On the genesis of directional friction through bristle-like mediating elements
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1023-1046.

We propose an explanation of the genesis of directional dry friction, as emergent property of the oscillations produced in a bristle-like mediating element by the interaction with microscale fluctuations on the surface. Mathematically, we extend a convergence result by Mielke, for Prandtl–Tomlinson-like systems, considering also non-homothetic scalings of a wiggly potential. This allows us to apply the result to some simple mechanical models, that exemplify the interaction of a bristle with a surface having small fluctuations. We find that the resulting friction is the product of two factors: a geometric one, depending on the bristle angle and on the fluctuation profile, and a energetic one, proportional to the normal force exchanged between the bristle-like element and the surface. Finally, we apply our result to discuss the with the nap/against the nap asymmetry.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017030
Classification : 74A55, 74M10, 74N30
Mots-clés : Directional dry friction, rate-independent systems, wiggly energy landscape, with the nap/against the nap asymmetry, energy-dissipation principle
Gidoni, Paolo 1, 2 ; DeSimone, Antonio 2, 3

1 CMAF-CIO – Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edificio C6, 1749-016 Lisboa, Portugal.
2 SISSA – International School for Advanced Studies, Trieste, Italy.
3 GSSI – Gran Sasso Science Institute, L’Aquila, Italy.
@article{COCV_2017__23_3_1023_0,
     author = {Gidoni, Paolo and DeSimone, Antonio},
     title = {On the genesis of directional friction through bristle-like mediating elements},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1023--1046},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2017030},
     zbl = {1365.74021},
     mrnumber = {3660458},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017030/}
}
TY  - JOUR
AU  - Gidoni, Paolo
AU  - DeSimone, Antonio
TI  - On the genesis of directional friction through bristle-like mediating elements
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1023
EP  - 1046
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017030/
DO  - 10.1051/cocv/2017030
LA  - en
ID  - COCV_2017__23_3_1023_0
ER  - 
%0 Journal Article
%A Gidoni, Paolo
%A DeSimone, Antonio
%T On the genesis of directional friction through bristle-like mediating elements
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1023-1046
%V 23
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017030/
%R 10.1051/cocv/2017030
%G en
%F COCV_2017__23_3_1023_0
Gidoni, Paolo; DeSimone, Antonio. On the genesis of directional friction through bristle-like mediating elements. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1023-1046. doi : 10.1051/cocv/2017030. http://archive.numdam.org/articles/10.1051/cocv/2017030/

R. Abeyaratne, C. Chu and R. D. James, Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos. Mag. A 73 (1996) 457–497. | DOI

F. Al-Bender and J. Swevers. Characterization of friction force dynamics. IEEE Control Systems 28 (2009) 64–81. | MR | Zbl

R. Alessi, Energetic formulation for rate-independent processes: remarks on discontinuous evolutions with a simple example. Acta Mechanica 227 (2016) 2805–2829. | DOI | MR | Zbl

V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical aspects of classical and celestial mechanics. Springer, Berlin (2007). | MR | Zbl

K. Autumn, A. Dittmore, D. Santos, M. Spenko and M. Cutkosky, Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209 (2006) 3569–3579. | DOI

K. Autumn and N. Gravish, Gecko adhesion: evolutionary nanotechnology. Phil. Trans. R. Soc. A 366 (2008) 1575–1590. | DOI

K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, S. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, R.J. Israelachvili and R.J. Full, Evidence for van der Walls adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 99 (2002) 12252–12256. | DOI

C. Canudas De Wit, H. Olsson, K.J. Astrom and P. Lischinsky, A new model for control of systems with friction. IEEE Trans. Autom. Control 40 (1995) 419–425. | DOI | MR | Zbl

B. Drincic and D.S. Bernstein, A sudden-release bristle model that exhibits hysteresis and stick-slip friction, in IEEE American Control Conference (2011) 2456–2461.

A. Desimone, P. Gidoni and G. Noselli, Liquid Crystal Elastomer Strips as Soft Crawlers. J. Mech. Phys. Solids 85 (2015) 254–272. | DOI | MR | Zbl

A. Desimone and A. Tatone, Crawling motility through the analysis of model locomotors: two case studies. Eur. Phys. J. E 35 (2012) 85. | DOI

H. Gao, X. Wang, H. Yao, S. Gorb and E. Arzt, Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37 (2005) 275–285. | DOI

P. Gidoni and A. Desimone, Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler. Meccanica 52 (2017) 587–601. | DOI | MR | Zbl

P. Gidoni, G. Noselli and A. Desimone, Crawling on directional surfaces. Int. J. Non-Linear Mech. 61 (2014) 65–73. | DOI

N.J. Glassmaker, A. Jagota, C.Y. Hui and J. Kim, Design of biomimetic fibrillar interfaces: 1. Making contact. J. R. Soc. Interf. 1 (2004) 23–33. | DOI

M.J. Hancock., K. Sekeroglu and M.C. Demirel, Bioinspired directional surfaces for adhesion, wetting, and transport. Adv. Funct. Mater. 22 (2012) 2223–2234. | DOI

D.A. Haessig and B. Friedland, On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control. 113 (1991) 354–362. | DOI

C. Hu and P.A. Greaney, Role of seta angle and flexibility in the gecko adhesion mechanism. J. Appl. Phys. 116 (2014).

M. Kwak and H. Shindo, Frictional force microscopic detection of frictional asymmetry and anisotropy at (101 ¯4) surface of calcite. Phys. Chem. Chem. Phys. 6 (2004) 129–133. | DOI

M. Liley, D. Gourdon, D. Stamou, U. Meseth, T.M. Fischer, C. Lautz, H. Stahlberg, H. Vogel, N.A. Burnham and C. Duschl, Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280 (1998) 273–275. | DOI

L. Mahadevan, S. Daniel and M.K. Chaudhury, Biomimetic ratcheting motion of a soft, slender, sessile gel. Proc. Natl. Acad. Sci. USA 101 (2004) 23–26. | DOI

A. Menciassi, D. Accoto, S. Gorini and P. Dario, Development of a biomimetic miniature robotic crawler. Auton. Robot 21 (2006) 155–163. | DOI

A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations, evolutionary equations, edited by C. Dafermos and E. Feireisl. Elsevier (2005). | MR | Zbl

A. Mielke, Emergence of rate-independent dissipation from viscous systems with wiggly energies. Contin. Mech. Thermodyn. 24 (2012) 591–603. | DOI | MR | Zbl

A. Mielke, Variational approaches and methods for dissipative material models with multiple scales, in Analysis and Computation of Microstructure in Finite Plasticity. Springer, Berlin (2015) 125–155. | MR

A. Mielke and R. Rossi, Existence and uniqueness results for general rate-independent hysteresis problems. Math. Models Methods Appl. Sci.17 (2007) 81–123. | MR | Zbl

A. Mielke and T. Roubcíˇek, Rate-Independent Systems. Theory and Application. Springer, Berlin (2015). | MR

A. Mielke and L. Truskinovsky, From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Rational Mech. Anal. 203 (2012) 577–619. | DOI | MR | Zbl

G.S.P. Miller, The motion dynamics of snakes and worms. ACM Siggraph Computer Graphics 22 (1988) 169–173. | DOI

G. Noselli and A. Desimone, A robotic crawler exploiting directional frictional interactions: experiments, numerics, and derivation of a reduced model. Proc. Roy. Soc. London A 470 (2014).

B.N.J. Persson and S. Gorb, The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J. Chem. Phys. 119 (2003) 11437–11444. | DOI

M. Piccardo, A. Chateauminois, C. Fretigny, N.M. Pugno, M. Sitti, Contact compliance effects in the frictional response of bioinspired fibrillar adhesives. J. R. Soc. Interf. 10 (2013) 20130182. | DOI

V. Popov, Contact mechanics and friction: physical principles and applications. Springer, Berlin (2010). | Zbl

V.L. Popov and J.A.T. Gray, Prandtl-Tomlinson Model: A Simple Model Which Made History, in The History of Theoretical, Material and Computational Mechanics-Mathematics Meets Mechanics and Engineering. Springer, Berlin (2014) 153–168. | MR

G. Puglisi and L. Truskinovsky, Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53 (2005) 655–679. | DOI | MR | Zbl

G. Puglisi and L. Truskinovsky, Cohesion-decohesion asymmetry in geckos. Phys. Rev. E 87 (2013) 032714. | DOI

R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer, Berlin (1998). | MR | Zbl

Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. Mcguiggan, K. Autumn and J. Israelachvili, Adhesion and friction in gecko toe attachment and detachment. Proc. Natl. Acad. Sci. USA 103 (2006) 19320–19325. | DOI

K. Zimmermann and I. Zeidis, Worm-like locomotion as a problem of nonlinear dynamics. J. Theoret. Appl. Mech. 45 (2007) 179–187.

Cité par Sources :