BV solutions and viscosity approximations of rate-independent systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 36-80.

In the nonconvex case, solutions of rate-independent systems may develop jumps as a function of time. To model such jumps, we adopt the philosophy that rate-independence should be considered as limit of systems with smaller and smaller viscosity. For the finite-dimensional case we study the vanishing-viscosity limit of doubly nonlinear equations given in terms of a differentiable energy functional and a dissipation potential that is a viscous regularization of a given rate-independent dissipation potential. The resulting definition of “BV solutions” involves, in a nontrivial way, both the rate-independent and the viscous dissipation potential, which play crucial roles in the description of the associated jump trajectories. We shall prove general convergence results for the time-continuous and for the time-discretized viscous approximations and establish various properties of the limiting BV solutions. In particular, we shall provide a careful description of the jumps and compare the new notion of solutions with the related concepts of energetic and local solutions to rate-independent systems.

DOI : 10.1051/cocv/2010054
Classification : 49Q20, 58E99
Mots clés : doubly nonlinear, differential inclusions, generalized gradient flows, viscous regularization, vanishing-viscosity limit, vanishing-viscosity contact potential, parameterized solutions
@article{COCV_2012__18_1_36_0,
     author = {Mielke, Alexander and Rossi, Riccarda and Savar\'e, Giuseppe},
     title = {BV solutions and viscosity approximations of rate-independent systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {36--80},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {1},
     year = {2012},
     doi = {10.1051/cocv/2010054},
     mrnumber = {2887927},
     zbl = {1250.49041},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2010054/}
}
TY  - JOUR
AU  - Mielke, Alexander
AU  - Rossi, Riccarda
AU  - Savaré, Giuseppe
TI  - BV solutions and viscosity approximations of rate-independent systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 36
EP  - 80
VL  - 18
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2010054/
DO  - 10.1051/cocv/2010054
LA  - en
ID  - COCV_2012__18_1_36_0
ER  - 
%0 Journal Article
%A Mielke, Alexander
%A Rossi, Riccarda
%A Savaré, Giuseppe
%T BV solutions and viscosity approximations of rate-independent systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 36-80
%V 18
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2010054/
%R 10.1051/cocv/2010054
%G en
%F COCV_2012__18_1_36_0
Mielke, Alexander; Rossi, Riccarda; Savaré, Giuseppe. BV solutions and viscosity approximations of rate-independent systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 36-80. doi : 10.1051/cocv/2010054. http://archive.numdam.org/articles/10.1051/cocv/2010054/

[1] L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191-246. | MR | Zbl

[2] L. Ambrosio and G. Dal Maso, A general chain rule for distributional derivatives. Proc. Am. Math. Soc. 108 (1990) 691-702. | MR | Zbl

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, Clarendon Press, Oxford (2000). | MR | Zbl

[4] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn., Birkhäuser Verlag, Basel (2008). | MR | Zbl

[5] F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Meth. Appl. Sci. 18 (2008) 125-164. | MR | Zbl

[6] G. Bouchitté, A. Mielke and T. Roubíček, A complete-damage problem at small strains. Z. Angew. Math. Phys. 60 (2009) 205-236. | MR | Zbl

[7] M. Buliga, G. De Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal. 15 (2008) 87-104. | MR | Zbl

[8] P. Colli, On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math. 9 (1992) 181-203. | MR | Zbl

[9] P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Commun. Partial Differ. Equ. 15 (1990) 737-756. | MR | Zbl

[10] G. Dal Maso and R. Toader, A model for quasi-static growth of brittle fractures : existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101-135. | MR | Zbl

[11] G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization. Math. Models Meth. Appl. Sci. 12 (2002) 1773-1799. | MR | Zbl

[12] G. Dal Maso and C. Zanini, Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. R. Soc. Edinb., Sect. A, Math. 137 (2007) 253-279. | MR | Zbl

[13] G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225. | MR | Zbl

[14] G. Dal Maso, A. Desimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291. | MR | Zbl

[15] G. Dal Maso, A. Desimone, M.G. Mora and M. Morini, Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media 3 (2008) 567-614. | MR | Zbl

[16] G. Dal Maso, A. Desimone, M.G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189 (2008) 469-544. | MR | Zbl

[17] G. Dal Maso, A. Desimone and F. Solombrino, Quasistatic evolution for cam-clay plasiticity : a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differential Equations (to appear). | MR

[18] M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Analysis 13 (2006) 151-167. | MR | Zbl

[19] A. Fiaschi, A vanishing viscosity approach to a quasistatic evolution problem with nonconvex energy. Ann. Inst. Henri Poincaré, Anal. Non Linéaire (to appear). | Numdam | Zbl

[20] G. Francfort and A. Garroni, A variational view of partial brittle damage evolution. Arch. Ration. Mech. Anal. 182 (2006) 125-152. | MR | Zbl

[21] G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55-91. | MR | Zbl

[22] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms. II : Advanced theory and bundle methods, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 306. Springer-Verlag, Berlin (1993). | MR | Zbl

[23] D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation. Math. Models Meth. Appl. Sci. 18 (2008) 1529-1569. | MR | Zbl

[24] D. Knees, C. Zanini and A. Mielke, Crack propagation in polyconvex materials. Physica D 239 (2010) 1470-1484. | MR | Zbl

[25] M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem. Math. Mech. Solids 11 (2006) 423-447. | Zbl

[26] P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators, in Nonlinear differential equations (Chvalatice, 1998), Res. Notes Math. 404, Chapman & Hall/CRC, Boca Raton, FL (1999) 47-110. | MR | Zbl

[27] P. Krejčí, and M. Liero, Rate independent Kurzweil processes. Appl. Math. 54 (2009) 117-145. | MR | Zbl

[28] C.J. Larsen, Epsilon-stable quasi-static brittle fracture evolution. Comm. Pure Appl. Math. 63 (2010) 630-654. | MR

[29] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22 (2005) 73-99. | MR | Zbl

[30] A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain. J. Nonlin. Sci. 19 (2009) 221-248. | MR | Zbl

[31] A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15 (2003) 351-382. | MR | Zbl

[32] A. Mielke, Evolution in rate-independent systems (Chap. 6), in Handbook of differential equations, evolutionary equations 2, C. Dafermos and E. Feireisl Eds., Elsevier B.V., Amsterdam (2005) 461-559. | MR | Zbl

[33] A. Mielke, Differential, energetic and metric formulations for rate-independent processes. Lecture Notes, Summer School Cetraro (in press). | Zbl

[34] A. Mielke and T. Roubčíek, A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1 (2003) 571-597. | MR | Zbl

[35] A. Mielke and T. Roubčíek, Rate-independent damage processes in nonlinear elasticity. M3 ! AS Math. Models Meth. Appl. Sci. 16 (2006) 177-209. | MR | Zbl

[36] A. Mielke and T. Roubčíek, Rate-Independent Systems : Theory and Application. (In preparation).

[37] A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker-Verlag, Aachen (1999) 117-129.

[38] A. Mielke and F. Theil, On rate-independent hysteresis models. NoDEA 11 (2004) 151-189. | MR | Zbl

[39] A. Mielke and A. Timofte, An energetic material model for time-dependent ferroelectric behavior : existence and uniqueness. Math. Meth. Appl. Sci. 29 (2006) 1393-1410. | MR | Zbl

[40] A. Mielke and S. Zelik, On the vanishing viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (submitted). | MR | Zbl

[41] A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162 (2002) 137-177. | MR | Zbl

[42] A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25 (2009) 585-615. | MR | Zbl

[43] A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations. (In preparation). | Zbl

[44] M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion. Math. Models Meth. Appl. Sci. 18 (2008) 1895-1925. | MR | Zbl

[45] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1970). | MR | Zbl

[46] R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM : COCV 12 (2006) 564-614. | Numdam | MR | Zbl

[47] R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7 (2008) 97-169. | Numdam | MR | Zbl

[48] T. Roubčíek, Rate independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32 (2009) 825-862. | MR | Zbl

[49] U. Stefanelli, A variational characterization of rate-independent evolution. Math. Nachr. 282 (2009) 1492-1512. | MR | Zbl

[50] M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strains - Existence and regularity results. Zeits. Angew. Math. Mech. 90 (2009) 88-112. | MR | Zbl

[51] R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth. Boll. Unione Mat. Ital. 2 (2009) 1-35. | MR | Zbl

[52] A. Visintin, Differential models of hysteresis, Applied Mathematical Sciences 111. Springer-Verlag, Berlin (1994). | MR | Zbl

Cité par Sources :