolcetta, S.F. Vita and R. March, Area-preserving curve-shortening flows: From phase separation to image processing. Interfaces and Free Boundaries 4 (2002) 325-434. | MR 1935642 | Zbl 1021.35129

[12] X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Differential Geom. 44 (1996) 262-311. | MR 1425577 | Zbl 0874.35045

[13] X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38 (2000) 1200-1216. | MR 1786137 | Zbl 0979.65046

[14] M. Copetti and C.M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63 (1992) 39-65. | MR 1182511 | Zbl 0762.65074

[15] T.A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Soft. 30 (2003) 196-199. | MR 2075981 | Zbl 1072.65037

[16] T.A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Soft. 34 (2003) 165-195. | Zbl 1072.65036

[17] T.A. Davis and I.S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J. Matrix Anal. Appl. 18 (1997) 140-158. | MR 1428205 | Zbl 0884.65021

[18] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Soft. 9 (1983) 302-325. | MR 791968 | Zbl 0515.65022

[19] C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical models for phase change problems, Internat. Ser. Numer. Math. 88, Birkhäuser, Basel (1989). | MR 1038064 | Zbl 0692.73003

[20] C.M. Elliott and A.R. Gardiner, One dimensional phase field computations, Numerical Analysis 1993, Proceedings of Dundee Conference, D.F. Griffiths and G.A. Watson Eds., Longman Scientific and Technical (1994) 56-74. | MR 1267755 | Zbl 0802.65123

[21] C.M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. SFB 256, University of Bonn, Preprint 195 (1991).

[22] C.M. Elliott and J. Ockendon, Weak and Variational Methods for Moving Boundary Problems, Pitman Research Notes in Mathematics 59. Pitman (1982). | MR 650455 | Zbl 0476.35080

[23] L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence (1998). | MR 1625845 | Zbl 0902.35002

[24] A. Friedman, Variational principles and free-boundary problems - Pure and Applied Mathematics. John Wiley & Sons, Inc., New York (1982). | MR 679313 | Zbl 0671.49001

[25] H. Garcke, Mechanical effects in the Cahn-Hilliard model: A review on mathematical results, in Mathematical Methods and Models in phase transitions, A. Miranvielle Ed., Nova Science Publ. (2005) 43-77. | MR 2590944

[26] C. Gräser, Analysis und Approximation der Cahn-Hilliard Gleichung mit Hindernispotential. Diplomarbeit, Freie Universität Berlin, Fachbereich Mathematik und Informatik (2004).

[27] C. Gräser and R. Kornhuber, On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints, in Domain decomposition methods in science and engineering XVI, Lect. Notes Comput. Sci. Eng. 55, Springer, Berlin (2007) 91-102. | MR 2334094

[28] C. Gräser and R. Kornhuber, Nonsmooth Newton methods for set-valued saddle point problems. SIAM J. Numer. Anal. 47 (2009) 1251-1273. | MR 2485452 | Zbl 1190.49035

[29] C. Gräser and R. Kornhuber, Multigrid methods for obstacle problems. J. Comput. Math. 27 (2009) 1-44. | MR 2493556 | Zbl 1199.65401

[30] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865-888. | MR 1972219 | Zbl 1080.90074

[31] K. Ito and K. Kunisch, Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: M2AN 37 (2003) 41-62. | Numdam | MR 1972649 | Zbl 1027.49007

[32] B.M. Irons, A frontal solution scheme for finite element analysis. Int. J. Numer. Methods Eng. 2 (1970) 5-32. | Zbl 0252.73050

[33] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics 88. Academic Press, Inc., New York-London (1980). | MR 567696 | Zbl 0457.35001

[34] E. Kuhl and D.W. Schmid, Computational modeling of mineral unmixing and growth: An application of the Cahn-Hilliard equation. Comp. Mech. 39 (2007) 439-451. | Zbl 1162.74004

[35] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979) 964-979. | MR 551319 | Zbl 0426.65050

[36] J.W.H. Liu, The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev. 34 (1992) 82-109. | MR 1156290 | Zbl 0919.65019

[37] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1978) 2617-2654. | MR 1650795 | Zbl 0927.76007

[38] A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8 (1998) 965-985. | MR 1657208 | Zbl 0917.35044

[39] R.L. Pego, Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London, Ser. A 422 (1989) 116-133. | MR 997638 | Zbl 0701.35159

[40] A. Schmidt and K.G. Siebert, Design of adaptive finite element software: The finite element toolbox ALBERTA, Lect. Notes Comput. Sci. Eng. 42. Springer, Berlin (2005). | MR 2127659 | Zbl 1068.65138

[41] B. Stoth, Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. J. Diff. Equ. 125 (1996) 154-183. | MR 1376064 | Zbl 0851.35011

[42] S. Tremaine, On the origin of irregular structure in Saturn's rings. Ast. J. 125 (2003) 894-901.

[43] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen. Vieweg Verlag (2005). | Zbl 1142.49001

[44] S. Zhou and M.Y. Wang, Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89-111. | MR 2291576 | Zbl 1245.74077