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V-FRACTIONAL CATEGORIES

by Harvey WOLFF

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

VoL X VI-2 (1975)

0. I ntroduct i on.

Fractional categories as special cases of localizations have

played an important role in many aspects of category theory and its ap-

plications. In [9] Gabriel initiated the use of such techniques in alge-
bra and since then there have been a great number of papers dealing with

them. See for example [10], [17], [18] and [19]. In topology locali-
zation has played a role in homotopy theory. For example in [2] , [il] ,
[15] and [16]. In algebraic geometry fractional categories have appear-

ed in the notion of derived category [13] and in Grothendieck topolo-

gies [21]. Recent works of Lawvere and Tierney on Topoi [14] have

made extensive use of fractional categories. It often happens that if the

category we begin with has Hom sets which are objects in a category V,
then the localization also has its Hom sets objects in V ( see for example

[10], [11], [13], [15], or [161 ). In the light of such examples, it

seems reasonable to want to extend the concept of fractional categories
to more general contexts so as to provide a single theory. One vehicle

for doing this is the use of V-categories, i.e. categories which are de-

fined over a fixed symmetric monoidal closed category V. In this paper

we plan to provide such a theory. Our main result is an existence theorem

for V-fractional categories 

By a V-localization we mean the following. Given a V-category
A and a class of morphisms 5i of the underlying Set-based category Ao, 
then the V-localization of A with respect to 5i consists of a V-category
A [E-1] and a V-functor O:A-&#x3E;A[E-1] such that O(o) is an iso-

morphism for all o E E and 4Y is universal with regard to this. In [251,
we showed that if A is small and V is cocomplete, then the V-locali-

zation always exists. A V-fractional category is a V-localization in

which the Hom object A[E-1] ( A, B) is a canonical direct limit of the
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Hom objects of A . In this paper our basic problem is the following : gi-
ven :1 ’ ¿ and V what conditions guarantee that A [E-1] is fractional.

In the case of V = Sets or abelian groups, these conditions are well

known ([1] or [11]). In the general V-case, since the conditions for

V = Sets involve elements in the Hom sets, we would need a more cate-

gorical approach, but one which when applied to V = Sets yields the well

known conditions.In this paper we provide such an approach. Our central

observation is that the conditions for V = Sets are equivalent ( see below

1.15 ) to the fact that each of the Hom sets A (A,B) can be written as

a certain canonical filtered direct limit and this becomes the core of our

proof for the V-case.

After making the appropriate definitions we prove a sequence

of results aimed at exposing some of the structure of V-fractional cate-

gories. lke then present our main result. The result first appeared in the

author’s doctoral dissertation [22] under the direction of Professor J.W.

Gray. The proof we present here is far different than the proof in [22] .
ee end with an application to V-topologies and V-sheaf theory.

We use the following notation: if A is a category, A° denotes the

opposite category. If A and B are categories, [A,B] denotes the

functor category and [F, G] denotes the natural transformations bet-

ween two functors.

1. V-fractional Categories.

Throughout we assume that V is a fixed symmetric, monoidal

closed category (see [5]). We assume that A is a V-category and

C Ao is a subcategory of the underlying Set-based category -1.0 with

the same objects as A . By a V-localization of A with respect to E we

mean a V-category A [E-1] together with a V-functor O:A-&#x3E;A [E-1 ]
such that O (o) is an isomorphism for all o E E and every V-functor
F: A - B such that F (o) is an isomorphism for all 0- E 2 f actors uni-

quely through O. If such a localization exists then we say that 1 is

V-localizable. If 1 is V-localizable we may assume that the objects. A
of A [E-1] are the same as the objects of A and that 4Y is the iden-
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tity on objects. We will always make this assumption.
To describe when a V-localization is a V-fractional category,

we first of all recall that, if A is an object of A , then LIA is the ca-

tegory whose objects are the maps E -&#x3E; A, s E E and whose morphisms
sl s2 

from Ei - A to E2 -+A are maps f: E1-&#x3E;E2 in 10 such that s2f=
sl . Denote by QA : E/A -&#x3E; Ao the obvious projection.

The category A/E is defined dually with QA : A/-&#x3E; Ao the

projection.

DEFINITION 1.1. A V-right fractional category of A with respect to 1

is a V-localization O:A-&#x3E;A [E-1] such that

for every

with the universal natural transformation given by the e quation

where

( It is easily checked that it is natural. )
A V-left fractional category A with respect to E is a V-loca-

lization O:A-&#x3E;A[E-1] such that for every pair A , B of objects of

with the universal natural transformation gAI3 given by

where

( Again it is easily checked that this is natural).
Let A be a V-category and 1 C A o a subcategory containing

the identities. If the V-right (E-left ) fractional category of A with res-

pect to 1 exists then we say that 2 admits a V-calculus of right (left)
fractions.

PROPOSITION 1.2 . Let A be a V-category. 1 f IC A. admits a V-cal-

culus o f right fractions, then 1" C Aoo admits a V-calculus of left frac-
tions.
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PROOF.Clear.

In the following we will deal mainly with V-calculus of right frac-

tions. The results for V-calculus of left fractions will then be clear by

duality using the above proposition.
Recall that, if V has pullbacks and P:A -&#x3E;B is a V-functor,

then P -1(B) is the category such that the following diagram is a pull-
back (see [12] ).

DEFINITION 1.3. If V has pullbacks and P :A-&#x3E;B is a V-functor, we

say that P l e f t covers B if for all A , B E A and every E E P 
-1 ( P B)

with the universal natural transformation given by P-E.
There are many examples of left covering functors. So, every

functor with a cleavage is left covering.
Since V has pullbacks we can form the V-category A2 for any

V-category A . This is the category with objects being the morphisms
of A and such th at, if f : A -&#x3E; B, g : C -&#x3E; D, th en A2 (f,g) is such th at

the following is a pullback diagram in V :

There are then two V-functors D,R :A2-&#x3E;A. We define 12 to be the

full subcategory of A2 whose objects are in 2 . Then D and R restrict

to V-functors from 12 into A . Our object is to use the category 12 and

the functors D and R to construct V-fractional categories. Before we

do this, however, we will look at some relationships between Z2 and
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fractional categories. We begin by looking at composition in A [E-1].

P R OP OSI T IO N 1.4. I-et A ( A , M,j) be a V-category and suppose that

EC Ao admits a y-calculus of right fractions where

I f A, B, C are objects of A, s:E-B, u:L-A, t ; D - L are all in Y-

then the following diagram commutes

P RO O F. Consider diagram 1.5 where, writing A [E-1] = A ; 1 commutes

since it is A (E , C ) tensored with a commutative diagram; 2 and 5 com-

mute since (D is a V-functor; 3 commutes since A [E-1](-,-) is a

functor and 4 commutes by 8.2 of [6] .

LEMMA 1.6. Let A be a V.category and ECAo admit a V-calculus

of right fractions. For every f : B - C in Ao,

PROOF. It is easy to show that A [E-1](A,O(f)) satisfies the same

universal property as

P R O P O SIT IO N 1. 7 . Let àiC Ao be a subcategory which contains the

identities. Let T: A - B be a V- functor such that:

(1) To ( s ) is an isomorphism for each s E E,

( 2 ) T is the identity on objects,

(3) for every A,B E Ob (B), 

with universal natural trans formation given by

wh ere
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1 f R : E2-&#x3E;A is left covering, then B =A[E-1] with T =O. 
PROO F . We just ne ed to show that, if F:A -&#x3E; C , C = ( C, O , k ), is a V-

functor such that Fo ( s ) is an isomorphism for each s E 2:, then there

exists a unique V-functor F : B - C such that F . T = F .

Def ine F(B)=F(B) for each B E B . If A,B EB, to define

FA, B we first of all define a natural transformation

as follows. If s : D -&#x3E; A E (E/A)°, then

This is clearly natural and thus by the universal property of direct limits

there exists a unique FA,B:B (A,B)-&#x3E;C(FA,FB) such that

for every in

To show that F is a V-functor we note that, since 0 commutes

with colimits and since

f or any u: E - B in E/B, it suffices to show that, for s:D-+ A, s’:

D’ -&#x3E; B and t: E -&#x3E; D all in 5i :

Consider diagram 1..8 : 1 commutes by 1.4 (note that the proof
did not use the induced functor property); 2 and 3 commute by the de-

finition of F ; 4 commutes since F is a V-functor; 5 commutes by 8.2

of [6]. Since the outer diagram is clearly commutative we have

Now

Hence F is a V-functor..
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Sinc e, for every we have

Thus The uniqueness of is clear.

COROLLARY 1.9. Let 5iC Ao and let T:A -&#x3E;B be a V- functor which

satis fies (1), ( 2 ) and (3) of 1. 7 . 1 f lim commutes with pullbacks,
-&#x3E;

(E/A)o
then and

PROOF. The following is a pullback of functors for s : E -&#x3E; B

Lemma 1.6 shows that

But B (A,T(s)) is an isomorphism of V . So if we take the lim of

(E/A)o
the above pullback we get

Hence the result follows by 1 .7 .

DEFINITION 1.10 (Almkvist [1]). Let A be a V-category, 5i C A o
a subcategory such that objects of 2 and A are the same. 1 is said to

be nice if, for each A E A , (E/A)o has a small f in’al subcategory.

COROLLARY 1.11. Let V be cocomplete and have pullbacks such

tbat filtered colimits commute with pullbacks. Let A be a V-category and

2 C A,,, be nice such that ( 2/ A ) 0 is filtered for all A . Then 2 admits

a y-calculus of right fractions iff there exists a V-category B and a V-

functor T:A -&#x3E; B satisfying (1), ( 2 ) and (3) o f 1. 7.

We now come to the main existence theorem.
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TH E O R E M 1.12. Let V be complete and cocomplete. Let 1 C A° be a

subcategory wi th the same objects as A . If:

(1)R: E2-&#x3E;A is left covering and

( 2 ) If s , t are morphisms with s E E and with the same codomain,

then there exist s’, t’ with s’ E E such that s t’ = ts’,

then 2 admits a V-cal cul us o f right fractions.

PROOF. The proof proceeds by defining a V-triple on the V-functor ca-

tegory [A°,V] and then using some results of [7]. The results we
need are the following :

1 ( 3 .6 of [7]). If T is a triple on [Ao,V], there is a triple
T’on [A°, V] where T’ is cocontinuous and a triple map e : T’-&#x3E; T

which is universal with respect to cocontinuous triples. T’ is obtained

by restricting T to the representables and then Kan extending. Hence T

and T’ agree on representables.

2 (3.12 of [7 ). There is an equivalence of categories between

cocontinuous triples on [Ao, V] and the category of pairs ( x, A’ )

where A’ is a V-category and x :A -A’ is a surjection on objects. Gi-

ven T, A’ i s defined by

and

Furthermore x corresponds to the unit 77 of T.

To define the V-triple T=(T, q, 03BC) on [Ao , V] (which turns

out to be idempotent ) we first define T . Let FE [A°, V] and define

with universal transformation E . To give a V-functor structure to T(F)

we note that

Hence to define it suffices to de-

fine a natural family
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Fix s : E -&#x3E; A in sil A . By hypothesis So to

define T (s) it suffices to define a natural family

Let t:C-&#x3E;B in (E/B)° and set

This is easily checked to be natural in t and consequently there exists

a unique 1 ( s ) such that

It ’ is then easy to check that I- is natural. Hence there exists a unique

such that

A moderate size diagram which we omit shows that with the above de-

finitions TF: A° -&#x3E; V is a V-functor.

We claim now that we can give T the structure o-f a V-functor

[A°, V] -&#x3E; [A°, V]. For notational convenience let us denote A =

[A°,V]. Recall (see [5]) that Â [F,G] =f V(FA,GA). To de-

fine a V-functor structure on T we need

So to define T we need a V-natural family

To define 6A we need a natural family
Let s : E -&#x3E; A bein 2, define

where %b is the V-natural family f V (FA,GA)-&#x3E;V(F-,G-). A short

check shows that this is natural and so 6A is well defined. We claim
now that {6A} is a V-natural family. Before we do this, however, we

need to note two things. First, let us define nF:F -&#x3E; TF by nF A =
8 (id). Then using the definition of T F it is easy to see that 77F is
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V-natural. Secondly, we note that if s : E-&#x3E;B is in 2 then TF(s):

TFB-&#x3E;TFE is an isomorphism. To see this, define m :TFE-&#x3E;TFB

by m.e(t)= e(st). Now by the definition of T F and hypothesis (2)

we have TF(s).e(1)=e(n).F(d) where 1: L -+ B, n:M-E are in

and s.n =l.d. Then

and

Now to show V-naturality we need to show oo6(B)=oo(A),

Consider diagram 1.13: 1 commutes by definition, 2 (resp. 3) by V-

naturality of w (resp. 8 ( id), 4 since m . T F ( s ) is the identity; 5

commutes by naturality properties of 0-o and the fact that m’.TF(t)

is the identity; 6 and 8 commute by naturality of 0-o ; 7 and 9 commute

by definition; 10 commutes by functoriality of V(-,-); 11 commutes

by definition of 12 ; and finally 12 commutes by definition of T F .

Hence {6(A)} is a V-natural family and consequently there exists a

unique morphism

with

It is easily checked that T is a V-functor and that the map n: 1 -&#x3E; T

defined by YJ F A = 8 (id) is a V-natural transformation.

Now consider nT : T-&#x3E;T2 . We claim that nT is an isomorphism.
To see this we define for each F E A and each A E :10 an inverse J-L A
to nTFA =e (id). Now

So to define f-L A we need a natural transformation 03BC’A:TFQ°A-&#x3E;TFA.
Let s : E - A be in I. Define 03BC’A(s):TFE-&#x3E;TFA by 03BC’A(s)=
TF(s)-1. That this is natural is clear.. Hence there exists a unique

J.L A : T2 F A -. T F A such that f.L A . e(s)=TF(s)-1. Now

Hence Also
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Consequently n)TFA.03BCA = 1 and q T F is an isomorphism.
If we set 03BC=(nT)-1 then T=(T,n,03BC) is an ( idempotent )

monad on [A°,V]. By 3.6 and 3.12 of [7] ( see above) there exists

a category A [E-1] with the same objects as A with

and a V-functor O : A -&#x3E; A [E-1] which is the identity on objects. 4Y is

def ined by

is

Since, for all s E 2, T F(s) is an isomorphism we have O(s) is an iso-

morphism. Note also that E ( s ), by the above universal natural trans-

formation for lim A (Q°A-, B ), can be written as
- 

(E/A)°

if s : E - A is in (E/A)°. Hence by 1.7 and the results of [7] we get
the result.

RE M A RK S: 1. In 1.12 we assumed that A was small. There is also a

similar result when A is large. In this case it is necessary to make the

assumption that 1 is nice and that the pullback of the covering functor
R along D is also covering. The proof is a long but direct calculation.

The details appear in [22] .
2. Note that condition ( 2 ) of 1.12 is equivalent to the canonical

morphism Z : lim V(E2(-,s))-&#x3E; Ao(A,B) being surjective.
-&#x3E; 

(E/A)°

COROLLARY 1.14. Let V be cocomplete with pullbacks such that fil-
tered col imits commute with pullbacks in v . Suppose V : V -Sets preser-

ves filtered colimits. L et A be small and 1 C do such that (E/A)°
is filtered for each A . Then 1 admits a V-calculus of right fractions

iff R:12 -A is left covering.
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So for exampl e V = Cat and V = R-modules over a commutative

ring R satisfy the conditions of 1.14.

The next proposition shows how the well known conditions for

V = Sets ( see [11]) can be derived directly from our conditions.

PROPOSITION 1.15, Let V be Sets and EC A a subcategory. Then

the following are equivalent : 
R

( 1 ) (E/A) 0 is filetered for each A E A and ¿2 -&#x3E; A is left cove-

ring.

( 2 ) (a) for every f E A , sel such that codomain f = codomain s
there exists g E A , t e 1 such that s g = f t.

( b ) 1 f s . f = s . g , s E E, then there exists tel such that

ft=gt.

PROOF. (1) implies (2): (a) Let f : A-&#x3E;B, s:E-B. Since

there exists t : E1 -&#x3E; A in (E/A)° and m E E2(t,s) such that R(m) =

f . Hence we have the following commutative diagram

(b) Suppose s f = s g where s: B - C in Land f, g: A - B. Then

A(A, C)= lim E2(-, s). Taking id:A-A in (E/A)° we have that
-&#x3E;

(E/A)°

and

Then f, g satisfy R (id, s) (f) = R (id, s)(g). Since the limit is fil-

tered, there is a t:E1-&#x3E;A in (E/A) ° and
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in (E/A)° such that E2(t, id)(f)= E2(t, id)(g). Hence ft= gt.
( 2 ) implies ( 1 ) is clear.

COROLLARY 1.16. Let V be cocompl ete with pullbacks such that V: 

V-Sets commute with filtered colimits. Let LC io admit a B y-calculus

of right fractions such that (E/A)° for each A is filtered. Then 1 ad-

mits.a calculus of fractions relative to Sets and A [E-1]o=Ao [E-1 ].

1 f V reflects filtered colimits then the converse is true.
R

PROOF. It is clear that E2 -&#x3E;Ao is left covering in this situation and

consequently by 1.15 and [1]E admits a calculus of fractions relative

to Sets.. It is easily checked that relative to Sets the conditions of 1.7

are satisfied for Oo : Ao -&#x3E;A [E-1]o.
The converse follows from 1.14 .

For V = abelian groups it is well known that V:V -&#x3E; Sets preser-

ves and reflects filtered colimits. Hence in this case an additive locali-

zation and a set localization are the same by 1.16.

Most of the results about fractional categories which appear in

[1] and [11] go over to the V-case. For full details see [22] . The one
result that we need is the following.

PROPOSITION 1.17. Let V be complete and cocomplete and A be a

small f--category. Let O:A-&#x3E;A[E-1] be a V-right fractional catego-

gory. Let F,GA[E-1]-&#x3E;B be two V-functors. Then (D induces an

isomorphism: [F,G]-&#x3E;[FO,GO], i.e. the functor

is V-full and faithful.

PROO F. Clear.

As an example of how V-calculus of fractions can be used we

briefly indicate how one can extend to V-theory the notions of Grothen-

dieck topologies.. Our context is the following. V is complete and co-

complete. We further assume that V has a fixed (E,M) factorization

as discussed in [4J or [8] and is m-well powered. Let A be a small
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V-category. An m-crible is a V-functor ’R’ :A’ - V for which there exists

a V-natural transformation R -&#x3E; A(-,A) each of whose components is in

. Let B be the V-full subcategory of [A°,V] whose objects are m-

cribles. By a V-topology on A we mean the following: for each A let

J(A) be a set of cribles with codomain A (-,A) such that id E J(A).
Let be the subcategory of the underlying category of 93 generated by
the J (A).E is called a V-topology if it admits a V-calculus of right
fractions. A V-functor F:A° -&#x3E;V is a V-sheaf if for each i : R -A ( -, A )

in J ( A ) the canonical morphism [A(-,A),F]-&#x3E;[R, F] is an isomorphism.
In analogy to the case V = Sets, we prove the following

PROP OSITION. Given a y-topology 2: on A then there exist a V-functor
AO , V 1 -&#x3E; [A°, V] and a V-natural transformation 8:1 -&#x3E; R such that: 

( 1 ) 6R = R 6.

( 2 ) The following are equivalent :
(a ) q5 is a V-shea f.
( b ) 6O is an isomorphism.
( c ) For all G : A° -V, [8 G , cp J is an isomorphism.

PROOF. Let O:B-&#x3E;B [E-1] be the canonical functor. Then 4Y induces

a functor which we denote also by O: [B[E-1 ]°V] -&#x3E; [B°,V].O is

V-fully faithful and has a V-left adjoint ’Il . Let (-:ry, e):w -l O be the

front and back adjunction. Furthermore the functor

U:[A°,V]-&#x3E;[B°,V] defined by U (G)=[I-,G],

where I:B-&#x3E; [A°,V] is the inclusion, is V-full and faithful and has

a left adjoint F which is composing with y° : A° -&#x3E;B° where y is the

Yoneda embedding. Let (n,e) denote the front and back adjunction of

F-lU.

Define R as the following FOwU=R and 6 as the following

composite

To prove 1 we have
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Hence 6R = R6.

2.(a)=&#x3E; (b) If O is a V-sheaf then U(O)= [I-,O] inverts the mor-

phisms of 1 . Cbnsequently q is an isomorphism and therefore S is an

isomorphism.

(b)=&#x3E;(c) Define o-:[G,O]-&#x3E;[RG,O] as the following com-

position

We claim that o- is the inverse of [6G, O]. One way is clear. Now

(c)=&#x3E;(a) Since [6O,O] is an isomorphism, there is a 0-:

RO-&#x3E;O such that o.6O=id. Then

Since O is fully faithful, we get that nUO is an isomorphism, and con-

sequently O is a V-sheaf.

Now using the above proposition and the methods of [20] one

gets the following

TH E O R E M . If R preserves V-filtered colimits for some regular cardinal

a, then the V-sheaves form a V-reflective subcategory.

For further applications and examples we refer the reader to

[23] and [25] .
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