We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.
Keywords: polyharmonic operators, eigenvalues, domain perturbation
@article{COCV_2013__19_4_1225_0, author = {Buoso, Davide and Lamberti, Pier Domenico}, title = {Eigenvalues of polyharmonic operators on variable domains}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1225--1235}, publisher = {EDP-Sciences}, volume = {19}, number = {4}, year = {2013}, doi = {10.1051/cocv/2013054}, mrnumber = {3182687}, zbl = {1291.35144}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2013054/} }
TY - JOUR AU - Buoso, Davide AU - Lamberti, Pier Domenico TI - Eigenvalues of polyharmonic operators on variable domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 1225 EP - 1235 VL - 19 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2013054/ DO - 10.1051/cocv/2013054 LA - en ID - COCV_2013__19_4_1225_0 ER -
%0 Journal Article %A Buoso, Davide %A Lamberti, Pier Domenico %T Eigenvalues of polyharmonic operators on variable domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 1225-1235 %V 19 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2013054/ %R 10.1051/cocv/2013054 %G en %F COCV_2013__19_4_1225_0
Buoso, Davide; Lamberti, Pier Domenico. Eigenvalues of polyharmonic operators on variable domains. ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 4, pp. 1225-1235. doi : 10.1051/cocv/2013054. http://archive.numdam.org/articles/10.1051/cocv/2013054/
[1] Lectures on elliptic boundary value problems. Van Nostrand Mathematical Studies, No. 2 D. Van Nostrand Co., Inc. Princeton, N.J., Toronto London (1965). | MR | Zbl
,[2] On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J. 78 (1995) 1-17. | MR | Zbl
and ,[3] On the isoperimetric inequality for the buckling of a clamped plate. Z. Angew. Math. Phys. 54 (2003) 756-770. | MR | Zbl
and ,[4] Variational methods in some shape optimization problems. Appunti dei Corsi Tenuti da Docenti della Scuola, Notes of Courses Given by Teachers at the School. Scuola Normale Superiore, Pisa (2002). | MR | Zbl
and ,[5] Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators. Rev. Mat. Comput. 25 (2012) 435-457. | MR | Zbl
and ,[6] Spectral stability of higher order uniformly elliptic operators. Sobolev spaces in mathematics. II, in vol. 9 of Int. Math. Ser. (NY). Springer, New York (2009) 69-102. | MR | Zbl
and ,[7] Spectral stability of nonnegative selfadjoint operators. Sovrem. Mat. Fundam. Napravl. 15 (2006) 76-111, in Russian. English transl. in J. Math. Sci. (NY) 149 (2008) 1417-1452. | MR
, and ,[8] An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993) 183-195. | MR | Zbl
and ,[9] Un problème de symétrie pour une équation biharmonique. (French). A problem of symmetry for a biharmonic equation. In vol. 11 of Ann. Fac. Sci. Toulouse Math. (1990) 45-53. | EuDML | Numdam | MR | Zbl
,[10] Domain perturbation for linear and semi-linear boundary value problems. Handbook of differential equations: stationary partial differential equations. Handb. Differ. Equ. VI. Elsevier/North-Holland, Amsterdam (2008) 1-81. | MR
,[11] Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. Lect. Notes Math. Springer Verlag, Berlin (2010). | MR
, and ,[12] Hadamard's formula inside and out. J. Optim. Theory Appl. 146 (2010) 654-690. | MR
,[13] Eigenvalues and perturbed domains. Ten mathematical essays on approximation in analysis and topology. Elsevier B.V., Amsterdam (2005) 95-123. | MR
,[14] Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). | MR
,[15] Perturbation of the boundary in boundary-value problems of partial differential equations. With editorial assistance from Jack Hale and Antonio Luiz Pereira. In vol. 318 of London Math. Soc. Lect. Note Ser. Cambridge University Press, Cambridge (2005). | MR
,[16] Topics in Nonlinear Analysis, in vol. 192 of Trabalho de Mathemãtica. Universidade de Brasilia, Departamento de Matemãtica-IE (1982).
,[17] Some nonconvex shape optimization problems. Optimal shape design (Tróia, 1998). In vol. 746 of Lect. Notes Math. Springer, Berlin (2000) 49-02. | MR
,[18] Symmetrization and applications. In vol. 3 of Ser. Anal. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). | MR
,[19] Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems. J. Math. Soc. Japan 58 (2006) 231-245. | MR
and ,[20] A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear Convex Anal. 5 (2004) 19-42. | MR
and ,[21] An analyticity result for the dependence of multiple eigenvalues and eigenspaces of the Laplace operator upon perturbation of the domain. Glasg. Math. J. 44 (2002) 29-43. | MR
and ,[22] Über die Rayleighsche Vermutung: unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton. Ann. Mat. Pura Appl. 104 (1975) 85-122. | MR
,[23] Rayleigh's conjecture on the principal frequency of the clamped plate. Arch. Rational Mech. Anal. 129 (1995) 1-10. | MR
,[24] Generic simplicity of the spectrum and stabilization for a plate equation. SIAM J. Control Optim. 39 (2001) 1585-1614. | MR
and ,[25] Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315-330. | Numdam | MR
,[26] Isoperimetric Inequalities in Mathematical Physics. In vol. 27 of Ann. Math. Studies. Princeton University Press, Princeton, NJ (1951).
and ,[27] On membranes and plates. Proc. Nat. Acad. Sci. USA 36 (1950) 210-216. | MR
,[28] An isoperimetric inequality for the buckling of a clamped plate, Lecture at the Oberwolfach meeting on “Qualitiative properties of PDE” organized, edited by H. Berestycki, B. Kawohl and G. Talenti (1995).
,[29] Range of the first two eigenvalues of the Laplacian. In vol. 447 of Proc. Roy. Soc. London Ser. A (1994) 397-412. | MR
and ,Cited by Sources: