In this paper we study the limit as p → ∞ of minimizers of the fractional Ws,p-norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this construction, we obtain some regularity results.
Mots-clés : Lipschitz extensions, Hölder extensions, infinity laplacian, non-local and non-linear equations, viscosity solutions
@article{COCV_2012__18_3_799_0, author = {Chambolle, Antonin and Lindgren, Erik and Monneau, R\'egis}, title = {A {H\"older} infinity laplacian}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {799--835}, publisher = {EDP-Sciences}, volume = {18}, number = {3}, year = {2012}, doi = {10.1051/cocv/2011182}, mrnumber = {3041665}, zbl = {1255.35078}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2011182/} }
TY - JOUR AU - Chambolle, Antonin AU - Lindgren, Erik AU - Monneau, Régis TI - A Hölder infinity laplacian JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 799 EP - 835 VL - 18 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2011182/ DO - 10.1051/cocv/2011182 LA - en ID - COCV_2012__18_3_799_0 ER -
%0 Journal Article %A Chambolle, Antonin %A Lindgren, Erik %A Monneau, Régis %T A Hölder infinity laplacian %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 799-835 %V 18 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2011182/ %R 10.1051/cocv/2011182 %G en %F COCV_2012__18_3_799_0
Chambolle, Antonin; Lindgren, Erik; Monneau, Régis. A Hölder infinity laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 799-835. doi : 10.1051/cocv/2011182. http://archive.numdam.org/articles/10.1051/cocv/2011182/
[1] Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. | MR | Zbl
,[2] On certain singular solutions of the partial differential equation u2xuxx + 2uxuyuxy + u2yuyy = 0. Manuscr. Math. 47 (1984) 133-151. | EuDML | MR | Zbl
,[3] A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.) 41 (2004) 439-505. | MR | Zbl
, and ,[4] On the Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57 (2008) 213-246. | MR | Zbl
, and ,[5] Limits as p → ∞ of Δpup = f and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino (1989), No. Special Issue (1991) 15-68, Some topics in nonlinear PDEs, Turin (1989). | MR
, and ,[6] Non-Local Tug-of-War and the Infinity Fractional Laplacian. Comm. Pure Appl. Math. (2011). | MR | Zbl
, and ,[7] An elementary regularity theory of minimal surfaces. Differential Integral Equations 6 (1993) 1-13. | MR | Zbl
and ,[8] An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7 (1998) 376-386. | MR | Zbl
, and ,[9] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67. | MR | Zbl
, and ,[10] Hitchhiker's guide to the fractional Sobolev spaces. preprint arXiv:1104.4345 (2011) | Zbl
, and ,[11] Sur le problème de Dirichlet. Rend. Circ. Mat. Palermo 24 (1907) 371-402. | JFM
,[12] Inhomogeneous infinity Laplace equation. Adv. Math. 217 (2008) 1838-1868. | MR | Zbl
and ,[13] Extension of range of functions. Bull. Am. Math. Soc. 40 (1934) 837-842. | MR | Zbl
,[14] Brain and surface warping via minimizing lipschitz extensions. IMA Preprint Series 2092 (2006).
, and ,[15] Discrete convex analysis. SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2003). | MR | Zbl
,[16] An explicit solution of the Lipschitz extension problem. Proc. Am. Math. Soc. 136 (2008) 4329-4338. | MR | Zbl
,[17] Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36 (1934) 63-89. | MR | Zbl
,Cité par Sources :