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ON THE HIGHER ORDER CONNECTIONS

by Bohumil CENKL

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

The non-holonomic connection of order r on a principal fibre bundle

H which is geometrically defined in this paper is considered in relation to

that one studied in [ 5 ] . A given connection gives rise to r - 1 tensor

forms on the considered principal bundle H . Some characterisation of these

forms is given.
After this paper has been finished, there appeared quite a few pa-

pers on differential geometry of higher order and particularly on the higher
order connections. For example, the papers of C. Ehresmann, E.A. Feldman,
P. Libermann, Ngo-Van-Que and others. Then some of the results, or simi-

lar theorems, have been proved by other mathematicians in the mean time.

1. Non-holonomic jets.
Let 9 be the set of the CS- mappings ( s ~ 1 ) f of R into the Co -

manifold V, such that f ( 0 ) = x for some fixed x E V . Two such mappings

f , g E ~ are said to be equivalent if f ( 0 ) = g ( 0 ) and if the partial deriva-

tives of the first order of the functions which give the mappings f, g in some

local coordinates in the neighborhood of x on V are equal at the point 0. We

shall denote by T’x( V ) the set of all so defined equivalence classes from

. This vector space is called the tangent (vector) space to V at x and

T ( V ) = ~ T x ( V ) the tangent bundle of the manifold V.
x e v 

’

Let p : W -* V be a projection of a manifold W onto a manifold V.

(Throughout this paper will be considered only C’- manifolds for s suffi-

ciently large). If Hom ( Tx( V ), T y( W ) ) denotes the set of homomorphisms
of vector spaces, we shall consider the sets

hom (

and

Part of this work was done during th e author’s stay at the Tata Institute of Fundamental Re-

search, Bombay.
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If we consider the product V X W of any manifolds V and W with the

canonical projections T1 : V X W -~ V, T2 : V X W -. W, we shall take

We have well defined projections

Analogously can be defined by induction

J 1 == J 1. Let us denote V X W = J ° - j ° . For each r ~ 0 there are the pro-
jections

D E F INITION I. 1. The elements of the mant fold J ’ = hom ( T ( V ), T ( J ’~1))
are called the non- holonomic jets of order r o f the manifold V into W .

~Ue shall denote by J’( V , W ) or briefly J’ the manifold of the non-
holonomic r-j ets of V into W . For X E j’( V , W ) , x = cx ( X ) is called

the source and y = ~ ( X ) the target of the j et X . The set of non-holono-
l’II

mic r- jets of j ’ with source x (resp. target y , resp. with source x and
w l’II -

target y ) is denoted by j " t (resp. J ’ y, resp. ir y ) .
D E F IN IT IO N 1. 2. The elements of the manifold

are called the semi-holonomic jets o f order r o f the mani fold V into W .

It is not difficult to prove that there exists a local mapping Q of

the manifold r into the vector bundle ~ T (W) ~ ( t~T’ * ( V )) which is in-I 
2013 ~=1

jective. A map of an élément from J" is called its tensorial representation.
Let us denote by O’’( ?~’x ( V )) thé r - tuple symmetric product of T~fV~.
It is clear that

The injection Q depends on the coordinates chosen in the respective neigh-
borhoods. But if for some X E J r , (t( X) E ~ T’ ( W ) ® O S ( T* ( V )) , then the

s=I x
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fact that ~ ( X ) belongs to the manifold

is independent of the coordinate systems. Or briefly, the symmetry of the

tensorial representation of an element X E /’ does not depend on the coor-
dinate system.

DEFINITION. The elements of

are called the holonomic jets of order r of the manifold V into W .

It is not difficult to see that each element from J’ can be given by
some local mapping f of V into W . The element from J~ if f is definedx,yp

in the neighborhood of a point x E V and f ( x ) = y e W , which is given by
-

f , is denoted by jx f . An element X e J’ is said to be regular if the corres-
ponding linear mapping

is of the maximal rank. It is not difficult to show that there exists a ten-
".,

sorial representation (a local mapping) of the manifold 1" into the space

Vi being different copies of the manifold V . The composition of non-
a

holonomic jets is defined analogously to that one defined in [ 3 ]. Let

V , N , W be three manifolds. Let X E j x ~ x ( V , N), Y E jr (N, W ) . An ele-
- X,Z x @y

ment Y X Ej" x y( V , W) is called composition o f X and Y and is defined

as follows : let us denote X’ = ~~( X ), Y’ = 8r( Y ). There exists a neigh-
borhood of the point x in V and a mapping f of this neighborhood into

some neighborhood of X’ in r-1 ( V, N ) such that a,o j is the identity on V
and f * = X . Analogously there exists a mapping g of a neighborhood of a

point z in N into some neighborhood of a point Y’ in J ,-1 ( N , W ) such
that a, og is the identity on N and g * 

= Y . It is easy to see that the compo-

sition Y X is trivially defined for r = 1 as the composition of the linear
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mappings. Let us assume that the composition is well defined for jets of

order r--1 . Then there exists the composition g o f which is a mapping
defined on the neighborhood of the point x on V into some neighborhood of

a point Y’X’ such that o~ o g o f is the identity on V. Let us define Y X =
-

( g o ~) * . . It is clear that YX E J’( V , W ) . The composition of semi-holo-
nomic jets is a semi-holonomic jet and the composition of holonomic jets
is a holonomic jet. Let n be the dimension of the manifold V . The regular
non-holonomic r- jets E Jô ~(R~V~ are called non- holonomic r- frames ato,x N N

a point x E V and we shall denote their set by Hx ( V ) and further Hr( V ) =
= ~ H x( V ). L n m denotes the set of non-holonomic n’- velocities of
xEV ’ 

N ~ the manifold R "z at the point 0, i.e. the elements of J ô ~ o ( R n, R "‘ ) . The

regular j ets of order r of J ô ~ o ( R n , R n ) form the group L n , so called non-

holonomic pr olongation of order r of the linear group L n = GL ( n , R) . Let

us denote further

We shall take similar notations for semi-holonomic and holonomic jets. It

follows easily from the definition, that the manifold J’ ( V , W ) , where

dim V = n , dim W = m , J has three natural structures of fibre bundle [ 2 ] ,

namely

..,,,., ~r

The groupoid II’( V )contained in J’(V, v J is a groupoid acting on J"(V, W j .
,.,

The class of intransitivity of the element z E j’( V, W ) with respect to
- - -

D’(V) is the set of all the elements z 0 E j’( V , W), 8 E ~’( V ) . To the
"., ,.,

class of intransitivity of z E J’( V, W ) with respect to TI’ ( V ) there corres-
N

ponds in Îr(V) the class YLr, Y = z b, b 6~~V~. The class YLn is
n n n

called the non-holonomic element of contact associated to Y or z . We speak
also about a non-holonomic n’- élément of contact of W at the point/3(z~=y.
A non-holonomic element of contact X of W at y is said to be regular if
all the non-holonomic n’-velocities in the class X are regular, i.e. the

corresponding n 1-velocities are regular 1 - ets of dimension n .
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R E M A R K. Let V and W be two dif ferentiable manifolds and let X be a

non-holonomic r- jet of V into W, a, ( X ) = x, ~ ( X ) = y . The element X
--

gives rise to a unique linear mapping X of the vector space Tx( V) into- ~ ~ ~ ~ *

T  ( W ) and a unique linear mapping X * of T  ( W ) into T~ ( V ) , wh erey y x

PROPOSITION 1.1. Let H(B, G) be a principal fibre bundle. Tbe set

bas a structure of a fibre bundle with the base B and the fibre

On the fibre G X Gn acts the r- th prolongation of the operation Ln X G
on R n X G .

PROOF. We shall identify first D’(Rn, Rn X G) with Rn X G X Gr. Let
Let us denote by

the canonical projections. The isomorphism ~r( Rn, Rn X G j ’‘~ Rn X G X Gr
is given by the identification X +-+ ( x, a, ’1’’2 ( jx ~ a tx, a ~ X ( 1 o txI »&#x3E; where

The operation of the pseudogroup Vin of operations on Rn X G is

given by the formula tp : ( x, a ) -~ ( t~ ( x ), ga ), ~ - f~. g ) ~~n’ ( x , a ) E

E Rn X G . Let us consider the prolongation Y;~ of this pseudogroup on

Rn X G X Gr.n
The prolongation of thé atlas et X J{ of R n X R n X G onto B x H

on the atlas Sx K of D r( R n , R n X G ) onto D f ( B , H ) is given for the

above chosen X6D~R~R"X(~ and ( g, h ) E (~ X J{ by the formula

This prolonged atlas is compatible with the operation of the pseudogroup ip"n
on

The operation of the group G X L~ on the fibre G X Gr is given in a natu-
ral way : 1
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The operation of t~n X G X L" on Rn X G X G" is in fact the operation of

the pseudogroup ~n . The prolongation of the operation Rg, g E G on H isn 
- 9

the right translation on J’( B , H) given by the elements of G. Then D’/ G
as a quotient has a structure of fibre bundle with the base B, fibre G" and
structural group L’ (s E Ln, w E Gn, s : w -. w s"1). Let us now consider

n n n

some global section cr’ of the fibre bundle D’/G over B . We shall con-

sider the restriction U5" of the tangent bundle T ( J’( B , H» on D’( B , H ) .
The section o-’ tan be looked at as a section of D’( B , H ) over H which

is invariant under the transformations of G. The restriction of U5r to that
section cr’ is a manifold D" and because ~’ X G -. 3)~ is a natural map-

ping we have the vector bundle Q" = 3)~/G with the base B. Analogously
lOtI ,.,

let us consider the sub-bundle F ( J’( B, H )) of T ( J ’( B , H )) of vertical

tangent vectors on J’( B , H ) . If we consider the restriction ~, of F onto

D’( B , H ) and the restriction r of ~, on the section or’’ : B -~ D’, we

have a well defined vector-bundle R’ = ~’/ G over B . Then holds the fol-

lowing

THEOREM 1. i. Let H be a principal fibre bundle with the base B , struc-

tural group G. Let - r be a global section of the fibre bundle D’ 1 G over

B. Then there exists a canonical exact sequence Q(H, or’)

of vector bundles over B .

It is immediately clear, that the splittings of the exact sequence

(~(H, o-’) are in 1 -1 correspondence with the global sections o-’+ 1 of
D’ + 1 /G over B . Let us take B as a section of the respective fibre bundle

over B for r = 0 . Q ( H , cr ° ) is the well known Atiyah’ s sequence [ 1 ] .
QIe shall use later the following.

PROPOSITION 1.2. Let V , W , B be three di f ferentiable mani folds. Let a be
a mapping of V into B , ~3 a mapping of V X W into B so that a (x)

th en

P R OO F . Let T~ be the canonical projection of the product V X Wonto V. Then
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and

so that

as was to be shown.

2. The non-holonomic connections of order r .

Let E ( B , F, G, H ) be a fibre bundle with the structural group G,

basi s B , dim B = n , standard fibre F and proj ection p . Let H ( B , G ) be

the associated principal bundle to E . Basis B is a differentiable manifold

of the dimension n . A vector ~"’x of a non-holonomic tangent vector space

of order r, Tx(H ) is said to be vertical if p *~"’x is a zero vector of T~’(x)(B),
D E F IN ITI ON 2. 1. W e say that a non-holonomic connection of order r on

a principal bundle H is given i f ;
- ." ..

1 ) to each z E H there is a vector space ~.x (subspace of T ~ ( H)),
assigned so that this assignement is C 00

2) The field of spaces j{; is invariant under the right translation
- - 

z

on H, i. e. rg = Rg * ~x, g E G, Rg z = zg . ,

3 ) There exists just one element Zx = Z ~ J r( B , H ), a. ( Z ) -

= p ( x ), ~ ( Z ) = z, p Z - j p (x~, where j p (x~ is the r - jet o f the identical
mapping o f B onto itsel f with source p (z), such that ~~ = Z * Tr p (z) (B )."" 

% * p
The space J{~ is called the horizontal space at the point z E H .
T H E O R E M 2. 1. Let H be a principal bundle. The set of non -holonomic

connections of order r on H is in 1 -1 correspondence with the fields of

regular non-holonomic elements of contact on H such that :

1 °)Xx being the regular n’ - element of contact at z E H, ( j~, p)X
( i. e. th e s e t is a regular n’- element of contact
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An element o f such a field is called a horizontal n’- element of contact at

a point z of the mani fold H .

P R O O F . We shall prove presently that the field of horizontal non-holonomic

nr- éléments of contact gives rise to the non-holonomic connection of order

r on H . Let Y % be a representative of the clas s X%. An r - j et Y % defines

just one linear mapping Yx * of T ô ( R n ) into Tx ( H ). It is clear that the

space J(~ = Yx * T ô ( Rn ) is independent of the choice of Y~ in the class

X %. X % is namely the set of the éléments Y~ s, s 6L~ and L~ is the

group of transformations on T ô ( Rn ) . The mapping Y is clearly ’Cm. On°- - *

thé basis of 2° follows that J(% --- Rg ~K~, ~ E G . We have ( jx p ) Yz E

6/’YR~B;,a{f;~Y~;=0. Let h be an element of H’ ( B ), then

g - h "1 ( j~ p ) Yz E L n . We show that Z~= Yx g-1 h -1 has the property 3

from the definition of connection. If we consider an élément Y % s, s E L n
instead of Yx , then Yz s s -i g -1 h -1 = Y~, g -i h -1 and it is easy to see that
Z % depends only on the non-holonomic n’ - element of contact X . If we

-- %-

take namely instead of h any other isomorphism k ~ ha , a ~L~,of T ô ( R n )
onto And

further

And now let us suppose on the contrary that there is given a non-

holonomic connection of order r on H . Let h E H’( B ), y( h ) = p ( z ),
-

z E H , y being a projection of thé fibre bundle H’ onto B , then Zxb ~/~R~~.
Let us define an equivalence relation Zx h .~, Zx hs, s E L n . A class defi-x x n

ned by Zz (the connection is given) is a non-holonomic regular n’- element

of contact of H at the point z . The property 1 is satisfied on the basis of

By the definition there is

, And this finishes the proof of the theorem.

Let $ be the groupord associated to the principal bundle H, Le.

~= HH-1. If we denote by B the units of (D, there are two projections
a, b of 0 onto B. ~Q is a right unit of 0 E $and b~ is a left unit of

0~&#x26;. Wehavenowamapping ~p:~X~-~~~~ sothat cp~~~=~~’B
The targets of the elements of the diagonal A of H X H by the mapping cp ,
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~p (h , h) = hh -~ , belong to B . hh -1 is a tar get of all elements ( hg , hg) E A ,
g E G . We can in a natural way identify A and H . We can also to each

x = hh -1 6B associate a point x = p ( h ) E B and on the contrary. Let à

be the projection of 0 onto B defined as follows :

In the same way can be defined a projection cb.. B. Let X 6/~B, ~),
OL~X~)=x, ~6fX)=~, ~CX~=y~,(~ is an r- jet of the retraction of Bx x
to the point x E B ; this notation is used throughout this paper), 9 (x = jx .

~ r

Let Q’ be a set of all these r- jets. Q’ is a fibre bundle with basis B [ 5 ] .
There exists a cross-section of Q’ over B.

THEOREM2.2.[3].~~cro~~’~~c~o~~ïMQ~ are in 1-1 correspondence with
the non·holonomic connections o f order r on the principal bundle H. An ele-

ment X o f this cross-section over a point x E B is said to be an el ement

of the non·holonomic connection o f order r (or an element o f the connec .

tion at x).

P R O O F . Let be given a connection on H and let Z be the element of

J’( B , H ,~ mentioned in 3. Let k be a mapping of the neighborhood of x =

- p ( x ) in B into the point x E H . Then f/~,Z~) 6/~B,H x ~J. Let
W = x k) e -Zz . where e is the non-holonomic prolongation of order r of

the composition rule cp : H X H -~ H H-1. By the definition [ 3 ] we have

Obviously

à ( W) is an abreviated notation for ( j x â ) t~i~ = ( j~~ ~ x j â o ~p ) ( j x k , Zx ) . Be-
cause of ( â o ~ ) ( h , h’ ) = p ( h ), ( h , h’ ) E H X H , we have on the bas is

of proposition 1.2 the following :

Analogously we get the relation
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We have to show now that W is independent on the choice of a point z on

the fibre Hx over x . Because by the definition Zxg = ( jz R g )Z x , we have

realizing c~o Rg = cp . -

Let now on the contrary X E J’ ( B , I» be an element of a cross-
-

section in Q’ over B ; then o~ ( X ) = x, 8(X) = ac . Consider the mapping

t~ : ~ x H -. H, t~ ( 6, z) = 6 z. The groupoid acts thus on H . Let k

be a mapping of the neighborhood of a point x on B into the point z E H .

The prolongation of the composition ruie ~ gives rise to the composition
-

X ~z = X ~(jxk) _ (j~x~x~t~ )(X, ir k ) E J’ ( B , H). On the basis of theX . z = X ~~’~~=f7’~~~~~7~~ 6/~B,~;. On thé basis ofthe
relation p ( ~ ( 8 , z )) = b ( e ) and by the proposition 1.2 we get

A non-holonomic n’- element of contact belonging to X ~ z is then regu-

lar. We have further

because tp (0, zg) = Rg 1 xk ( 8, z) 1 . The theorem is then proved.
Let W be any m - dimensional manifold and let Z é J’ ( W , H ) .

DEFINITION 2.2. A horizontal projection of Z with respect to an element

X of the non-holonomic connection of order r on H at a point p ( z ) is a

non-holonomic r- jet X-1Z = (X-lp Z) e Z, where e is a non-holonomic

prolongation of order r of the composition rule ~ : ~ X H -. H ; X -. X-1 is
a prolongation o f mapping e -. e-l de f ined on (D.

Obviously X "1 Z e J r( W , H). A horizontal proj ection is c alled by
C. Ehresmann [ 5 ] an absolute differential. It can be shown that the fol-

lowing proposition holds.
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PROPOSITION2.1.[5].~2~/?~MfX~Z belongs to /~CW,~ ~ ~ being
the fibre of H over x E B.

PROOF. We have by the definition

Let k be the mapping of the neighborhood of the point oc ( Z ) on W into the

point x E B . On the bas is of the relation ( jx b ) X-1 = j’’ x, x = p ( z ), we

have âX = jx and then (jxp)X-IZ = jr(j’ p)Z = jr k.x 
- 

% x x a(Z)
Let then being

an élément of conn e ction at the point x = p ( z ) . W~ 1 is well defined

because W is a regular element. Using the composition rule of non-holo-
nomic r- jets, we have W x-~ = 1., . Now we have

Let jire be an r- jet of the i,njective mapping of the fibre Hx into
H , with source z E Hx . Let us consider now

If x is a fixed point, then the mapping ~ ( âc, z ) = z is the projection
and by the proposition 1.2 we have

We have now a linear mapping Px,* of T x ( H ) into T x ( Hx ) defi-
Z’* x x x

ned by the non-holonomic r- jet X"1 jz = Px , cv = { ( jZ z "1) Px j * is then a
- - 

x x z X *

linear mapping of T x ( H ) into T é ( G ) .
Let cp9 be an inner endomorphism of G associated with g E G ,

g -

Ad(g ) the linear mapping ( j é cpg )* of T é( G ) onto itself and by
-- 

e 9 * e.

the non-holonomic tangent bundle of order r over V . A cross-section in
al

T’( V ) over V is called a non-holonomic vector field of order r . It is

easy to see that the set of non-holonomic r - j ets of V into TS (V) with
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source x , denoted by Sx’s( V ), is a vector space.
RE M A R K. Let Lg be a left translation defined on G by the element g E G .
The structural group G is a right transformation group on H which is sim-

ply transitive on each fibre Hx = p -1 ( x ) . We shall now define, analogously
as it is for an infinitesimal connection of the lst order, a non-holonomic fun-

damental vector field of order r on H associated to a vector Y = e Y ET’ e ( G )
( e is a unit of G ) . Let gY = ( j é L g ) * eY . Let b x be a homomorphism of
G onto Hx so that hx e = ,z. Consider the element eYz = (1" e h x )* eY
at the point z E Hx and the element gYZg = 9 hx ) * gY at the point zg E Hx .x .. g %g g" * g x

It is easy to seé that gYzg = (1" h x g ) * eY - eY~,g . We have now on H a
vector field which corresponds to the left invariant vector field on G , and

this correspondence does not depend on the choice of hx EH". We shall

speak about the non-holonomic fundamental vector field Y of order r asso-

ciated to Y (or briefly about a fundamental vector field only) . It is clear

that Rg* Yz is a vector of the vector field associated to Ad(g-1) Y .

D E F IN IT IO N . Let V be a differentiable manifold, and y x a linear mapping

of X s" x s ( V) into a vector space M. A differentiable field x-. cp is cal-
x x

led an M - valued differentiable form cp on V of degree m &#x3E; 0, order ( r, s ) .

TH E O R E M 2. 3. A non-holonomic connection of order r on H can be de fined

by aT é( G ) - val-ued differential form co on H o f the 1 st-degree, order ( 0 , r)

so that the following conditions are satisfied :

3) There exists a non-h*olonomic

-~(Z)=z so that (jéz)*cv=Z*.e * *

PROOF. First let us suppose that a non-holonomic connection on H is

given. We have a linear mapping c~ _ { ( jx z ‘1 ) ( X -1 j~, ) ~ 1 * of T"(H)into
- 

z z * x

T é ( G ) . We shall prove presently that co is a form considered in the theo-

rem. We know that Hx is a submanifold of H . Let Vx E H’( Hx) and Wx E~
E H r( H ), be the r- frames at the point z .Let Yx be any vertical vector at
z E H, i.e. a vector of Tr (H ) . Let m be the dimension of H and n thez x
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dimension of H x . Then
It is cleat that 

- ~--

We have then .But 1

and analogously On the basis of the relation

we see that the mappings

and
.., ..,

are linear mappings of T x ( Hx ) onto T é ( G ) so that o) 1 ( yz~ = Y, Yx
being a vector of a fundamental vector field belonging to Y 6T~fG). We
have proved then that 1) is satisfied for co.

Let and let , We have then c

Let us prove first that

We have namely the relations

Then Denoting by
left translation on G defined by g E G we have

An element X’i jx is just a non-holonomic r- jet Z mentioned in 3~.The map-
ping ( jé Z 3* Cù is the mapping associated with it.

Let now on the contrary Cù be a T é( G ) - valued differential form of
degree 1 , order ( 0 , r ) on H so that the properties 1 , 2 , 3 are fulfilled .
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Let or be a cross-section in H over a neighborhood of the point x E B ,

v- ( x ) = z. Let W = /~ . Let Z be a non-holonomic r- et from /~f~, ~7~)
with the properties contained in the theorem. Let X = Z W e W, e being a

prolongation of the composition rule ~p : H X ~-~~~7~. It is clear that
p

X6/~B,~). We have further oc ( X ) = x, ~C3 ( X ) = ac . On the bas is of

1 we obtain

X is then an element of a cross-section in Q" over B . We prove now the

independence of X on the choice of the cross-section cr over a neigh-
borhood of the point x E B . Let o’’ be another lifting, ~’ ( y ) = o-( y ) g ( y ),

g ( y ) E G for each y from the considered neighborhood of the point x E B ,

g ( x ) = e . Let us notice that we have defined a holonomic prolongation of

a composition rule [6 ] . Using this operation we have i" o-’ = ( jx v- )( jx g ) .
Let us prove that the identity Z ~ W ( jxg ) ~ _ ~ Z W ~ ( jxg ) holds. Let first
r = 1 . Let f be a mapping of the neighborhood U ~ ( z ) C H onto the neigh-
borhood U 2 ( z ) C Hx so that f ( z ) = z and Z ~ j~ f . Let o- be a cross-

section in H over the neighborhood V ( x ) C ~ B , o’ ( V ( x )) C U 1 ( x ) and be
W --. jx or . Let o-’ be another cross-section in H over V ( x ) so that o-’(y ) =

= ~(y)g(y)~ 1 y E V (x). Then jx( f o o’’) _ ( jx f ) f (jxo’’~( jxg)~ J and

further 
’

because f o o- ~ , j o a are the cros s-sections in H over V ( x ) . Let s be a
M

cros s-section in J r‘~ ( B , H ) over V ( x ) defined as f ollows : s ( y ) = j  10’ ,
y E V ( x ) . Let s’ be a cros s-section in J t ‘1 ( H, Hx ) over U 1 (x) so that

jx s’ ---- Z . We have then a mapping s" = s’s of V (x ) into Hx so that s" (x ) ~z.
z 

x

Let À be a cross-section in J r‘1 ( B , G ) over V ( x ) so that À( y ) = y g,y

y E V ( x ) . We have then jx ~. = ir g . By the assumption

We have then
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and , on the basis of the equality jx ~ ( s’s ) ~. ~ = jx ~ s’ ( s ~ ) ~ , the result

But by the definition Z~ ~W~~~~r~~. Denote ~=~7~.
It is then

lhe last equality may be proved by induction. We must show now that

holds. We know that

is a linear mapping of onto Let

then

because of Then

On the bas is of the relation yo Rg = y we have the above result and so
is the theorem completely proved.

TH E O R E M 2.4. Let Q ( H , o- k), 0 5 k  r-- 1 ~ be the exact sequence asso-

ciated to a global section a le of the bundle DKIG over B, such that
o-k is given by a splitting pk of the exact sequence û(H, a le-l ), for k &#x3E; 1

and a 0 is B itsel j.
The non-holonomic connections of order r on the principal fibre

bundle H are in 1 -1 correspondence with the splittings ps, 1  s  r ~oj
the exact sequence (Î(H, o- s-1 ) of vector bundles.

P R O O F . First, let be given a non-holonomic connection of order r on H ,
Then to each z E H there is associated by definition a non-holonomic r-

jet Z E Jx~z( B, H), s.t. p*Z = i" , Zxg = Rg Z g E G. The projectionx,~ * x ~g g ~

il Z into J 1 ( B , H) uniquely gives the section o- 1 of D 1/ G over B . As su-
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ming that the section o-"-i of D’"1 / G is given uniquely by the projection

j’’1 Z we shall prove that the section cr~ : B -~ D’/ G is given by the ele -~

ment Z. We know already that o’’"1 can be considered as a section of

Dr over H which is invariant under the transformations of G . The jet Z

is then defined as jx a- , where cr is some section of D’-1 over B such

that or ( x ) = x . Further let us take Zxg = j p ~xg~ ( R 9 u ), then Z %g =
= R g j x o- = Rg Z~.~ehave thus a well defined section or’ of D’ over H,

which is invariant under the transformations of G , namely

a- being the section mentioned above. And now on the contrary, let there

be given r splittings /3 ( 1  s E r ) of the exact sequences ~ ( H , o- s "1 )
of vector bundles. We have to prove that there is given exactly one non-

holonomic connection of order r on H by these splittings. This holds for

r = 1 . Let us assume that the statement be true for s = r- t . To the split-

ting P.-, is uniquely associated the section a-" of D’/G over B or, what

is the same, the G- invariant section o-’ of D’ over H and so we have the

non-holonomic connection of order r on H (straight by the definition) .
From similar reasons as in [ 1 ] follows that a non-holonomic connection

of order r on H in the real case always exists.

3. Induced connection and prolongation.
Let H be a principal bundle with the structural group G and let M

be a vector space and R a representation of G in M . Let Sx~ S ( H) be the
vector space of all non-holonomic r-jets of H into T-’(H) with source

z E H . A vector X 6~’~~) is said to be vertical if p *~3( X ) is a zero

vectorofr~~fB~.DenotebyR ~Xtheelementf/~R )~Xof~~~~p 9* 9 9

The operation ( j~,+s R ) X is defined as follows : we know that X 6~’~~w 8 «~ 

is an element of J’(H, T~f~~. If r =1 , then X = j x o- , o- being a cros s-

section in T s ( H ) over ta neighborhood of the point z EH. We have now a

cross-section ?:z~(~R ) o~jz~ in T s( H ) over a neighborhood ofx 9 *

the point zg ~~. We denote then _, 9a, = ( jx + 1 R ) 7~ - It is clear now
how is the mapping ( j~,~’ s R ) * defined for r &#x3E; 1. It is the prolongation of% g * -

the composition rule defined by the transformations of (j SR) on T’(H)x 9 *
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DEFINI.TION 3. 1. An M · valued differential f orm ~p o f degree m &#x3E; 0 , order

( r, s) on a principal bundle H is said to be a tensorial form of degree m &#x3E;0,

order ( r, s ), type 9{( G ), i f the following conditions are satis fied :
a) if at least one of the vectors Xl,..., Xm is vertical, then ~p (X1,..., Xm )=0.

PROPOSITION 3.1. Let and let j’~ be the

projection of the non-holonomic r - jets into the non-holonomic k - jets. Then

PROOF. We know that
- - - -

Let a 1 be a cross-section in /~fV~ N) over a neighborhood of the point
x E V and let or 2 be a cross-section in J’-1( N, W ) over a neighborhood
of thé point ~C3 ( o-1 ( x )) = y E N and let Y = ;~o. Z = 7~~ ’ L et

be a cross-section in J’"1 ( V , W ) over a neighborhood of x E V . We have

then ZY = jxor and then 7~f/~~=or~~~-lz=~~y~/~Y=o-~~~
Then o-( x ) = o’ 2 ( y ) o-1( x ) . We have proved then the theorem for the case
k = r-1, but it is clear that by induction one can easily prove that the

theorem is true .for an arbitrary k  r.

-

THEOREM3.1.[’5].L~fC~e ~ cross- section in Q’ over B , i. e. a non-holo-

nomic connection of order r. Denoting by X the element C( x ), x e B , we

have the cross- section x -~ j ~( X ) = C 1( x ) in Q 1 over B . Let

?’he mappingx .. X’ is a cross-section in Q’+ 1 over B, i. e. a non- holono-

mic connection of order r+ 1 which is called the prolongation of the non-
holonomic connection C . Ji is the composition rule

P R O O F . We first show what ~, the composition rule, is looking like. Let
À : ~ * ~ -~ ~ be the composition of the groupoid 0 . Let A E J’(B , ~ ) ,
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-

o~(A) = x E B, ~(A) = 6’ 6$,D E Jr(B, ~), o.fD~= ~,/3rD; = 0. Let

D = j x k , k being a mapping of a neighborhood of x E B into the pointx 
-

9e~. We have then A e D = (j ~B,~e) ~.)(A, D) 6;~~ ~).
We can identify D with the point 8 and write then ~( A , 8 ) _

A ~ D = A ~ 8 . On the basis of ( a o ~ ) ( e ’ , e ) = ~(9) we have

We have further and then

But we know that (i"- x â)X = ;~ and using the operation of projection ilwe
have à X Let 1 be a mapping of aneighborhoodof the point
x on B into the point /~X E B , 10 ) and let us identify ;~/withthe point
;~X. We have then f;~’~~~;~X=/~~’~. Analogously on the basis of

x x

~o~f6~9;=~~ thé relation ~7~~~o~!r~~=~~M
holds and then

TH E O R E M 3.2. Let X’ be a prolongation o f order k o f the e lem ent X of a
non-holonomic connection of order r, C with respect to C . Then j’ X’ = X .

P R O O F . Denote by ~’ the operation of prolongation of the lst order of X with

respect to C and further

T 2 X is prolongation of the 1 st order of the element r X with respect to the

prolongation C’ of the first order of C . It is sufficient to prove the theorem

in the case k = 1 . By the definition Then

THEOREM 3.3. Let be given a non-holonomic connection o f order r on H by
the form co. This connection uniquely gives rise to the non-holonomic con-

nection of order k, ( k  r) on H with the form co 
(k ) = jk ev, j k being the

projection defined by the canonical projection jk for non-holonomic r - jets
into k - jets. The following diagram is commutative.
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( j’~ ~~ is the linear mapping associated to the projection j’~.
-

P R O O F . Let X E Q’ be an element of the non-holonomic connection of order
r and let X ~ le ) = j k X . 1 t i s clear that

Analogously we have

Further

Ji being the mapping ~ : ~ * H -~ H ; ~ ( 6 , x ) =Oz. We have j k ( jx z -1 ) =
= jx z’-1 · Then co 

k 
= { ( kz-l)( X’1 j k ) ~ - j cv the form of the non-holo-z Then ( ) (k) x * k

nomic connection of order k as sociated to ce and to the proj ection j k .
Let f urth er L E J é ( G ) , then

But it is easy to see that

If we take the dual vector spaces, we see then that the diagram is commu-
tative.

Let cv~ k ~ - ik cv be the form of the non-holonomic connection of

order r + k , 1 which is the prolongation of order k of the non-holonomic con-

nection of order r given by the form co. The operator i ° is the identity.
On the basis of the theorem 3.3 we see that the diagram
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is commutative.

Let ú) be the form of the non-holonomic connection C of order r on

H . This connection gives rise to ( r- 1 ) connections of order r on H . These

connections are given by the forms 7Ta.= i ’ ~ a jâ ; oc = 1 , 2 ,..., r-- 1 .
H 

a.

The forms xa - cv - ~a are the n T é ( G) - valued tensorial forms of degree

1 , order ( 0 , 1 ) , type Ad ( G ) . In thé notation introduced above i 1 cc~ is the
form of a connection of order s+ 1 if ú) is the form of a connection of order

s . If xa is a zero form, then Co = i ’ w °‘ jac~ and on the basis of the theorem
3. 3 w e hâve /’~ = i ~ ~ a j ac~ , ,C3 = oc, a+ 1 , ... , r-1 . Th en - ., - (3 .. we ave 1/3Ú) - Z laú), fJ- a, a,..., r-. en 7T /3 - Z 1/3Ú)=
- i’" °‘ jâ = cv and then x~ is a zero form for each /3=OL,...,~+J.We
have proved then the theorem.

TH E O R E M 3.4. Let C be a non-holonomic connection of order r on H . This

connection gives rise to r- 1 non-holonomic connections of order s (s =

=1,2 n - 1) on H and to r.-1 T:( G)- valued tensorial forms xa o f degree
1,order ( 0 , 1 ), type Ad(G). The form xa is a zero form if and only if there
exists a non-holonomic connection Ca so that the connection C is a prolon-
gation of order r- oc, of the connection Ca.

Let H’ ( B’ , G’ ), H ( B , G ) be two principal bundles. Let cp : B’ -. B

be an imbedding of B’ into B, p a homomorphism of G’ into G and f a map-

ping of H’ into H compatible with p , i.e.

The mapping f is called an immersion of the principal bundle H’ into H .
r H

A linear mapping 77 of T r e ( G ) into T é ( G’ ) is called an invariant proj ection
if
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-

c) There exists a non-holonomic r- j et Z E J r( G , G’ ) so that a (Z)=

TH E O R E M 3. 5. Let ú) be the form of a connection of order r on H . Let

f : H’ ... H be a homomorphism o f the principal bundle H’ into H and

an invariant projection. Then the form cv’ _ ~ c~ f 
* 

is the form of a non-

holonomic connection o f order r on H’ ( B’, G’ ). We shall speak about the

induced non-holonomic connection o f order r. The induction o f the non-

holonomic connection is invariant under prolongation and projection o f the

connection.

P R O O F. Let Y~,, be the vector of the fundamental vector field on H’ at the point
z’ , which belongs to Y’ E T’e, ( G’). Then f * (Y Z .) is a vertical vector of

H at the point f (z’). From the definition of an immersion f follows that f *(Yx, )
is w a vector of the fundamental vector field on H associated to p*( Y’ ) E

E T é ( G ) . Denoting by h~,. : G’ -~ H p, fx.~, ~z ~ ~ " ~p (z 1 ’ hx, ( e’ ) = z’ ,
hx ( e) = z = f ( z’ ) the respective homomorphisms we see that the mapping

f is identical with h-10 po hZ.. Let Xx, E (HI Rg,*Xx, x . 1 E
- 

z x 9 z x 9

e x 9 H’ ) . ° We have f *( X~,,g, ) = R p (g’) f (X ° On the basis of the
relation

we have

Let K be the r-jet associated to co. Let Z be an r- jet with the pro-

perty c from the definition of an invariant projection. Let

It is easy to see that

Because

and 1 we have
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On the basis of this condition it is immediately clear that the induction

is invariant with respect to the prolongation.

REMARK. It is possible to show that the space G / p( G’ ) being of a cer-

tain special type (generalized weak reductivity) we have an invariant pro-

jection uniquely given.
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