Variational approximation of a functional of Mumford-Shah type in codimension higher than one
ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 1, p. 190-221

In this paper we consider a new kind of Mumford-Shah functional E(u, Ω) for maps u : ℝm → ℝn with m ≥ n. The most important novelty is that the energy features a singular set Su of codimension greater than one, defined through the theory of distributional jacobians. After recalling the basic definitions and some well established results, we prove an approximation property for the energy E(u, Ω) via Γ -convergence, in the same spirit of the work by Ambrosio and Tortorelli [L. Ambrosio and V.M. Tortorelli, Commun. Pure Appl. Math. 43 (1990) 999-1036].

DOI : https://doi.org/10.1051/cocv/2013061
Classification:  49Q20,  49J45,  49Q15
Keywords: jacobian, Γ-convergence, higher codimension, Mumford-Shah, Ginzburg-Landau, phase transition
@article{COCV_2014__20_1_190_0,
     author = {Ghiraldin, Francesco},
     title = {Variational approximation of a functional of Mumford-Shah type in codimension higher than one},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     pages = {190-221},
     doi = {10.1051/cocv/2013061},
     zbl = {1286.49054},
     mrnumber = {3182697},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2014__20_1_190_0}
}
Ghiraldin, Francesco. Variational approximation of a functional of Mumford-Shah type in codimension higher than one. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 1, pp. 190-221. doi : 10.1051/cocv/2013061. http://www.numdam.org/item/COCV_2014__20_1_190_0/

[1] E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2 (1994) 329-371. | MR 1385074 | Zbl 0810.49014

[2] R.A. Adams and J.J.F. Fournier, Sobolev spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edition. Elsevier/Academic Press, Amsterdam (2003). | MR 2424078 | Zbl 1098.46001

[3] G. Alberti, S. Baldo and G. Orlandi, Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5 (2003) 275-311. | MR 2002215 | Zbl 1033.46028

[4] G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math. J. 54 (2005) 1411-1472. | MR 2177107 | Zbl 1160.35013

[5] F. Almgren. Deformations and multiple-valued functions, in Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), vol. 44 of Proc. Sympos. Pure Math. Amer. Math. Soc. Providence, RI (1986) 29-130. | MR 840268 | Zbl 0595.49028

[6] L. Ambrosio, Existence theory for a new class of variational problems. Arch. Rational Mech. Anal. 111 (1990) 291-322. | MR 1068374 | Zbl 0711.49064

[7] L. Ambrosio, Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990) 439-478. | Numdam | MR 1079985 | Zbl 0724.49027

[8] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). | MR 1857292 | Zbl 0957.49001

[9] L. Ambrosio and F. Ghiraldin, Flat chains of finite size in metric spaces. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis (2012). | Numdam | MR 3011292 | Zbl 1261.49013

[10] L. Ambrosio and F. Ghiraldin, Compactness of special functions of bounded higher variation. Analysis and Geometry in Metric Spaces 1 (2013) 1-30. | MR 3108864 | Zbl 1266.49090

[11] L. Ambrosio and B. Kirchheim, Currents in metric spaces. Acta Math. 185 (2000) 1-80. | MR 1794185 | Zbl 0984.49025

[12] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | Zbl 0722.49020

[13] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105-123. | MR 1164940 | Zbl 0776.49029

[14] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1976/1977) 337-403. | MR 475169 | Zbl 0368.73040

[15] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, vol. 13 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA (1994). | MR 1269538 | Zbl 0802.35142

[16] A. Braides, Γ-convergence for beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | MR 1968440 | Zbl 1198.49001

[17] G. Dal Maso, An introduction to Γ-convergence. Progr. Nonlinear Differ. Eq. Appl., vol. 8. Birkhäuser Boston Inc., Boston, MA (1993). | MR 1201152 | Zbl 0816.49001

[18] G. David, Singular sets of minimizers for the Mumford-Shah functional, vol. 233 of Progress in Mathematics. Birkhäuser Verlag, Basel (2005). | MR 2129693 | Zbl 1086.49030

[19] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108 (1989) 195-218. | MR 1012174 | Zbl 0682.49002

[20] C. De Lellis, Some fine properties of currents and applications to distributional Jacobians. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 815-842. | MR 1926918 | Zbl 1025.49029

[21] C. De Lellis and F. Ghiraldin, An extension of the identity Det = det. C. R. Acad. Sci. Paris Sér. I Math. (2010). | Zbl 1201.35088

[22] T. De Pauw and R. Hardt. Rectifiable and flat G chains in a metric space. Amer. J. Math. 134 (2012) 1-69. | MR 2876138 | Zbl 1252.49070

[23] N. Desenzani and I. Fragalà, Concentration of Ginzburg-Landau energies with supercritical growth. SIAM J. Math. Anal. 38 (2006) 385-413 (electronic). | MR 2237153 | Zbl 1109.49014

[24] H. Federer, Geometric measure theory, vol. 153 of Die Grundlehren der mathematischen Wissenschaften, Band. Springer-Verlag New York Inc., New York (1969). | MR 257325 | Zbl 0176.00801

[25] H. Federer, Flat chains with positive densities. Indiana Univ. Math. J. 35 (1986) 413-424. | MR 833403 | Zbl 0611.49029

[26] W. H. Fleming, Flat chains over a finite coefficient group. Trans. Amer. Math. Soc. 121 (1966) 160-186. | MR 185084 | Zbl 0136.03602

[27] N. Fusco and J.E. Hutchinson, A direct proof for lower semicontinuity of polyconvex functionals. Manuscripta Math. 87 (1995) 35-50. | MR 1329439 | Zbl 0874.49015

[28] M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. I, II, vol. 37, 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin (1998). | MR 1645086 | Zbl 0914.49002

[29] Enrico Giusti, Direct methods in the calculus of variations. World Scientific Publishing Co. Inc., River Edge, NJ (2003). MR 1962933 (2004g:49003) | MR 1962933 | Zbl 1028.49001

[30] R. Hardt and T. Rivière, Connecting topological Hopf singularities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 287-344. | Numdam | MR 2005606 | Zbl 1150.58004

[31] R.L. Jerrard and H.M. Soner, Functions of bounded higher variation. Indiana Univ. Math. J. 51 (2002) 645-677. | MR 1911049 | Zbl 1057.49036

[32] E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14 of Amer. Math. Soc. Providence, RI, 2nd edition (2001). | MR 1817225 | Zbl 0966.26002

[33] L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A 14 (1977) 526-529. | MR 473971 | Zbl 0364.49006

[34] L. Modica and S. Mortola, Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285-299. | MR 445362 | Zbl 0356.49008

[35] F. Morgan, Size-minimizing rectifiable currents. Invent. Math. 96 (1989) 333-348. | MR 989700 | Zbl 0645.49024

[36] S. Müller, Det = det. A remark on the distributional determinant. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 13-17. | MR 1062920 | Zbl 0717.46033

[37] S. Müller and S.J. Spector, An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131 (1995) 1-66. | MR 1346364 | Zbl 0836.73025

[38] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | MR 997568 | Zbl 0691.49036

[39] E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, vol. 70 of Progress Non. Differ. Eqs. Appl. Birkhäuser Boston Inc., Boston, MA (2007). | MR 2279839 | Zbl 1112.35002

[40] V. Šverák, Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal. 100 (1988) 105-127. | MR 913960 | Zbl 0659.73038

[41] G. Talenti. Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976) 353-372. | MR 463908 | Zbl 0353.46018

[42] B. White, Rectifiability of flat chains. Ann. Math. 150 (1999) 165-184. | MR 1715323 | Zbl 0965.49024

[43] W.P. Ziemer, Weakly differentiable functions, Sobolev spaces and functions of bounded variation, vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York (1989). | MR 1014685 | Zbl 0692.46022