Dans cette note, on annonce le résultat suivant : au moins valeurs de la fonction zêta de Riemann aux entiers impairs compris entre 3 and s sont irrationnelles, où ε est un réel strictement positif et s un entier impair suffisamment grand en fonction de ε. Ceci améliore la borne qui découle du théorème de Ball–Rivoal. On donne les idées principales de la preuve, qui est fondée sur un procédé d'élimination entre des formes linéaires en les valeurs de zêta aux entiers impairs dont les coefficients sont reliés.
In this note, we announce the following result: at least values of the Riemann zeta function at odd integers between 3 and s are irrational, where ε is any positive real number and s is large enough in terms of ε. This improves on the lower bound that follows from the Ball–Rivoal theorem. We give the main ideas of the proof, which is based on an elimination process between several linear forms in odd zeta values with related coefficients.
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.05.007
@article{CRMATH_2018__356_7_707_0, author = {Fischler, St\'ephane and Sprang, Johannes and Zudilin, Wadim}, title = {Many values of the {Riemann} zeta function at odd integers are irrational}, journal = {Comptes Rendus. Math\'ematique}, pages = {707--711}, publisher = {Elsevier}, volume = {356}, number = {7}, year = {2018}, doi = {10.1016/j.crma.2018.05.007}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2018.05.007/} }
TY - JOUR AU - Fischler, Stéphane AU - Sprang, Johannes AU - Zudilin, Wadim TI - Many values of the Riemann zeta function at odd integers are irrational JO - Comptes Rendus. Mathématique PY - 2018 SP - 707 EP - 711 VL - 356 IS - 7 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2018.05.007/ DO - 10.1016/j.crma.2018.05.007 LA - en ID - CRMATH_2018__356_7_707_0 ER -
%0 Journal Article %A Fischler, Stéphane %A Sprang, Johannes %A Zudilin, Wadim %T Many values of the Riemann zeta function at odd integers are irrational %J Comptes Rendus. Mathématique %D 2018 %P 707-711 %V 356 %N 7 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2018.05.007/ %R 10.1016/j.crma.2018.05.007 %G en %F CRMATH_2018__356_7_707_0
Fischler, Stéphane; Sprang, Johannes; Zudilin, Wadim. Many values of the Riemann zeta function at odd integers are irrational. Comptes Rendus. Mathématique, Tome 356 (2018) no. 7, pp. 707-711. doi : 10.1016/j.crma.2018.05.007. http://archive.numdam.org/articles/10.1016/j.crma.2018.05.007/
[1] Irrationalité de et , Luminy, 1978 (Astérisque), Volume vol. 61 (1979), pp. 11-13
[2] Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math., Volume 146 (2001) no. 1, pp. 193-207
[3] Shidlovsky's multiplicity estimate and irrationality of zeta values, J. Aust. Math. Soc. (2018) (preprint in press) | arXiv
[4] A refinement of Nesterenko's linear independence criterion with applications to zeta values, Math. Ann., Volume 347 (2010), pp. 739-763
[5] Many odd zeta values are irrational, 2018 (preprint) | arXiv
[6] Hypergeometry inspired by irrationality questions, 2018 (preprint) | arXiv
[7] On the linear independence of numbers, Vestn. Mosk. Univ., Ser. Filos. (Mosc. Univ. Math. Bull.), Volume 40 (1985) no. 1, pp. 46-49 (69–74)
[8] La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000) no. 4, pp. 267-270
[9] A note on odd zeta values, 2018 (preprint) | arXiv
[10] Infinitely many odd zeta values are irrational. By elementary means, 2018 (preprint) | arXiv
[11] Irrationality of values of the Riemann zeta function, Izv. Akad. Nauk SSSR, Ser. Mat. (Izv. Math.), Volume 66 (2002) no. 3, pp. 49-102 (489–542)
[12] One of the odd zeta values from to is irrational. By elementary means, SIGMA, Volume 14 (2018) no. 028 (8 pages)
Cité par Sources :