Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 524-546.

A dual-weighted residual approach for goal-oriented adaptive finite elements for a class of optimal control problems for elliptic variational inequalities is studied. The development is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Also, a priori bounds for C-stationary points and associated multipliers are derived. Details on the numerical realization of the adaptive concept are provided and a report on numerical tests including the critical cases of biactivity are presented.

DOI : 10.1051/cocv/2013074
Classification : 49M25, 65K15, 90C33
Mots-clés : adaptive finite element method, C-stationarity, goal-oriented error estimation, mathematical programming with equilibrium constraints, optimal control of variational inequalities
@article{COCV_2014__20_2_524_0,
     author = {Hinterm\"uller, M. and Hoppe, R. H. W. and L\"obhard, C.},
     title = {Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {524--546},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     doi = {10.1051/cocv/2013074},
     mrnumber = {3264215},
     zbl = {1287.49030},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2013074/}
}
TY  - JOUR
AU  - Hintermüller, M.
AU  - Hoppe, R. H. W.
AU  - Löbhard, C.
TI  - Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 524
EP  - 546
VL  - 20
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2013074/
DO  - 10.1051/cocv/2013074
LA  - en
ID  - COCV_2014__20_2_524_0
ER  - 
%0 Journal Article
%A Hintermüller, M.
%A Hoppe, R. H. W.
%A Löbhard, C.
%T Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 524-546
%V 20
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2013074/
%R 10.1051/cocv/2013074
%G en
%F COCV_2014__20_2_524_0
Hintermüller, M.; Hoppe, R. H. W.; Löbhard, C. Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 524-546. doi : 10.1051/cocv/2013074. http://archive.numdam.org/articles/10.1051/cocv/2013074/

[1] K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework. Springer (2009). | MR | Zbl

[2] M. Anitescu, P. Tseng and S.J. Wright, Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties. Math. Program 110 (2005) 337-371. | MR | Zbl

[3] E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991) 181-198. | MR | Zbl

[4] V. Barbu, Optimal Control of Variational Inequalities. Pitman, Boston, London, Melbourne (1984). | MR | Zbl

[5] D. Braess, C. Carstensen and R.H.W. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem. J. Numer. Math. 107 (2007) 455-471. | MR | Zbl

[6] D. Braess, C. Carstensen and R.H.W. Hoppe, Error reduction in adaptive finite element approximations of elliptic obstacle problems. J. Comput. Math. 27 (2009) 148-169. | MR | Zbl

[7] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. (2000). | MR | Zbl

[8] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, Basel (2003). | MR | Zbl

[9] D. Braess, A posteriori error estimators for obstacle problems - another look. Numer. Math. 101 (2005) 415-421. | MR | Zbl

[10] O. Benedix and B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44 (2009) 3-25. | MR | Zbl

[11] I. Babuška, J. Whiteman and T. Strouboulis, Finite Elements: An Introduction to the Method and Error Estimation. Oxford University Press (2011). | MR | Zbl

[12] C. Carstensen, An adaptive mesh-refining algorithm allowing for an stable projection onto Courant finite element spaces. Constructive Approximation 20 (2004) 549-564. | Zbl

[13] M.C. Ferris and T.S. Munson, Interfaces to path 3.0: Design, implementation and usage. Comput. Optim. Appl. 12 207-227 (1999). | MR | Zbl

[14] F. Facchinei and J.S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems, in vol. 1 of Springer Ser. Oper. Research. Springer (2003). | MR | Zbl

[15] A. Günther and M. Hinze, A posteriori error control of a state constrained elliptic control problem. J. Numer. Math. 16 (2008) 307-322. | MR | Zbl

[16] M. Hintermüller and R.H.W. Hoppe, Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47 (2008) 1721-1743. | MR | Zbl

[17] M. Hintermüller and R.H.W. Hoppe, Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations. SIAM J. Control Optim. 48 (2010) 5468-5487. | MR | Zbl

[18] M. Hintermüller and R.H.W. Hoppe, Goal-oriented mesh adaptivity for mixed control-state constrained elliptic optimal control problems, in vol. 15 of Appl. Numer. Partial Differ. Eq., edited by W. Fitzgibbon, Y.A. Kuznetsov, P. Neittaanmäki and J. Périaux. Comput. Methods Appl. Sci. Springer, Berlin-Heidelberg-New York (2010) 97-111. | MR | Zbl

[19] M. Hintermüller, M. Hinze and M.H. Tber, An adaptive finite-element Moreau-Yosida-based solver for a non-smooth CahnHilliard problem. Optim. Methods Software 26 (2011) 777-811. | MR

[20] M. Hintermüller, K. Ito and K. Kunisch. The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865-888. | MR | Zbl

[21] M. Hintermüller and I. Kopacka. Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20 (2009) 868-902. | MR | Zbl

[22] M. Hintermüller and I. Kopacka, A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl. 50 (2011) 111-145. DOI: 10.1007/s10589-009-9307-9. | MR | Zbl

[23] M. Hintermüller and T. Surowiec, A bundle-free implicit programming approach for a class of MPECs in function space. Preprint (2012).

[24] C. Johnson, Adaptive finite element methods for the obstacle problem. Math. Models Methods Appl. Sci. 2 (1992) 483-487. | MR | Zbl

[25] D. Klatte and B. Kummer, Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Nonconvex Optim. Appl. Kluwer Academic (2002). | MR | Zbl

[26] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980). | MR | Zbl

[27] K. Kunisch and D. Wachsmuth. Path-following for optimal control of stationary variational inequalities. Comput. Optim. Appl. 51 (2012) 1345-1373. | MR | Zbl

[28] Z.Q. Luo, J.S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints. Cambridge University Press (1996). | MR | Zbl

[29] W. Liu and N. Yan, A posteriori error estimates for distributed convex optimal control problems. Advances Comput. Math. 15 (2001) 285-309. | MR | Zbl

[30] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330 of Grundlehren der mathematischen Wissenschaften. Springer (2006). | MR | Zbl

[31] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation II: Applications, vol. 331 of Grundlehren der mathematischen Wissenschaften. Springer (2006). | MR | Zbl

[32] F. Mignot and J.P. Puel. Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984) 466-476. | MR | Zbl

[33] P. Neittaanmäki, J. Sprekels and D. Tiba, Optimization of Elliptic Systems: Theory and Applications. Springer Monogr. Math. Springer (2006). | MR | Zbl

[34] R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163-195. DOI: 10.1007/s00211-002-0411-3. | MR | Zbl

[35] J.V. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications, and Numerical Results, vol. 152 of Nonconvex Optim. Appl. Kluwer Academic Publishers (1998). | MR | Zbl

[36] D. Ralph. Global convergence of damped Newton's method for nonsmooth equations via the path search. Math. Oper. Res. 19 (1994) 352-389. | MR | Zbl

[37] S.I. Repin, A Posteriori Estimates for Partial Differential Equations. Radon Ser. Comput. Appl. Math. De Gruyter (2008). | MR | Zbl

[38] J.-F. Rodrigues, Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam (1987). | MR | Zbl

[39] A. Rösch and D. Wachsmuth, A posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120 (2012) 733-762. | MR | Zbl

[40] H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Research 25 (2000) 1-22. | MR | Zbl

[41] A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146-167. | MR | Zbl

[42] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996). | Zbl

[43] B. Vexler and W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47 (2008) 509-534. | MR | Zbl

Cité par Sources :