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ASPECTS OF CATEGORICAL ALGEBRA

IN INITIALSTRUCTURE CATEGORIES*

by Manfred Bernd WISCHNEWSKY

CAHI ERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XV-4

Initialstruc ture functors F: K - L, the categorical generalization
of BOURBAKI’s notion of an « initial objects [3], equivalent to Kenni-
son’s pullback stripping functors, which Wyler calls Top-functors, reflect

almost all categorical properties from the base category L to the initial

structure category K briefly called INS-category [1,4,5,6,8,11,12,13,
13,16,18,19,20,21,22,37]. So for instance if L is complete, cocom-

plete, wellpowered, cowellpowered, if L has generators, cogenerators,

proj ectives, injectives, or ( coequalizer, mono )-bicategory structures ( ==&#x3E;

homomorphism theorem ) , then the same is valid for any INS-category over
L . Finally all important theorems of equationally defined universal alge-
bra ( e.g. existence of free K-algebras, adjointness of algebraic functors... )
can be proved for algebras in INS-categories, if they hold for algebras in

L . The most well known INS-categories over Ens are the categories of

topological, measurable, limit, locally path-connected, uniform, compactly

generated, or zero dimensional spaces.

This survey article deals with the following three types of alge-
braic categories over INS-categories, namely with

- algebraic categories of Z-continuous functors [29,30,33] ,
- monoidal algebraic categories over monoidal base categories in the

sense of PFENDER [35],
- algebraic categories in the sense of T H I E B A U D [36] resp. in the

sense of EILENBERG-MOORE.

These three types of «algebraic categories» include comma-catego-
ries, algebraic categories in the sense of LAWVERE, categories of finite

algebras, locally presentable categories, ElLENBERG-MOORE: categories,

categories of monoids in monoidal categories.

* Conference donn6e au Colloque d’Amiens ( 1973)
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In this paper it is shown that each of the above algebraic catego-
ries over an INS-category is again an INS-category. Hence the whole theo-

ry of INS-categories, presented here in the first part, can again be applied
to algebraic categories over INS-categories. In particular it is shown that

this implies that adjointness of « algebraic» functors over L induces

adjointness of « algebraic » functors over an INS-category K . Since further-

more together with K also K°P is an INS-category, and since the algebras
in K°P are just the coalgebras in K , the theory is also valid for coalge-
bras in INS-categories. Moreover I will show that all the basic results on

algebraic categories even hold for reflective or coreflective subcategories
of INS-categories if they hold for the corresponding INS-categories. So
for instance let U be a coreflective or even an epireflective of a coreflec-

tive subcategory of the category of topological spaces and continuous

mappings like the categories of compactly generated, locally path connec-

ted, or 7-spaces, i = 0, 1, 2, 3, and let Z C [C ,S ] be a set of functo-

rial morphisms in [C ,S]. Then the algebraic categories Z ( C , U ) of all
Z -continuous functors with values in U are complete, cocomplete, well-

powered, and cowellpowered. Furthermore all inclusion functors

are adjoint. The same holds for the category Z (C, U°p ) for all Z-coal-

gebras in U .

1. INS-functors, INS-categories, and INS-morphisms.

Let F: K - L be a functot. Let I be an arbitrary not necessarily

discrete, small category, and denote by Ak : K-&#x3E; [I,K] resp. by AL : 
L -&#x3E; [I, L ] the corresponding diagonal functors, and for T E [I, K ] the

comma categories (AK, T) resp. (AL , FT) of all functorial morphisms

If there is no confusion, I’ll write for A K resp. A L simply A. F is called
transportabl e if F creates weakly isomorphisms. With this notation we can

give the following

1.1. D E F I N I T IO N . Let F:K - L be faithful, fibre-small functor. F i s called
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an INS-functor, and K and INS-category over L , if for all small categories
1, and for all functors T E [1, K J the functor

has an adjoint ( = right adjoint) GT with counit

If Y : Al -&#x3E; F T is a cone, then the cone GT qj : Al* -&#x3E; T is called an INS -

cone, and l* E K an INS-object generated by qj - If t,: I - F k is a mono-

morphism, then GO: l* -&#x3E; k is called an embedding, and l* an INS-subob-

ject of k .

Dually one defines coinitialstructure functor,.....

1.2. EXAMPLES: The following categories are INS-categories over S the

category of sets with obvious INS-functors: the categories of topological,
uniform, measurable, or based spaces, of Borel spaces, of principal limit

spaces, of spaces with bounded structure, of compactly generated spaces,
of limit, completely regular, or zero dimensional spaces....

Let us now recall G R O T H E N D I E C K’ s construction of a split cate-

gory. Let Ord (V) be the category of completely ordered sets with supre-
ma preserving mappings. Then there corresponds by GROTHENDIECK

( [8]) to each functor P : L°p -&#x3E; Ord (V) a split category Fp : Kp - L : the
objects of Kp are the pairs (l, k) with k E P l and /6L. The Kp-mor-
phisms f:(l,k)-&#x3E; (I’,k’) are exactly those L-morphisms f:1-1’ with

P f k  k’ . The functor Fp : K p - L is the projection (l,k) l-&#x3E;H .

Herewith we can give the following

1.3. THEOREM [1,8,11,15,20,23]. Let F: K- L be a faithful, fibre-
small functor. Regard the following assertions : 

( i ) F is an INS-functor.
( ii ) F°p is an INS-functor.
( iii ) The category ( K, F) over L is -L-equivalent to a split category

( Kp , Fp ).
( iv ) F preserves limits and has a full and faith ful adjoint J . 
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Then ( i ) ==&#x3E; ( ii ) ==&#x3E; (iii) ==&#x3E;(iv). 1 f moreover L and K are com-

plete, then (iv) ==&#x3E;(i).

The equival’ence ( i ) ==&#x3E; (ii) ==&#x3E; ( iii ) was first proved by
ANTOINE [1] and ROBERTS [15], but follows straightforward from

GROTHENDIECK’s paper on fibied categories [8]. The characteriza-

tion ( iv ) ==&#x3E;(i) was first given by HOFFMANN [11]. A proof of ( iv )

==&#x3E; (i), in some way simpler than the original one, can immediately be

obtained from both the following statements :

1 ) A cone ( l* , Y : Al* -&#x3E; T), TE [I, K], is an INS-cone if and only
if the induced cone

is an INS-cone,

2 ) Let K, L be categories with pullbacks. Let F: K - L be a pullback

preserving functor with an adjoint right inverse. Then F is a fibra-

tion (cf. [14] Corollaire 3.7) (cf. Theorem 1.9a).

Hence, if F fulfills (iv), F is a fibration by 2 and thus together with 1

an INS-functor provided K and L are complete.
The full and faithful right adjoint of an INS-functor is obtained

from definition 1.1 by regarding the void category as index category. The
objects of the image category of this functor are called codiscre te K-

ob je cts.

1.4. PROPOSITION [18,20,22]. Let F:K-L be an INS-functor. Then
we have the following assertions :

1 ) K-limits ( K-colimits ) are limits ( colimits ) in L supplied with the

«initialstructure» ( coinitialstructure ) generated by the projections ( in-

jections ).

2 ) F preserves and reflects monos and epis.
3 ) K is wellpowered (cowellpowered) if and only if L has this pro-

perty.

4 ) K has generators, cogenerators, projectives, or injectives if and on-

ly if K has such objects.
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5 ) K is a ( coequalizer, mono )-bicategory if and only if L is such a

category.

Let now F:K-L and F’:K’-L’ be INS-functors, and let M : 

K -&#x3E; K’ as well as N:L-L’ be arbitrary functors.

1.5. DEFINITION [22,23,37]. The pair (NI, N): (K, F)-&#x3E;(K’, F’) is

called an INS-morphism if both of the following conditions hold :

1) NF=F’M,

2 ) for all small categories I and all functors 7B’/-’K the adjoint

right inverses G’MT resp. GT of ’ F’MT resp. F?.. make the following dia-

gram commutative up to an isomorphism

In this case we say that the pair (M, N) preserves INS-cones.

In WYLER’s language of Top-categories, i.e. reduced INS-categories [19]
the INS-morphisms correspond to his taut liftings [22,23] .

1.6. REMARKS.

1) The category Initial of all INS-functors and INS-morphisms is a dou-

ble category in the sense of EHRESMANN.

2) The category Initial (L) of all INS-categories and INS-morphisms
over a constant base category L is canonically isomorphic to the full

functor category (L°p Ord (V] ( cf. [19]).

1.7. THEOREM [22 , 23]. Suppose that (M, N) : (K,F) -&#x3E; ( K’ F’) be an
INS-morphism. Then we have the following equivalent statements :

( i ) Af is adjoint.
( ii ) N is adjoint.

The implication (i) ==&#x3E; (ii) is trivial by theorem 1.3 ( iv ) . In

case that all categories involved are complete, it suffices to find a solu-

tion set for M, since M preserves obviously limits by proposition 1.4

and definition 1.5 . If R : L’ - L denotes a coadjoint of N, then for all
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k’ E K’ the fibre F-1 (RF’(k’)) is a solution set for k’, as one sees

immediately by factorizing F’f : F’k’- N F k, f : k’-&#x3E;M k E K’, through the
unit of (R -l N), and then by supplying R F’ k’ with the INS structure...

In the general case one takes the infimum of all objects in this fibre ap-

pearing in any of the above factorizations.

For the rest of this paper assume now that all base categories of

INS-categories are complete.

1.8. DEFINITION. Let F:K-L, resp. F’:K’-L’, be INS-functors. De-

note by J , resp. J’ , an adjoint right inverse functor of F , resp. F’ , and

by O : Id -&#x3E; J F, resp. O’: Id -&#x3E; J’ F’, the corresponding units. Let further-

more M : K - K’ and N : L - L’ be a pair of functors with F’ M = N F . The

pair (M, N) preserves codiscrete objects if

1.9. THEOREM. Let ( M, N ) : ( K, F ) -&#x3E; ( K’, F’ ) be a pair o f functors bet-

ween INS-functors. 1 f ( M, N ) preserves codiscrete objects, the following
statements are equival ent :

(i) (M, N): (K, F)-&#x3E;(K’, F’) is an INS-morphism.

( ii ) M and N preserve limits.

The implication (i) ==&#x3E;(ii) is obvious, since M preserves INS-

cones and hence in particular limit-cones. Thus one has only to prove

(ii) ===&#x3E;(i) . From the remark 1 of theorem 1.3 it follows that one has

only to show that ( M , N ) preserves INS-cones of the form (l*, Y: 1* - k )

generated by F Y : l -&#x3E; Fk , i.e. ( M , N ) is a morphism of fibration in the

sense of GROTHENDIECK. But this follows immediately from the fact,

that

a) the INS-cone Y : l* -&#x3E; k is a projection of a pullback, namely

where O : Id -&#x3E; J F denotes the unit of the adjoint functor pair ( F, J ), and
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ia’* denotes the K-morphism induced by idl : l -&#x3E; l .
b) ( M , N ) preserves codiscrete objects, and M preserves pullbacks.,

1.10. EXAMPLE [18,20,cp.22,36,37]. Let A be an algebraic theory
in the sense of L A W V E R E and let F : K -&#x3E; L be an INS-functor over a

complete category L . Then we obtain the following commutative diagram
of limit preserving functors between complete categories

VK resp. VL denote the corresponding forgetful functors. (VK, V L)
fulfills obviously all assumptions of theorem 1.9. Hence we obtain in

particular :

VK is adj oint if and only if VL is adjoint.

I . I I . COROLLARY. Each morphism in Initial ( L ) is adjoint.

1.12. EXAMPLE. Let A be an algebraic theory in the sense of LAWVERE.

Then the functor Alg ( A , - ) defines in an obvious way a functor [19] :

Since Alg ( A , H ) is an INS-morphism, it is coadjoint by the above Corol-

lary. A typical example for this situation is the functor

uniform groups 20132013201320132013&#x3E; topological groups

induced by the INS-morphism

uniform spaces - topological spaces.

1.13. DEFINITION [19,23]. Let F: K - L be an INS-functor, and let U

be a strictly full subcategory of K . U is called an INS-subcategory if
U is closed under INS-objects, i.e. if for all small categories I and all
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functors T E [I, U] the INS-object l* generated by a cone (Y : Al -&#x3E; FT)
lies again in U .

INS-subcategories can be characterized in the following way:

1.14. THEOREM [19]. Let F: K - L be an INS-functor. A strictly full

subcategory U of K is an I NS-subcategory of K if and only if
1 ) U is closed under products and INS-subobjects,
2 ) U contains all codiscrete K-objects.

EXAMPLES:

1 ) Let K be an INS-category over S . Since K is complete, well-

powered, and cowellpowered, a stricly full subcategory U of K is epi-
reflective in K if and only if U is closed under products and INS-sub-

objects [9,18 19] . Hence we get the

COROLLARY [19]. Let K be an INS-category over S, and le t U be a

strictly full subcategory of K containing all codiscrete K-objects. Then

there are equivalent :
( i ) U is an INS-subcategory of K .

( ii ) U is epire f lective i n K .

2 ) Since all but one discrete K-object of an INS-category over S

are generators in K , we obtain by dualizing and applying the results of

HERRLICH -STRECKER [101 the following

COROLLARY [19,23]. Let K be an INS-category over S, and let U be

a strictly full subcategory of K containing all discrete K-objects. Then

there are equivalent :

( i ) U is a COINS- su bcatego ry o f K .

(ii) U is coreflective in K .

In case of K =r x’op one can find a whole host of examples for

these corollaries in [9] .

Finally we will need the following

1.16. DEFINITION [18]. Let F:K- L be an INS-functor. A strictly full

subcategory U of K is called a PIS-subcategory of K , if U is closed

under products and INS-subobjects.
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Recall that each extremal K-monomorphism in an INS-category K
is an embedding [18, 19 , 20]. Furthermore if K is a complete, wellpower-
ed and cowellpowered category, then a strictly full subcategory is epire-
flective in K if and only if it is closed unde r products and extremal sub-

objects [9] . Hence we obtain the

1.17. PROPOSITION. Let F:K-L be an INS-functor over a complete,

wellpowered, and cowellpowered category L . Then each PIS-subcategory
is epireflective in K . I f moreover in L each monomorphism is a kernel,

then the notions PIS-subcategory and epire flective subcategory are equi-
valent [18].

So for instance a strictly full subcategory of the category of local-

ly convex spaces is epireflective if and only if it is a PIS-subcategory,
i.e. closed under products and subspaces, since the category of locally
convex spaces is an INS-category over the category of complex-valued
vector spaces.

2. Algebraic categories of Z-continuous functors with values in INS-

categor ies .

Let us briefly recall some standard notions on 2-continuous func-

tors [28,29,30,31]. Let K be a category, and 2 C Mor K a class of

K-morphisms . A K-object k is called 2-bijective, or Z-continuous, if for

all or : a - b the mapping

is bijective. 2 K shall denote the full subcategory of all 2-bijective K-

objects in K . If C is a small category and Z C Mor [ C , S ] is a class

of functorial morphisms, then the pair (C, L) is called a theory. A func-

tor A : C - K, where K is an arbitrary category, is called a 5: -algebra
if all functors

are 2-bijective. A theory (C, 2) is called algebraic if the inclusion

functor Z ( C , S )-&#x3E;. [C, S] is adjoint. Let 2* denote an arbitrary class

of theories. A category K is called 2* -algebraic if for all theories (C, L)
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in Z* the inclusion functor Z ( C , K) -&#x3E; [C, K] is adj oint, where Z ( C , K )
denotes the full subcategory of all 5i -algebras in K .

Let now (C, Z) be a theory, and let F: K - L be an INS-functor

with coadjoint right inverse D . Let furthermore

Herewith we obtain the following commutative diagram [37] :

Hence if A is a 5i-algebra in K , then F C A is a 5i-algebra in L. By
the same method one shows that the functor F Z = FC Z ( C , K) has an

adj oint right inverse induced pointwise by that of F . For the rest of this

chapter assume that the base category L is complete, in order to be able

to apply characterizations of INS-functors and INS-morphisms given in the

preceeding chapter, although the following theorems are valid without

any restriction.

2.1. THEOREM ( cp. [37]). Let F: K - L be an INS-functor over a com-

plete category L . Then we obtain the following assertions :

1 ) The functor is an INS-functor.

Denote by

the evaluation functors for c E C , and by

the corresponding inclusion functors. Let furthermore (C, ¿) and (D, BII )

be theories. A functor f : D - C is called a morphism of theories if the

induced functor [f,S] : [C,S I -&#x3E; [D, S] preserves algebras. If f :

(D ,Y) -&#x3E;( C , Z) is a theory morphism, and K an arbitrary category, then

the canonical functor [ f, K ] : [C, K ] -&#x3E; [D, K] preserves algebras
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[ 7 . The restriction of [ f, K] on Z ( C , K ) is called an algebraic
functor [37] and denoted by fK if there is no misunderstanding. With

this notation we obtain

2 ) The pair- (vK, vL ) is an INS-morphism. In particular vK is adjoint

if and only if vc is adjoint.
3 ) The pair ( E, E ) of inclusion functors is an INS-morphism. In

particular K is Z*-algebraic if and only if L is L* -algebraic for any
class 2* of theories.

4) Let f : ( D , Y) --&#x3E; ( C, Z) be a morphism of theories. Then the pair

(fK, f L) of algebraic functors is an INS-morphism. In particular an al-

gebraic functor over K is adjoint if and only if the corresponding alge-
braic functor over L is adjoint.

As an immediate application we obtain the following

2.2. THEOREM. Let P* be the class o f all theories (C, 2), where I is

a set, and let F : K- L be an INS-functor over a locally presentable ca-

tegory L . Th en

1 ) K is P* -algebraic.
2 ) Each P* -algebraic functor over K is adjoint.
3) Each evaluation funct or vc: L (C , K) - K is adjoint.
4 ) Z( C , K) is complete, cocomplete, wellpowered and cowellpower-

ed. 

5) Z( C, K ) is again an INS-category over a locally presentable ca.

tegory.

6) Each theory ( C, Z) defines a functor

Z(C,-):Initial(L)-·Initial(Z(C,L))

In particular Z (C ,H) is adjoint for all INS-morphisms H .
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2.3. REMARK. Theorem 2.2 allows us to construct in a simple way a lot

of INS-categories over locally presentable categories. So for instance

start with an INS-category over the locally presentable category S , the

category of sets: F:K-S. Then take any locally presentable theory

(C,¿), as e.g. an algebraic theory in the sense of LAWVERE, a GRO-

THENDIECK-topology, or more general a limit-cone bearing category in

the sense of BASTIANI-EHRESMANN [24]. Then the functor

FZ: Z(C, K)-&#x3E;Z(C, S)
is an INS-functor over the locally presentable category 5i ( C , S ) . Now one
can continue with this procedure applying theorem 2.2.5. Thus one ob-

tains that the categories of topological, measurable, compactly generated,

locally convex, bornological or zero dimensional spaces, groups, rings,
sheaves...are P* -algebraic, bicomplete, biwellpowered...

Since with K also KOP is an INS-category, and since each dual of

a locally presentable category is P* -algebraic ( B A ST I A N I unpublished),
we get the following

2.4. THEOREM. Let K be an INS-category over a locally presentable

category. Then we obtain the following statements :

1) K°p is P* -algebraic.
2 ) Each P* -algebraic functor over KOP is adjoint.
3 ) Each evaluation functor v c : ¿ ( C, K°P ) - KOP is adjoint.

Let us now regard algebraic categories of Z-continuous functors

over subcategories of INS-categories.

2.5. THEOREM [37]. Let F:K-L be an INS-functor and UC K be a

PIS-subcategory. Then the following assertions are valid:

1) 1f (C, 2) is a theory, then 2 (C, U) is a PIS-subcategory o f,
Z (C , K) . In particular i f Z (C , K) is complete and biwell powered then

Z (C , U) is an epire f l ective subcategory of Z ( C , K ) .
2 ) 1 f L is ( C, Z )-algebraic and if Z (C, L) is cowellpowered, then

U is again (C , Z) -algebraic.

From this theorem follows for instance that each epireflective
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subcategory of an INS-category over S is P* -algebraic, or that each epi-
reflective subcategory of the category of locally convex spaces is p*-

algebraic.

3. Monoidal algebraic categories over monoidal INS-categories.

The theory of monoidal universal algebra over monoidal categories,
or more exactly over S-monoidal categories, is in some way a generaliza-
tion of the equationally defined universal algebra in the classical sense.

The S-monoidal categories, defined by M. PFENDER [35] using ideas of

BUDACH-HOEHNKE, are a generalization of monoidal or symmetric mo-

noidal categories in the sense of EILENBERG-KELLY. A S-monoidal

theory (C, 0, can) is a small category C equipped with a S-monoidal

structure. The S-monoidal algebras are functors from a S-monoidal theory
into a S-monoidal category preserving the given S-monoidal structure.

Standard examples for this procedure are the monoids in monoidal cate-

gories as e.g. the monads over a fixed category, Hopf-algebras, resp. coal-

gebras in the sense of SWEEDLER, or monoids in the classical sense. In

order not to complicate the presentation here by lengthy technical details,
I will regard here only monoids over monoidal categories in the usual sen-

se. Everything, which is stated here in the following for these special
monoidal algebraic categories, is also valid for arbitrary S-monoidal alge-
braic categories.

By a monoidal functor I always mean a strict monoidal functor.

Let now F : K -&#x3E; L be an INS-functor over a monoidal category. Since F

has an adjoint right-inverse, we get the

3.1. LEMMA. Let F: K - L be an INS-functor over a monoidal category
L = ( L , 0, can). Th en there exists at least one monoidal structure on K ,

such that

is a mono’idal functor.

In general there are a lot of monoidal structures on K , such that

F becomes a monoidal functor, as the following examples show.
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EXAMPLES. Denote by ( S, X , can ) the category of sets with the carte-

sian closed structure defined by the product X . Let now F : K - S be an

INS-functor over S . Then the most important monoidal structures on K

are the following:
1) K = ( K, II , can ) with the product-monoidal structure lifted by the

INS-functor F . In general ( K , rl , can ) is no more cartesian closed as the

cases K = Top or K = Uni f show.(*)
2 ) Denote by K = ( K, D X , can ) the category K with the monoidal

structure defined by the product-monoidal structure on S , and the discrete

K-obj ect functor D : S -&#x3E; K , i.e.

Then each functor

has an adjoint, but ( K, D X , can ) is in general not closed monoidal.

3 ) Denote by K = ( K D ,can) the category K together with the «in-

ductive» cartesian product-structure, i.e. k D k’ is the cartesian product
on S supplied with the finest K-structure, such that id Fk x Fk’ is an F-

morphism (continuous, uniformly continuous, measurable...( [20])) in

each argument. The canonical functorial morphisms « can» are defined as

in S . Then (K, 0, can) is a closed monoidal category. So for instance

each coreflective subcategory of Top or Unif is closed monoidal.

In general it is not known if closed monoidality is an INS-heredi-

tary property, i.e. if an INS-category over a closed monoidal category, is

again closed monoidal. Furthermore there do not exist internal characte-

rizations of those INS-categories over cartesian closed categories which
are again cartesian closed. The most well-known cartesian closed INS-

categories over S are the categories of compactly generated and of quasi-
topological spaces.

In the following we assume that K carries any monoidal structure,
such that

(*) K =( K, il, can.) is cartesian closed iff k II-, k EK , preserves colimits. ( Apply
sp ecial adjoint functor theorem.)
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becomes a monoidal functor. Denote by Mon K resp. Mon L the categories
of monoids over K resp. over L . With this notation we obtain the follow-

ing

3.3. THEOREM. Let F : ( K , D, can ) -&#x3E; ( L , D, can ) be a monoidal INS-

functor. Then the following assertions are valid:

1) The induced functor Mon F : Mon K -&#x3E; Mon L is again an INS- functor.
2 ) The pair o f forget ful functors VK : Mon K - K and VL : Mon L -&#x3E; L

defines an 1 NS-morphi sm :

In particular VK is adjoint if and only if VL is adjoint.

In particular the adj oint right-inverse of Mon F is given by

Mon J : Mon L - Mon K :

with

In the same way as for equationally defined algebraic categories
one can prove the following 

3.4. LE M MA . Let K be an arbitrary monoidal ,categorw, and V : Mon K -&#x3E; K

be the corresponding forgetful functor. Then

1 ) V creates limits.

2 ) V creates absolute coequalizers.

Since an adjoint functor is monadic if and only if it creates abso-

lute coequalizers, we obtain the following

3.5. COROLLARY. Let F: (K, D, can)-&#x3E;(L, D can) be a monoidal INS-

functor . Then the following assertions are equivalent : 
( i ) V : Mon K - K is monadic.

( i i ) V : Mon L - L is monadic.

3.6. COROLLARY. Let F: (K,D, can)-&#x3E;(L, D, can) be a monoidal INS-

functor over a monoidal category (L, 0, can) with countable coproducts.
Assume that 1 0 L - and - 0 L 1 preserve these coproducts. Then V : 
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Mon K- K is monadic.

3.7. EXAMPLE. The forgetful functor V:Top(R-mod)-R-mod from the

category of topological R-modules over a topological ring R into the ca-

tegory of R-modules is a monoidal INS-functor. The monoidal structure on

R-mod is defined by the tensor product and on Top(R-Mod) by the induc-

tive topology on the tensor product. Since R-mod is closed monoidal, all

assumptions of the corollary 3.6 are fulfilled. Hence the forgetful functor

from the category of topological R-algebras into Top (R-mod ) is monadic.

The coadj oint is the functor « topological tensor algebra» .
Let now (k, J.L ’ e) E Mon K. Denote by Lact ( k , K) the category

of K-objects, on which k acts on the left. Let F : ( K , D, ca.) --&#x3E;(L , 0, can )
be a monoidal INS-functor. Then F induces a functor

With this notation we obtain the

3.8. THEOREM. Let F : (K, can) --&#x3E; (L , can) be a monoidal INS- functor.
Then the induced functor Lact F : Lact ( k , K) - Lact ( F k , L ) is again an

INS-functor.

3.9. EXAMPLE. Let K be an INS-category over S , e.g. the category of

topological, measurable, compactly generated, zero dimensional or uniform

spaces. The category K(Ab) of all abelian groups in K is a closed mo-

noidal INS-category over Ab , the category of abelian groups. The mono-

idal structure is given by the « inductive tensorproduct». The monoids in

in K ( Ab ) are just the rings in K . The category Lact ( r, K ( Ab ) ) is the

category of all K-modules over the K-ring r. Hence the forgetful functor

K(r-mod)-r-mod into the category of all r-modules in Ens is an INS-

functor. Hence the category K (r-mod) is complete, cocomplete, well-

powered, cowellpowered, has generators, cogenerators, projectives, in-

jectives and a canonically defined (coequalizer, mono) bicategory struc-

ture. But K ( r-mod ) is in general not abelian, since bimorphisms need not

to be isomorphisms.
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4. Algebraic Categories ( in the sense of T H IE B A UD ) over INS-categories.

THIEBAUD’s notion of an algebraic category [36] includes E I-

LENBERG-MOORE categories, categories of finite algebras, comma-ca-

tegor ies... It is defined in a completely natural way by BEN A B 0 u’ s pro-

functors. I regard here algebraic categories over arbitrary base categories,
but restrict myself in the case of the underlying algebraic types to types
which are induced by Ens-valued algebraic functors.

4.1. ALGEBRAIC FUNCTORS AND CATEGORIES [36]. THIEBAUD has

defined in his thesis ( unpublished ) a pair of adjoint functors

the structure StrA and the semantics Sem A from the category of all cate-

gories over an arbitrary category A to the category of comonoids Comon (A)
in the monoidal category Dist ( A ) of all distributors ( = profunctors in

BENABOU’s terminology) over A . This pair of adjoint functors induces

a monad on (Cat,A). The algebras in the corresponding EILENBERG-

MOORE category are called algebraic functors, resp. algebraic categories.
In the presence of an adjoint (or a coadjoint) the notions of categories

algebraic over A and categories monadic (resp. comonadic ) over A coin-

cide. In other words this pair of adjoint functors allows us to associate a

category of algebras to an arbitrary functor, in such a way that, if this

functor has an adj oint or a coadj oint, then we obtain the category of al-

gebras or coalgebras in the sense of EILENBERG-MOORE.

Let us now briefly recall the basic definitions of algebraic func-
tors as well as some of their properties, in particular the stability under

pullbacks. We assume that the reader is familiar with bicategories in the

sense of B E N A B O U [25] .

4.1.1. DE FINITION [251. The bicategory Dist of all distributors (over

Ens ) is given by the following data:
- the set of objects of Dist is the category Cat of «all» categories

( sm all rel . to Ens);
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- for A , B E Cat , the category Dist (A , B) of all distributors A -P B
is defined to be the functor category [AoP X B , Ens I ;

- Iet O : A U- B and 9 : B l- C be two distributors. The composition

O O Y : A -+-&#x3E; C is defined pointwise as coequalizer in Ens of the follow-

ing pair (d0 , d1) of morphisms :

These attachments define a bifunctor

- for A E Cat , the Hom-functor A ( - , - ) is defined to be the identity-
distributor 1A : A + A .

- The coherent natural isomorphisms are defined in an obvious way.

As abbreviation we write 00qj for the equivalence class in

OOY (a , c) generated by with

4. 1.2. REMARK [36]. in I iff there exists a

finite chain

in B , and elements and such

that for all i ,

visualized by the following commutative diagram :
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The category Dist (A , A), A E Cat , is a monoidal category with

the above defined functor « O» as multiplication. Denote by Comon ( A )

the category of all comonoids in Dist (A , A) . We define now the pair of

adj oint functors ( StrA , SemA ) .
Let f (G, e, d) be a comonoid on A . In particular

are functorial morphisms. A G- algebra is a pair (a, x), where a E A and

x E G ( a, a), such that

A morphism f : (a , x) -&#x3E; (a’ , x’) of G-algebras is a A-morphism f : a -&#x3E; a ’,
such that

is commutative, i.e.

We shall denote by Alg (A , G) the category of G-algebras. The

underlying forgetful functor is denoted by U ( G ) : Alg ( A , G ) -&#x3E; A . Further-
more each comonoid-morphism O: (G , E , d) -&#x3E; (G’, E ’ , 8’) defines in a

canonical way a functor
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over A . The assignment

defines a futictor SemA : Comon (A) -&#x3E; ( Cat, A).

The functor

is defined in the following way: Let U : B -&#x3E; A be a functor. Then U de-

fines in an obvious way two distributors :

Let O E Dist (A, B ) and 9 E Dist ( B , A ) be two arbitrary 1-cells, i.e. dis-

tributors of Dist . Recall that 4Y is Dist-coadjoint (left-adjoint) to Y, 
if there exist 2-cells ( functorial morphisms )

satisfying the relations

One of the most important properties of the bicategory Dist is the fact

that in Dist each functor has a coadjoint, i.e. for any functor U : B -&#x3E; A

the distributor OU : B -l-&#x3E; A is Dist-caoadjoint to OU : B -l-&#x3E; A . Since each
pair of Dist-adjoint functors defines a monad resp. a comonad, we can

define StrA (U) as the comonoid (OUOOU, 8U 8u ) on A generated

by the pair (O U, OU) of Dist-adj oint functors.
. PROPOSITION ( THIEBAUD ) . Structure is adjoint to semantics.

The adjoint pair of functors ( StrA , Sem A) induces on (Cat, A) a

monad denoted by AIgA .
4.1.4. D E F I NI TI ON . A category algebraic over A is an AlgA-algebra. Mor-

pbisms of algebraic categories over A are the AlgA-morphisms.
4.1.5. EXAMPLES.

1) Let G be a comonoid on A . Then the category Alg (A, G ) of

G-algebras is algebraic over A .
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2 ) Let F : A - C and G : B - C be functors. Then the comma ca-

tegory ( F, G ) is algebraic over A X B . In particular the category (A, a)

of objects over a and (a, A) of objects under a, a E A , are algebraic
over A .

4.1.6. PROPOSITION [36]. Let U:B -A be a category over A. Then U

is monadic if and only if U is algebraic and has a coadjoint.

. PROPOSITION [36 . Let

be a pullbacck·diagram in Cat . Then if U is algebra!ic so is U’.

4.1-8. PROPOSITION [36]. Let u : B - A be algebraic. Then U creates

those limits and colimits which are absolute.

4.2. ALGEBRAIC CATEGORIES OVER INS-CATEGORIES.

4.2.1 . DE FI NITION (cf. [17]). Let T : A -&#x3E; Ens be a functor. The cate-

gory of A-obj ects or T-objects T-obj (K) in an arbitrary category K is

defined as a category over K by the pullback in Cat :

where Y is the Yoneda-embedding. 

Since with T also [KoP, T] is algebraic, we get from 4.1.7 :

4.2.2. PROPOSITION. I f A is algebraic over Ens, then T-obj(K) is

algebraic over K .

4.2.3. COROLLARY. Let T:A - Ens be monadic. Then T-obj (K) is a

category algebraic over K , and in particular again monadic, if and only

if T-obj ( K ) - K is adjoint.

One can easily prove the following
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4.2.4. PROPOSITION. Let T:A-Ens be an algebraic functor. Then

1 ) T-obj (K) is complete, if K is complete.
2 ) The forgetful functor T-obj ( K ) - K creates all colimits which are

preserved by the Yoneda-embedding Y : K -&#x3E;[K°p , Ens I -

Let now F: K - L be an INS-functor with coadjoint D . Then F

induces a functor

4.2.5. THEOREM. Let F:K-L be an INS-functor. Then

1) T-obj F : T-obj (K) -&#x3E; T-obj (L) is an INS-functor iff T-obj F is

fibresmall. This is equivalent to the condition, that there exists up to

isomorphisms only a set of structures Ak, k E K, such that (k, Ak ) is

a T-obj ( K )-algebra. This for instance is always the case, when K is an

INS-category over L and T-obj ( L ) - L is monadic. In the following we
assume that T-obj F is always fibresmall.

2 ) The pair of forgetful functors

forms an INS-morphism

visualized by

In particular UK is monadic if and only if UL is monadic.

6. COROLLARY ( ERTEL-SHUBERT [6]). Let K be an INS-category
over Ens , and let T : A - Ens be monadic. Then T-obj (K)-&#x3E; K is again
monadic.

4.2.7. COROLLARY [18]. Let K be an INS-category over an arbitrary

category L , and let A be an algebraic category in the sense of LAWVERE .
Then the forgetful functor UK : Alg ( A , K) - K is monadic if and only if
the forgetful functor UL : A lg ( A , L ) - L i s monadic.



441

4.3. CONNECTION BETWEEN THE CATEGORIES OF T-OBJECTS IN K

AND PRE-T-OBJECTS IN K.

4.3.1. DE FINITION. Let F:K-L be an INS-functor, and let T:A-Ens

be an algebraic functor. The category Pre-T-obj (K) is defined by the

following pullback in Cat : 

i.e. the objects of pre-T-obj (K) are the objects of T-obj (L) with an

arbitrary « K -structure » on it.

The following propositions are categorical routine.

4.3.2. PROPOSITION. The forgetful functor

is an INS-functor.

4.3.3. PROPOSITION. UPK : Pre-T-obj (K) -&#x3E; K is algebraic. Up is monadic

if and only if UL is monadic. The pair (UP, UL ) defines an INS-mor-

ph i sm.

4.3.4. PROPOSITION. Assume that T: A - Ens is monadic. Then T-obj(K)
is up to isomorphisms a B IR KH O F F-subcategory o f Pre-T-obj (K), i. e.

1) T-obj ( K ) is closed under products in Pre-T»obj ( K).

2) T-obj (K) is closed under extremal monos.

3 ) T-obj ( K) is closed under retracts in Pre-T-obj( K).

4.3.5. PROPOSITION. Assumption as above. T-obj (K) is an INS-sub-

category o f Pre-T-obj (K) . In particular T-obj (K) is an epire flective

subcategory o f Pre-T-obj (K) for any category K.

4.4. CATEGORIES OF FINITE ALGEBRAS OVER INS-CATEGORIES. In

this paragraph we have to restrict ourselves to INS-categories over Ens ,
since otherwise the following notions give no sense. Denote by Fin (Ens)
the category of finite sets in Ens .
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4.4.1. DE FINITION. Let F: K - Ens be an INS-functor. The category

Fin ( K ) of finite K-objects is defined by the following pullback in Cat : .

4.4.2. PROPOSITION.

1 ) Fin (K) -&#x3E; Fin (Ens) is an INS- functor.
2 ) Fin (K) -&#x3E; K is algebraic.

The proof of assertion 1 is trivial, whereas 2 follows from the

fact that Fin(Ens)-Ens is algebraic [36] and that (*) is a pullback

diagram.

4.4.3. DEFINITION. Let T:A-Ens be an algebraic functor. The catego-

ry T-obj (Fin (K)) is called the category of finite T-objects in K and

is denoted by Fin (T-obj (K)). In particular Fin (T-ob j (K)) -&#x3E; Fin (K)
is an algebraic functor.

4.4.4. THEOREM. Let T : A -&#x3E; Ens be an alge,braic functor and F : K - Ens

be an INS-functor. Then the forgetful functor

is again an INS-functor.

4.4.5. TH EO RE M. Let T : A - Ens be an algebraic functor. Then the as-

signement

defines a functor.

4.4.6. EXAMPLE. Let H:Unif-Top be the canonical functor from the

category of uniform spaces to the category of topological spaces. Since
H is an INS-morphism, the induced functor

is again an INS-morphism, and hence in particular adjoint.
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