A certified reduced basis method for parametrized elliptic optimal control problems
ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 2, p. 416-441
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linear output functionals of the control, state, and adjoint variables. We show that, based on the assumption of affine parameter dependence, the reduced order optimal control problem and the proposed bounds can be efficiently evaluated in an offline-online computational procedure. Numerical results are presented to confirm the validity of our approach.

DOI : https://doi.org/10.1051/cocv/2013069
Classification:  49K20,  49M29,  35J25,  65N15,  65K05,  93C20
Keywords: optimal control, reduced basis method, a posteriori error estimation, model order reduction, parameter-dependent systems
@article{COCV_2014__20_2_416_0,
     author = {K\"archer, Mark and Grepl, Martin A.},
     title = {A certified reduced basis method for parametrized elliptic optimal control problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     pages = {416-441},
     doi = {10.1051/cocv/2013069},
     zbl = {1287.49032},
     mrnumber = {3264210},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2014__20_2_416_0}
}
Kärcher, Mark; Grepl, Martin A. A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 2, pp. 416-441. doi : 10.1051/cocv/2013069. http://www.numdam.org/item/COCV_2014__20_2_416_0/

[1] J.A. Atwell and B.B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model. 33 (2001) 1-19. | MR 1812538 | Zbl 0964.93032

[2] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39 (2000) 113-132. | MR 1780911 | Zbl 0967.65080

[3] R. Becker and R. Rannacher, Weighted a posteriori error control in FE methods, in Proc. of ENUMATH-97. World Scientific Publishing (1998) 621-637. | Zbl 0968.65083

[4] L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32 (2010) 997-1019. | MR 2639603 | Zbl 1221.35030

[5] L. Dedè, Reduced basis method for parametrized elliptic advection-reaction problems. J. Comput. Math. 28 (2010) 122-148. | MR 2603585 | Zbl 1224.65262

[6] L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput. 50 (2012) 287-305. | MR 2886329 | Zbl 1244.65094

[7] A.-L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems. Accepted in SIAM J. Sci. Comput. (2012). | MR 3023727 | Zbl 1255.76024

[8] M.A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Math. 349 (2011) 873-877. | MR 2835894 | Zbl 1232.49039

[9] M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41 (2007) 575-605. | Numdam | MR 2355712 | Zbl 1142.65078

[10] M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157-181. | Numdam | MR 2136204 | Zbl 1079.65096

[11] D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345 (2007) 473-478. | MR 2367928 | Zbl 1127.65086

[12] K. Ito and K. Kunisch, Reduced-order optimal control based on approximate inertial manifolds for nonlinear dynamical systems. SIAM J. Numer. Anal. 46 (2008) 2867-2891. | MR 2439495 | Zbl 1178.93033

[13] K. Ito and S.S. Ravindran, A reduced basis method for control problems governed by pdes, in Control and Estimation of Distributed Parameter Systems, vol. 126 of Internat. Series Numer. Math., edited by W. Desch, F. Kappel and K. Kunisch. Birkhäuser Basel (1998) 153-168. | MR 1627683 | Zbl 0908.93025

[14] K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403-425. | MR 1631176 | Zbl 0936.76031

[15] K. Ito and S.S. Ravindran, A reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn. 15 (2001) 97-113. | MR 1895508 | Zbl 1036.76011

[16] M. Kärcher, The reduced-basis method for parametrized linear-quadratic elliptic optimal control problems, Master's thesis. Technische Universität München (2011).

[17] K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999) 345-371. | MR 1706822 | Zbl 0949.93039

[18] K. Kunisch, S. Volkwein and L. Xie, HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. System 3 (2004) 701-722. | MR 2111244 | Zbl 1058.35061

[19] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer (1971). | MR 271512 | Zbl 0203.09001

[20] L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D.V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Math. 331 (2000) 153-158. | MR 1781533 | Zbl 0960.65063

[21] F. Negri, Reduced basis method for parametrized optimal control problems governed by PDEs, Master's thesis. Politecnico di Milano (2011).

[22] I.B. Oliveira, A “HUM” Conjugate Gradient Algorithm for Constrained Nonlinear Optimal Control: Terminal and Regulator Problems, Ph.D. thesis. Massachusetts Institute of Technology (2002).

[23] M. Paraschivoiu, J. Peraire and A.T. Patera, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Symposium on Advances in Computational Mechanics. Comput. Methods Appl. Mechanics Engrg. 150 (1997) 289-312. | MR 1487947 | Zbl 0907.65102

[24] N.A. Pierce and M.B. Giles, Adjoint recovery of superconvergent functionals from pde approximations. SIAM Review 42 (2000) 247-264. | MR 1778357 | Zbl 0948.65119

[25] C. Prud'Homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engrg. 124 (2002) 70-80.

[26] A. Quarteroni, T. Lassila, A. Manzoni and G. Rozza, Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM: M2AN 47 (2013) 1107-1131. | Numdam | MR 3082291 | Zbl pre06198332

[27] A. Quarteroni, G. Rozza, L. Dedè and A. Quaini, Numerical approximation of a control problem for advection-diffusion processes, System Modeling and Optimization, in vol. 199 of IFIP International Federation for Information Processing. Edited by F. Ceragioli, A. Dontchev, H. Futura, K. Marti and L. Pandolfi. Springer (2006) 261-273. | MR 2249340 | Zbl 1214.49029

[28] A.M. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23 of Springer Series in Comput. Math. Springer (2008). | Zbl 1151.65339

[29] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Engrg. 15 (2008) 229-275. | MR 2430350 | Zbl pre05344486

[30] T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and pod a posteriori error estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Modell. Dyn. Syst. 17 (2011) 355-369. | MR 2823468 | Zbl pre06287792

[31] F. Tröltzsch and S. Volkwein, POD a posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44 (2009) 83-115. | MR 2556846 | Zbl 1189.49050

[32] K. Veroy and A.T. Patera, Certifed real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Intern. J. Numer. Methods Fluids 47 (2005) 773-788. | MR 2123791 | Zbl 1134.76326

[33] K. Veroy, C. Prud'Homme, D.V. Rovas and A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in Proc. of the 16th AIAA Computational Fluid Dynamics Conference. AIAA Paper (2003) 2003-3847.

[34] K. Veroy, D.V. Rovas and A.T. Patera, A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “convex inverse” bound conditioners. Special volume: A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 1007-1028. | Numdam | MR 1932984 | Zbl 1092.35031

[35] G. Vossen and S. Volkwein, Model reduction techniques with a posteriori error analysis for linear-quadratic optimal control problems, in vol. 298 of Konstanzer Schriften in Mathematik. Universität Konstanz (2012). | MR 2970899 | Zbl 1254.49018