Approximation by finitely supported measures
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 343-359.

We consider the problem of approximating a probability measure defined on a metric space by a measure supported on a finite number of points. More specifically we seek the asymptotic behavior of the minimal Wasserstein distance to an approximation when the number of points goes to infinity. The main result gives an equivalent when the space is a Riemannian manifold and the approximated measure is absolutely continuous and compactly supported.

DOI : 10.1051/cocv/2010100
Classification : 49Q20, 90B85
Mots clés : measures, Wasserstein distance, quantization, location problem, centroidal Voronoi tessellations
@article{COCV_2012__18_2_343_0,
     author = {Kloeckner, Beno{\^\i}t},
     title = {Approximation by finitely supported measures},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {343--359},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {2},
     year = {2012},
     doi = {10.1051/cocv/2010100},
     mrnumber = {2954629},
     zbl = {1246.49040},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2010100/}
}
TY  - JOUR
AU  - Kloeckner, Benoît
TI  - Approximation by finitely supported measures
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 343
EP  - 359
VL  - 18
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2010100/
DO  - 10.1051/cocv/2010100
LA  - en
ID  - COCV_2012__18_2_343_0
ER  - 
%0 Journal Article
%A Kloeckner, Benoît
%T Approximation by finitely supported measures
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 343-359
%V 18
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2010100/
%R 10.1051/cocv/2010100
%G en
%F COCV_2012__18_2_343_0
Kloeckner, Benoît. Approximation by finitely supported measures. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 343-359. doi : 10.1051/cocv/2010100. http://archive.numdam.org/articles/10.1051/cocv/2010100/

[1] G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal. C. R. Math. Acad. Sci. Paris 335 (2002) 853-858. | MR | Zbl

[2] A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem. ESAIM : COCV 15 (2009) 509-524. | Numdam | MR | Zbl

[3] T. Champion, L. De Pascale and P. Juutinen, The ∞-Wasserstein distance : local solutions and existence of optimal transport maps. SIAM J. Math. Anal. 40 (2008) 1-20. | MR | Zbl

[4] V. Dobrić and J.E. Yukich, Asymptotics for transportation cost in high dimensions. J. Theoret. Probab. 8 (1995) 97-118. | MR | Zbl

[5] Q. Du and D. Wang, The optimal centroidal Voronoi tessellations and the Gersho's conjecture in the three-dimensional space. Comput. Math. Appl. 49 (2005) 1355-1373. | MR | Zbl

[6] Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations : applications and algorithms. SIAM Rev. 41 (1999) 637-676. | MR | Zbl

[7] K.J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics 85. Cambridge University Press (1986). | MR | Zbl

[8] L. Fejes Tóth, Sur la représentation d'une population infinie par un nombre fini d'éléments. Acta. Math. Acad. Sci. Hungar 10 (1959) 299-304. | MR | Zbl

[9] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Die Grundlehren der mathematischen Wissenschaften, Band 65. Zweite verbesserte und erweiterte Auflage, Springer-Verlag (1972). | MR | Zbl

[10] S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics 1730. Springer-Verlag (2000). | MR | Zbl

[11] J. Heinonen, Lectures on analysis on metric spaces. Universitext, Springer-Verlag (2001). | MR | Zbl

[12] J. Horowitz and R.L. Karandikar, Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math. 55 (1994) 261-273. | MR | Zbl

[13] J.E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981) 713-747. | MR | Zbl

[14] F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem. Amer. Math. Monthly 109 (2002) 165-172. | MR | Zbl

[15] S.J.N. Mosconi and P. Tilli, Γ-convergence for the irrigation problem. J. Convex Anal. 12 (2005) 145-158. | MR | Zbl

[16] D.J. Newman, The hexagon theorem. IEEE Trans. Inform. Theory 28 (1982) 137-139. | MR | Zbl

[17] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics 58. American Mathematical Society (2003). | MR | Zbl

Cité par Sources :