A Hölder infinity laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 799-835.

In this paper we study the limit as p → ∞ of minimizers of the fractional Ws,p-norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this construction, we obtain some regularity results.

DOI : 10.1051/cocv/2011182
Classification : 35D40, 35J60, 35J65
Mots-clés : Lipschitz extensions, Hölder extensions, infinity laplacian, non-local and non-linear equations, viscosity solutions
@article{COCV_2012__18_3_799_0,
     author = {Chambolle, Antonin and Lindgren, Erik and Monneau, R\'egis},
     title = {A {H\"older} infinity laplacian},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {799--835},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {2012},
     doi = {10.1051/cocv/2011182},
     mrnumber = {3041665},
     zbl = {1255.35078},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2011182/}
}
TY  - JOUR
AU  - Chambolle, Antonin
AU  - Lindgren, Erik
AU  - Monneau, Régis
TI  - A Hölder infinity laplacian
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 799
EP  - 835
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2011182/
DO  - 10.1051/cocv/2011182
LA  - en
ID  - COCV_2012__18_3_799_0
ER  - 
%0 Journal Article
%A Chambolle, Antonin
%A Lindgren, Erik
%A Monneau, Régis
%T A Hölder infinity laplacian
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 799-835
%V 18
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2011182/
%R 10.1051/cocv/2011182
%G en
%F COCV_2012__18_3_799_0
Chambolle, Antonin; Lindgren, Erik; Monneau, Régis. A Hölder infinity laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 799-835. doi : 10.1051/cocv/2011182. http://archive.numdam.org/articles/10.1051/cocv/2011182/

[1] G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. | MR | Zbl

[2] G. Aronsson, On certain singular solutions of the partial differential equation u2xuxx + 2uxuyuxy + u2yuyy = 0. Manuscr. Math. 47 (1984) 133-151. | EuDML | MR | Zbl

[3] G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.) 41 (2004) 439-505. | MR | Zbl

[4] G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57 (2008) 213-246. | MR | Zbl

[5] T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as p → ∞ of Δpup = f and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino (1989), No. Special Issue (1991) 15-68, Some topics in nonlinear PDEs, Turin (1989). | MR

[6] C. Bjorland, L. Caffarelli and A. Figalli, Non-Local Tug-of-War and the Infinity Fractional Laplacian. Comm. Pure Appl. Math. (2011). | MR | Zbl

[7] L.A. Caffarelli and A. Córdoba, An elementary regularity theory of minimal surfaces. Differential Integral Equations 6 (1993) 1-13. | MR | Zbl

[8] V. Caselles, J.-M. Morel and C. Sbert, An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7 (1998) 376-386. | MR | Zbl

[9] M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67. | MR | Zbl

[10] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces. preprint arXiv:1104.4345 (2011) | Zbl

[11] H. Lebesgue, Sur le problème de Dirichlet. Rend. Circ. Mat. Palermo 24 (1907) 371-402. | JFM

[12] G. Lu and P. Wang, Inhomogeneous infinity Laplace equation. Adv. Math. 217 (2008) 1838-1868. | MR | Zbl

[13] E.J. Mcshane, Extension of range of functions. Bull. Am. Math. Soc. 40 (1934) 837-842. | MR | Zbl

[14] F. Memoli, J.-M. Sapiro and P. Thompson, Brain and surface warping via minimizing lipschitz extensions. IMA Preprint Series 2092 (2006).

[15] K. Murota, Discrete convex analysis. SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2003). | MR | Zbl

[16] A.M. Oberman, An explicit solution of the Lipschitz extension problem. Proc. Am. Math. Soc. 136 (2008) 4329-4338. | MR | Zbl

[17] H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36 (1934) 63-89. | MR | Zbl

Cité par Sources :