CAHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

VÁclav Koubek

On categories into which each concrete category can be embedded

Cahiers de topologie et géométrie différentielle catégoriques, tome 17, n ${ }^{\circ} 1$ (1976), p. 33-57
http://www.numdam.org/item?id=CTGDC_1976__17_1_33_0 différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON CATEGORIES INTO WHICH EACH CONCRETE CATEGORY CAN BE EMBEDDED

by Vaclav KOUBEK

Hedrlin and Kučera proved that under some set-theoretical assumptions (the non-existence of "too many" measurable cardinals) each concrete category is embeddable into the category of graphs. Therefore under these assumptions each concrete category is embeddable into every binding category, i.e. a category into which the category of graphs is embeddable. The aim of the present Note is to characterize the binding categories in a class of concrete categories, the categories $S(F)$, defined as follows: let F be a covariant functor from sets to sets; the objects of $S(F)$ are pairs (X, H) where X is a set, $H \subset F X$, and the morphisms from (X, H) to ! Y, K) are mappings $f: X \rightarrow Y$ such that $F f(H) \subset K$.

The categories $S(F)$, explicitely defined by Hedrlin, Pultr and Trnkova, are categories which play an important role in Topology, Algebra and other fields. They also describe a great number of concrete categories created by Bourbaki construction of structures. They are investigated in a lot of papers $[1,3,4,9,10,11]$.

The main result: $S(F)$ is binding if and only if F does not preserve unions of a set with a finite set; assuming the finite set-theory, $S(F)$ is binding for all functors F with the exception (up to natural equivalence) of $(C \times I) \vee K$, where C, K are constant functors and I is the identity functor.

I want to express my appreciations to J. Adamek and J. Reiterman with whom I discussed various parts of the manuscript.

CONVENTION. Set denotes the category of sets and mappings. A covariant functor from Set to Set is called a set functor.

DEFINITION. Let $(\mathcal{K}, U),(\mathcal{L}, V)$ be concrete categories. A fullembedding $\phi:(K, U) \rightarrow(\Omega, V)$ is said to be strong if there exists a set functor F, such that

commutes. The functor F is said to carry ϕ.
PROPOSITION 1.1. Denote R the category of graphs ! relations (X, R), $R \subset X \times X)$ and compatible mappings

$$
(f:(X, R) \rightarrow(Y, S) \quad \text { with } \quad f \times f(R) \subset S)
$$

and R_{s} its full subcategory of undirected, antireflexive, connected graphs (symmetric antireflexive relations where each pair of vertices is connected l'y some patb). There exists a strong embedding of \mathbb{R} into \mathbb{R}_{s}.

Proof: see [12].
IDEFINITION. An object o of a category is rigid if $\left.\left\{1_{0}\right\}=\operatorname{Hom}!o, o\right)$.

PROPOSITION 1.2. For each infinite cardinal a (considered to be the set of all ordinals with type smaller than α) there exists a full subcategory \mathcal{R}_{α} of \mathbb{R}_{0} into ubich R is strongly embeddable such that for each (X, R) in ' $_{\alpha}, a \subset$, , and, for each $f:(X, R) \rightarrow(Y, S)$ in $\Re_{\alpha}, f / \alpha=1_{\alpha}$.

PROOF. In [12] a strong embedding ϕ of the following category \Re_{222} into $\overbrace{\Delta}$ is constructed : objects of \mathscr{R}_{222} are $\left(X, R_{1}, R_{2}, R_{3}\right)$ with $R_{i} \subset X \times X$, morphisms $f:\left(X, R_{1}, R_{2}, R_{3}\right) \rightarrow\left(Y, S_{1}, S_{2}, S_{3}\right)$ are mappings

$$
f: X \rightarrow Y \quad \text { with } f \times f\left(R_{i}\right) \subset S_{i}, \quad i=1,2,3
$$

Furthermore it was proved in [16] that there exists a rigid graph (α, T).

Given a graph (X, R), put $\left(X^{*}, R_{1}, R_{2}, R_{3}\right) \in R_{222}$,

$$
X^{*}=X \vee a, \quad R_{1}=R, \quad R_{2}=X \times X, \quad R_{3}=T .
$$

Then for each morphism

$$
f:\left(X^{*}, R_{1}, R_{2}, R_{3}\right) \rightarrow\left(Y^{*}, S_{1}, S_{2}, S_{3}\right)
$$

there exists a compatible mapping

$$
g:(X, R) \rightarrow(Y, S) \text { with } f=g \vee 1_{a} .
$$

In other words, a strong embedding $\psi_{a}: \Re \rightarrow \mathbb{R}_{222}$ is formed

$$
\left(\psi_{a}(X, R)=\left(X^{*}, R_{1}, R_{2}, R_{3}\right), \psi_{a} g=g \vee 1_{\alpha}\right)
$$

such that the image \mathbb{R}_{α} of \mathbb{R} under $\phi \psi_{a}$ has the required properties.
Proposition 1.3. If F is a subfunctor of a factorfunctor of (i, then $S(F)$ is strongly embeddable into $S(G)$.

Proof: see [11].

CONVENTION. All set funcrors F are supposed to be regular, i.e. each transformation from $C_{0,1}$ (where

$$
\left.C_{0,1} X=1 \text { if } X \neq \varnothing, \quad C_{0,1} \varnothing=\varnothing\right)
$$

to F has a unique extension to a transformation of C_{1} to F. In particular, if F is constant on the subcategory of all non-void sets and mappings, then $F=C_{X}$ for some X (which is the reason for this convention). For each set functor F we clearly have a regular functor F^{\prime} coinciding with F on non-void sets and mappings; $S(F)$ is binding iff $S\left(F^{\prime}\right)$ is.

2

DEFINITION. Denote by \mathscr{G} the concrete category the objects of which, called spaces, are pairs (X, \mathcal{U}) where X is a set and $\mathcal{U} \subset \exp X$, and morphisms from (X, \mathcal{U}) to (Y, \mho) are mappings $f: X \rightarrow Y$ such that

10 for each $A \in \mathcal{U}$ there exists $B \in \mathcal{O}$ with $B \subset f(A)$;
2° if f is one-to-one on $A \in \mathcal{U}$, then $f(A) \in \mathcal{O}$.
Furthermore, given a cardinal α, denote by \mathcal{g}_{α} the full subcategory of \mathscr{J}
over all (X, \mathcal{U}) such that:

$$
\text { if } A \in \mathcal{U} \text { then } \operatorname{card} A=\alpha
$$

The spaces of \mathscr{G}_{a} are called α-spaces.
convention. Given $(X, \mathcal{U}) \in \mathscr{G}, x \in X$, denote

$$
\operatorname{st}^{t} \mathcal{U} x=\operatorname{card}\{A \in \mathcal{U} \mid x \in A\}
$$

LEMMA 2.1. Let $f:(X, \mathcal{U}) \rightarrow(Y, \mathcal{O})$ be a morphism in \mathcal{I}. If f is one-to-one then for each $x \in X$, st $\mathcal{U} x \leqslant \operatorname{st} \vartheta f(x)$. If moreover $(X, \mathcal{U})=(Y,(\mathbb{)})$ and X is finite, then st $\mathcal{U}^{x}=\operatorname{stg} f(x)$.

Proof is easy.

CONSTRUCTION 2.2. For each natural number $n \geqslant 3$ we are going to construct a rigid n-space

$$
(X, \mathcal{U}), \text { where } X=\{0,1, \ldots, 2 n\}
$$

which has the following properties:
1^{0} for each $a, b \in X$ there exist $T, S \in \mathcal{U}$ with $a, b \in T, a \in S, b \in X \cdot S$; 2° denote by m (or M) the minimum (the maximum, respectively) of all st a $a \in X$; then $m+M<\operatorname{card} \mathcal{U}$ and there exists just one $y \in X$ with ${ }^{\text {st }} \mathcal{U} y=m$.

The construction is done by induction. The n-th space is denoted by $\left(X_{n}, \mathcal{U}_{n}\right)$.
I. $n=3 . \mathcal{U}_{3}$ contains the following set ($\}$ is omitted):

$$
\text { 012, 024, 026, 036, 056, 134, 156, 235, 245, 246, } 356 .
$$

Conditions 1 and 2 are easily verified. To prove that $\left(X_{3}, \mathcal{U}_{3}\right)$ is rigid, the above Lemma 2.1 can be used. Any morphism $f:\left(X_{3}, \mathcal{U}_{3}\right) \rightarrow\left(X_{3}, \mathcal{U}_{3}\right)$ must be a bijection and routine reasoning concerning

$$
{ }^{s t} \mathcal{U}_{3} 0, s t \mathcal{U}_{3} 1, \ldots, s t \mathcal{U}_{3}{ }^{6}
$$

shows that f must be the identity.
II. $n>3$. Choose $x, y \in X_{n-1}$ with

$$
{ }^{s t} \mathcal{U}_{n-1} y=m_{n-1}, \quad{ }^{s t} \mathcal{U}_{n-1} x=M_{n-1}
$$

and choose

$$
V \in \mathcal{U}_{n-1} \text { with } y \in V, x \in X_{n-1}-V
$$

Choose arbitrary n-point subsets Z_{1}, Z_{2} of X_{n-1} with $Z_{1} \cap Z_{2}=\{y\}$, and define \mathcal{U}_{n} as the following collection:

$$
\begin{aligned}
& W \cup\{2 n-1\} \text { for all } W \in \mathcal{U}_{n-1}-\{V\} ; \\
& W \cup\{2 n\} \text { for all } W \in \mathcal{U}_{n-1} \text { with } y \in W ; \\
& V \cdot\{y\} \cup\{2 n-1,2 n\} ; Z_{1} ; Z_{2} .
\end{aligned}
$$

The condition 1 is easy to verify. Let us check 2 :

$$
\operatorname{st}_{\mathcal{U}_{n}} 2 n=s t \mathcal{U}_{n-1} y+1<s t \mathcal{U}_{n-1} y+s t \mathcal{U}_{n-1} x<c \operatorname{card} \mathcal{U}_{n-1}=s t \mathcal{U}_{n} 2 n-1
$$

and because

$$
\text { for each } a \in X_{n-1} \text {, st } \mathcal{U}_{n} a>\text { st } \mathcal{U}_{n-1} y+1 \text {, }
$$

we have st $\mathcal{U}_{n}{ }^{2 n}=m_{n}$ and $2 n$ is the only element with $s t \mathcal{U}_{n}=m_{n}$; further if $a \in X_{n-1}-\{y\}$, then

$$
{ }^{s t} \mathfrak{U}_{n} 2 n-1>s t \mathbb{U}_{n-1} x+s t \mathfrak{U}_{n-1} y>s t \mathfrak{U}_{n} a
$$

and

$$
{ }^{s t} \mathcal{U}_{n} y=2\left(s t \mathcal{U}_{n-1} y\right)+1 \leqslant s t \mathcal{U}_{n-1} x+s t \mathcal{U}_{n-1} y<s t \mathcal{U}_{n} 2 n-1
$$

and so st $\mathcal{U}_{n} 2 n-1=M_{n}$.

$$
m_{n}+M_{n}=s t \mathcal{U}_{n} 2 n+s t \mathcal{U}_{n} 2 n-1=s t \mathcal{U}_{n-1} y+1+c \operatorname{ard} \mathcal{U}_{n-1}<\operatorname{card} \mathcal{U}_{n}
$$

The last thing to prove is that $\left(X_{n}, \mathcal{U}_{n}\right)$ is rigid. Let

$$
f:\left(X_{n}, \mathcal{U}_{n}\right) \rightarrow\left(X_{n}, \mathcal{U}_{n}\right) ;
$$

then f is a bijection, due to 1 , and

$$
f(2 n)=2 n, \quad f(2 n-1)=2 n-1
$$

(as $2 n-1$ is the only element with $s t \mathcal{U}_{n}=M_{n}$). Therefore $f\left(X_{n-1}\right)=X_{n-1}$ and clearly the restriction of f is an endomorphism of $\left(X_{n-1}, \mathcal{U}_{n-1}\right)$. So, $f=l_{X_{n}}$.

Proposition 2.3. Given the rigid n-space (X, \mathcal{U}) as above, let P be an
arbitrary $(n-1)-p o i n t$ subset of X and let $p \in P$. Then (Y, O) is a rigid n-space, where $Y=X \times\{0,1\}$ and

$$
\vartheta=(\mathcal{U} \times\{0,1\}) \cup\left\{s_{0}\right\}, \text { with } S_{0}=(P \times\{0\}) \cup\{(p, 1)\}
$$

proof. Let $f:(Y, \mathcal{O}) \rightarrow(Y, \mathcal{O})$. Clearly if $S \in \mathcal{O}$ then f / S is one-to-one and so $f(S) \in \mathcal{O}$. Let us show that

$$
f(X \times\{0\})=X \times\{i\}, i=0 \text { or } 1
$$

If $f(a, 0)=\left(a_{1}, 1\right)$ for some a, a_{1}, then $f(X \times\{0\}) \subset X \times\{1\}$; if not, let $f(b, 0)=\left(b_{1}, 0\right)$, let $T \in \mathcal{U}$ contain $\{a, b\}$ (see condition 1 , above); we have $f(T \times\{0\}) \in \mathcal{O}$ and so necessarily $f(T \times\{0\})=S_{0}$, in particular $a_{1}=p$ and $b_{1} \in P$. Therefore, if $x \in X$ then

$$
f(x, 0)=\left(x_{1}, 0\right) \text { implies } x_{1} \in P
$$

and

$$
f(x, 0)=\left(x_{1}, 1\right) \text { implies } x_{1}=p \text { and } x=a
$$

(if $x \neq a$, then

$$
f(x, 0)=f(a, 0)=(p, 1)
$$

but it follows from the condition 1 that f is one-to-one on $X \times\{0\}$ and on $X \times\{1\}$). Therefore

$$
f((X \cdot\{a\}) \times\{0\}) \subset P \times\{0\}
$$

- a contradiction, as f is one-to-one on $X \times\{0\}$ and card $P<\operatorname{card} X$-1. So

$$
f(X \times\{1\})=X \times\{i\}, \quad i=0 \text { or } 1
$$

Analogously

$$
f(X \times\{1\})=X \times\{j\}, \quad j=0 \text { or } 1
$$

It follows that

$$
f(x, 0)=(x, i), f(x, 1)=(x, j)
$$

(since (X, \mathcal{I}) is rigid). As

$$
f\left(S_{0}\right)=P \times\{i\} \cup\{(p, j)\} \in \mathcal{O}
$$

we have $i=0, j=1$.

CONSTRUCTION 2.4. For each infinite cardinal a we shall construct a ri-
gid α-space ($X, \mathcal{U})$.
Put $X=\alpha \cup\{a, b\}$ (recall that α is the set of all ordinals with type less than α, assume $a, b \notin a, a \neq b$).

U con ists of the following subsets of X :

$$
E=\{x+2 n\}, \quad \bar{O}=\{x+2 n+1\}, \quad D=\{x+3 n\},
$$

where x runs over all limit ordinals in α and zero while n runs over all naturals;

$$
\begin{aligned}
& P_{x}=\{y \in E \mid y>x\} \cup\{x\} \quad \text { if } x \in \bar{O} ; \\
& P_{x}=\{y \in \bar{O} \mid y>x+2\} \cup\{x\} \text { if } x \in E ; \\
& V \cup\{a, x, y\}, x, y \in \bar{O}, x \neq y, V \subset E, \operatorname{card} E-V=\operatorname{card} V=\alpha ; \\
& V \cup\{b, x, y\}, x, y \in E, x \neq y, V \subset \bar{O}, \operatorname{card} \bar{O}-V=\operatorname{card} V=\alpha .
\end{aligned}
$$

proof. Let $f:(X, \mathcal{U}) \rightarrow(X, \mathcal{U})$; we shall show that $f=1_{X}$. As $E \in \mathbb{U}$, $\operatorname{card} f(E)=\alpha$, therefore there clearly exists $J_{E} \subset E$ such that:
a) card $J_{E}=\alpha$;
b) f is one-to-one on J_{E};
c) either $f\left(J_{E}\right) \subset E$ or $f\left(J_{E}\right) \subset \bar{O}, \operatorname{card} E \cdot f\left(J_{E}\right)=\operatorname{card} \bar{O} \cdot f\left(J_{E}\right)=\alpha$. Analogously $J_{O} \subset \bar{O}$.

$$
1^{\circ} f(E) \subset E \text { or } f(E) \subset \bar{O}
$$

Assume that, on the contrary, either

$$
f\left(\beta_{1}\right) \in E, \quad f\left(\beta_{2}\right) \in \bar{O} \text { with } \beta_{1}, \beta_{2} \in E
$$

or

$$
f(\beta) \in\{a, b\} \text { with } \beta \in E .
$$

In the former case $J_{\bar{O}} \cup\left\{\beta_{1}, \beta_{2}, b\right\} \in \mathcal{U}$ and so there exists

$$
T \in \mathcal{U}, \quad T \subset f\left(J_{\dot{O}} \cup\left\{\beta_{1}, \beta_{2}, b\right\}\right)
$$

There follows

$$
\operatorname{card}(\bar{O}-T)=\operatorname{card}(E-T)=\alpha
$$

while

$$
\operatorname{card}(T \cap(E \cup\{a, b\})) \leqslant 2 \quad \text { or } \operatorname{card}(T \cap(\bar{O} \cup\{a, b\})) \leqslant 2 ;
$$

clearly there is no such $T \in \mathcal{U}$. In the latter case either there exists

$$
\beta^{\prime} \in E \cdot\{\beta\} \text { with } f\left(\beta^{\prime}\right) \in\{a, b\},
$$

but then

$$
\operatorname{card} f\left(J_{\dot{O}} \cup\left\{\beta, \beta^{\prime}, b\right\}\right) \cap E \leqslant 1 \text { or } \operatorname{card} f\left(J_{\dot{O}} \cup\left\{\beta, \beta^{\prime}, b\right\}\right) \cap \bar{O} \leqslant 1
$$

and you get a contradiction in a similar way - or β is the only one. Choose distinct $\beta_{1}, \beta_{2} \in E \cdot\{\beta\}$; then, as

$$
J_{0} \cup\left\{\beta_{1}, \beta_{2}, b\right\} \in \mathbb{U}
$$

clearly $f(b) \in\{a, b\}$, but while $J_{\dot{O}} \cup\left\{\beta_{1}, \beta, b\right\} \in \mathcal{U}$, this leads to a contradiction in the same way as above.
$2^{\circ} f(\bar{O}) \subset E$ or $f(\bar{O}) \subset \bar{O}$. Analogous.
$3^{\circ} f$ is one-to-one.
a) f is one-to-one on \bar{O}, E. In fact, let

$$
\beta_{1}, \beta_{2} \in E \quad \text { with } J_{0} \cup\left\{\beta_{1}, \beta_{2}, b\right\} \in \mathbb{U}
$$

then $f\left(\beta_{1}\right) \neq f\left(\beta_{2}\right)$ because else the meet of $f\left(J_{\dot{O}} \cup\left\{\beta_{1}, \beta_{2}, b\right\}\right)$ with either E or \bar{O} would have at most one element - a contradiction (analogous as above).
b) f is one-to-one on $\bar{O} \cup E$. Let

$$
\beta \in \bar{O}, \gamma \in E \text { with } f(\beta)=f(\gamma) .
$$

We may choose $\beta_{1} \in \bar{O} \cdot\{\beta\}$ such that f is one-to-one on $J_{E} \cup\left\{\beta_{1}, \beta, b\right\}$ - then $f\left(J_{E} \cup\left\{\beta_{1}, \beta, b\right\}\right) \in \mathcal{U}$, again a contradiction.
c) f is one-to-one - clearly $f(\bar{O} \cup E)=\bar{O} \cup E$ and c easily follows.

Now we have $f(D)=D$ because D is just the element of \mathcal{U} with

$$
\operatorname{card} D \cap E=\operatorname{card} D \cap \bar{O}=\alpha .
$$

There follows $f(0) \neq 1$ and as either

$$
\operatorname{card} \bar{O} \cdot f\left(P_{0}\right) \leqslant 1 \text { or card } E-f\left(P_{0}\right) \leqslant 1,
$$

clearly $f(0)=0$. Clearly then $f\left(P_{0}\right)=P_{0}$; furthermore

$$
f(E)=E, \quad f(\bar{O})=\bar{O} \quad \text { and } f(a)=a, \quad f(b)=b
$$

Let us prove that $f=1_{X}$. If not, we can choose the least ordinal γ, with $f(\gamma) \neq \gamma$; we have

$$
\gamma>0 \text { and clearly } f\left(P_{\gamma}\right)=P_{f(\gamma)} .
$$

If $f(\gamma)<\gamma$, then $\gamma \notin E$ because f is one-to-one while $P_{f(\gamma)}$ meets the set $\{\delta \mid \delta<\gamma\}$; analogously $\gamma \notin \bar{O}$. Therefore $f(\gamma)>\gamma$; if $\gamma \in \bar{O}$ then

$$
\operatorname{card} E-\left(P_{f(\gamma)} \cup\{\delta \mid \delta<\gamma\}\right)>1
$$

but as $f(E)=E$ and

$$
\operatorname{card} E-\left(P_{\gamma} \cup\{\delta \mid \delta<\gamma\}\right)=1
$$

this is a contradiction - analogously if $\gamma \in E$. That concludes the proof.
THEOREM 2.5. For each cardinal $\alpha>1$ there exists a strong embedding $\phi: R_{a} \rightarrow g_{a}$ carried by the sum of the identity functor and a constant functor. \notin has the following property:
given a morphism $f:(X, \mathcal{U}) \rightarrow(Y, \mathcal{O})$ in g_{a} which is an image of a morphism in \mathbb{R}_{\checkmark} under ϕ, then f is one-to-one on each set $A \in \mathcal{U}$.

PROOF. $1^{\circ} \alpha$ is finite.
As $R_{c}=\mathscr{I}_{2}$ we may assume $\alpha \geqslant 3$. Let (X, U) and (Y, ϑ) be the rigid α-spaces from Construction 2.2 and Proposition 2.3. Let V be an ($\alpha-2$). point subset of X, disjoint from P (see 2.3). Define

$$
\phi: R_{\Delta} \rightarrow \mathcal{I}_{a} \text { by } \phi(Z, R)=\left(Z \vee Y, \vartheta_{R}\right)
$$

where

$$
\vartheta_{R}=\vartheta \cup\{\{x, y\} \cup V \times\{i\} \mid(x, y) \in R, \quad i=0,1\} ;
$$

if $f:\left(Z_{1}, R_{1}\right) \rightarrow\left(Z_{2}, R_{2}\right)$, then

$$
\phi f=f \text { on } Z_{1}, \quad \phi f=1_{Y} \text { on } Y .
$$

Clearly φ is a faithful functor.
Let us prove that ϕ is full. Let $(M, R),(N, Q)$ be graphs of \mathbb{R}_{Δ}; let

$$
f:\left(M \vee Y, \vartheta_{R}\right) \rightarrow\left(N \vee Y, \vartheta_{Q}\right)
$$

be a morphism in \mathscr{I}_{α}. We shall show that $f(M) \subset N$ and f / M is a compatible mapping.
a) $f(Y) \subset Y$. If, on the contrary, $f(x, i) \in N$ for some $(x, i) \in Y$, choose $T \in \mathcal{I}$ with $x \in T$; as $f(T \times\{i\}) \in \mho_{Q}$ necessarily

$$
f(T \times\{i\})=V \times\{j\} \cup\{\bar{x}, \bar{y}\}
$$

and so for an arbitrary $v \in V$ there exists

$$
y_{1} \in T \text { with } f\left(y_{1}, i\right)=(v, j) .
$$

Choose

$$
T^{\prime} \in \mathcal{U} \text { with } x \in T^{\prime}, y_{1} \notin T^{\prime}
$$

and apply the same reasoning to T^{\prime} - there exists

$$
y_{2} \in T^{\prime} \quad \text { with } f\left(y_{2}, i\right)=\left(v, j^{\prime}\right)
$$

Choose $T^{\prime \prime} \in \mathcal{U}$ with $y_{1}, y_{2} \in T^{\prime \prime}$; then $j=j$ ' because else

$$
f\left(T^{\prime \prime} \times\{i\}\right) \cap(V \times\{k\}) \neq \varnothing, \quad k=0,1 .
$$

Therefore $f\left(y_{1}, i\right)=f\left(y_{2}, i\right)-$ a contradiction with

$$
\operatorname{card} f\left(T^{\prime \prime} \times\{i\}\right)=\operatorname{card}\left(T^{\prime \prime} \times\{i\}\right)
$$

b) $f=1_{Y}$ on Y - follows from the fact that (Y, \mathcal{O}) is rigid.
c) $f(M) \subset N$. Assume on the contrary $f(z) \in Y$ with $z \in M$. Let

$$
z_{1} \in M \quad \text { with } \quad\left(z, z_{1}\right) \in R
$$

then

$$
\left\{z, z_{1}\right\} \cup(V \times\{i\}) \in \mathcal{O}_{R} \quad \text { and } \quad V \cap P=\varnothing ;
$$

we have $f(z) \in X \times\{i\}$ for both $i=0,1$ - a contradiction.
d) /f is compatible. This follows easily from

$$
\left\{z_{1}, z_{2}\right\} \cup V \times\{0\} \in \Theta_{R} \quad \text { for all }\left(z_{1}, z_{2}\right) \in R
$$

$2^{\circ} \alpha$ is infinite.
Let (λ, \mathcal{U}) be the rigid α-space from Construction 2.4. Define

$$
\phi: R_{\llcorner } \rightarrow \mathcal{I}_{a} \text { by } \phi(Z, R)=\left(Z \vee X, \mathcal{O}_{R}\right)
$$

where

$$
\vartheta_{R}=\| \cup\{(D \cap E) \cup\{x, y\} \mid(x, y) \in R\} ;
$$

if $f:\left(Z_{1}, R_{1}\right) \rightarrow\left(Z_{2}, R_{2}\right)$, then

$$
\phi f=f \text { on } Z_{1}, \phi f=1_{X} \text { on } X
$$

Again \downarrow is clearly a faithful functor and we shall prove that it is full. To this end, let

$$
f:\left(M \vee \lambda, \vartheta_{R}\right) \rightarrow\left(N \vee X, \vartheta_{Q}\right)
$$

be a morphism in \bigcup_{α}. Then as $E \in \vartheta_{R}$, clearly $\operatorname{card} f(E)=\alpha$ and so there
exists $J_{E} \subset E$ such that card $J_{E}=\alpha, f$ is oneto-one on J_{E}, $f\left(J_{E}\right) \subset E$ or $f\left(J_{E}\right) \subset \bar{O}$ and $\operatorname{card} E \cdot f\left(J_{E}\right)=\operatorname{card} \bar{O} \cdot f\left(J_{E}\right)=\alpha$.
Analogously $J_{\dot{O}} \subset \bar{O}$.
a) $f(a), f(b) \in\{a, b\}$. Choose $\beta_{1}, \beta_{2} \in J_{E}$; as

$$
J_{o} \cup\left\{\beta_{1}, \beta_{2}, b\right\} \in \mathcal{O}
$$

there is $A \in \mathcal{O}_{Q}$ with

$$
A \subset f\left(J_{\dot{O}} \cup\left\{\beta_{1}, \beta_{2}, b\right\}\right.
$$

clearly $f\left(J_{\dot{O}} \cup\left\{\beta_{1}, \beta_{2}, b\right\}\right)$ meets $\{a, b\}$ - therefore $f(b) \in\{a, b\}$. Analogously $f(a) \in\{a, b\}$.
b) $f(X) \subset X$ (thus $f=1_{X}$ on X). Let $\delta \in E$ with $f(\delta) \in N$; then f is one-to-one on $J_{\dot{O}} \cup\{\delta, \beta, b\}$ for some $\beta \in J_{E}$, but clearly

$$
f\left(J_{\dot{O}} \cup\{\delta, \beta, b\}\right) \notin \mathcal{O}_{Q}
$$

- a contradiction. Analogously $\delta \in \bar{O}$ - therefore

$$
f(E \cup \bar{O}) \subset X \text { and so } f(X) \subset X
$$

c) $f(M) \subset N$. Assume that, on the contrary, there exists $z \in M$ with $f(z) \in X$. Let $z_{1} \in M$ with $\left(z, z_{1}\right) \in R$; then as

$$
\left\{z, z_{1}\right\} \cup(D \cap E) \in \mathcal{O}_{R}
$$

there is

$$
T \in \mho_{Q} \text { with } T \subset f\left(\left\{z, z_{1}\right\} \cup(D \cap E)\right)
$$

As $f(z) \in X$, clearly $T \in \mathcal{U}$ - an evident contradiction.
d) f is compatible. This follows easily from the construction of Q_{R}, \mathscr{O}_{0}. Thus we found a full embedding $\phi: \mathbb{R}_{\alpha} \rightarrow \mathscr{I}_{\alpha}$ for all $\alpha>1$; a straightforward verification of the required properties of ϕ is left to the reader.

3

CONVENTION. Let \mathcal{F} be a filter on a set V. Put

$$
P \mathcal{F}=\cap_{A \in \mathcal{F}}^{\cap} A, \quad|\mathcal{F}|=\min _{A \in \mathcal{F}} c \operatorname{ard}(A \cdot P \mathcal{F})
$$

Given a mapping $f: V \rightarrow X$, let $/(\mathcal{F})$ be the filter on X with

$$
f(\mathscr{F})=\{B \subset X \mid f(A) \subset B \quad \text { for some } A \in \mathcal{F}\}
$$

For each set X put

$$
\mathcal{F}(X)=\{i(\mathcal{F} / Z) \mid Z \in \mathcal{F}, \quad i: Z \rightarrow X \text { is a one-to-one mapping }\}
$$

where

$$
\mathcal{F} / Z=\{A \cap Z \mid A \in \mathscr{F}\} .
$$

definition. Let \mathcal{G} be a filter on a set V. Denote by $\mathcal{G}^{\mathcal{S}}$ the concrete category whose objects are couples (X, \mathcal{U}) where $\mathcal{U} \subset \mathcal{G}(X)$, and whose morphisms f from (X, \mathcal{U}) to (Y, \mathcal{O}) are mappings $f: X \rightarrow Y$ such that:
1^{10} for each $\mathcal{H} \in \mathcal{U}$ there exists $\mathcal{K} \in \mathcal{O}$ with $f(\mathcal{H}) \subset \mathcal{K}$;
2° if f is one-to-one on some $A \in \mathcal{H} \in \mathcal{U}$, then $f(\mathcal{H}) \in \mathcal{O}$.
note. $\mathscr{G}=\mathscr{g}_{a}$ if \mathscr{G} is a filter with

$$
P \mathscr{G} \in \mathscr{G} \text { and } \operatorname{card} P \mathscr{G}=\alpha
$$

Therefore if

$$
P \mathcal{G} \in 乌 \text { and } \operatorname{card} P \varrho>1
$$

there is a strong embedding of $\mathbb{R}_{\&}$ to $\mathscr{G}^{\mathscr{S}}$ - see Theorem 2.5.
THEOREM 3.1. Let \mathcal{G} be a filter such that card $P \mathcal{G}>1$. Then there exists a strong embedding of R into g g.

PROOF. To prove the theorem we shall construct a strong embedding of \mathcal{R}_{α} into $\mathcal{G}^{\mathscr{S}}$ (see Proposition 1.2) where $\alpha=|\mathscr{G}|$. Let $\phi: R_{\Omega} \rightarrow \mathcal{J}_{\beta}$ be the strong embedding constructed in Theorem 2.5,

$$
\beta=\operatorname{card} P \varrho, \quad \phi(Z, R)=\left(\bar{Z}, \mathbb{C}_{R}\right) .
$$

Put $\psi(Z, R)=\left(\bar{Z}, \mathcal{U}_{R}\right)$, where

$$
\mathcal{U}_{R}=\left\{\mathcal{F} \in \mathscr{G}(\bar{Z}) \mid P \mathcal{F} \in \mathscr{U}_{R} \quad \text { and }(\alpha \cup p \mathcal{F}) \in \mathcal{F}\right\}
$$

and if f is a morphism put $\psi f=\phi f$. Then ψ is easily seen to be a faithful functor. To prove that ψ is full, assume that

$$
g:\left(\dot{\bar{Z}}, \mathcal{U}_{R}\right)-\left(\bar{Z}^{\prime}, \mathcal{U}_{Q}\right) \text { in } g G^{\mathscr{S}}
$$

we shall show that g is a morphism from $\left(\bar{Z}, \bar{C}_{R}\right)$ to $\left(\bar{Z}^{\prime}, \bar{Q}_{Q}\right)$ in \mathscr{G}_{β}. Then ψ is full because ϕ is full and $\psi=\phi$ on morphisms.

Let $U \in \mathscr{O}_{R}$; we have to show that $g(U) \in \mathcal{U}_{Q}$. If $\alpha>\beta$ then there exists $Y \subset \alpha$ with card $Y=\alpha$ such that g is one-to-one on Y. Denote by T the underlying set of the filter \mathcal{G}. Let $b: T \rightarrow \bar{Z}$ be a. one-to-one mapping with

$$
b(T)=U \cup Y \text { and } b(P \varrho)=U
$$

Let $\mathcal{H} \in \mathcal{U}_{R}$ with

$$
P \mathcal{H}=U \text { and } U \cup Y \in \mathcal{H} .
$$

As there exists $\mathcal{F} \in \mathcal{U}_{Q}$ with

$$
\mathcal{F} \supset\left\{V \subset \overline{Z^{\prime}} \mid g\left(V_{1}\right) \subset V \text { for some } V_{1} \in \mathcal{H}\right\}
$$

clearly $g(U) \supset P \mathcal{F} \in \mathcal{U}_{Q}$. If $\alpha \leqslant \beta$ then we prove that again g is one-toone on a set $Y \subset \alpha$ with card $Y=\alpha$ and proceed analogously as above. Assume the contrary. Then $\operatorname{cardg}(\alpha)<\alpha$. Let $E \subset X_{\beta}$ as in Construction 2.4. As $\operatorname{card}(\alpha \cup F) \geqslant \beta$ (take $\mathcal{H} \in \mathscr{U}_{R}$ with

$$
P \mathcal{H}=E \quad \text { and } \quad E \cup \alpha \in \mathcal{H}
$$

and proceed with $g(\mathcal{H})$ as above), there exists $S_{1} \subset E$ with

$$
\operatorname{card} S_{1}=\operatorname{card} E \cdot S_{1}=\beta
$$

g is one-to-one on S_{1} and either

$$
g\left(S_{1}\right) \subset \alpha \text { or } g\left(S_{1}\right) \cap \alpha=\varnothing
$$

Clearly there exist $k_{1}, k_{2} \in \bar{O}$ such that g is one-to-one on

$$
C=S_{1} \cup\left\{k_{1}, k_{2}, a\right\} \in \mathscr{O}_{R}
$$

Let $K \in \mathbb{U}_{R}$ with $P K=C$. Then there exists $\mathcal{L} \in \mathcal{U}_{Q}$ such that for each $B=\mathbb{K}$ we have $g(B) \in \mathscr{L}$. That is clearly impossible if $g\left(S_{1}\right) \cap \alpha=\varnothing$. As $\therefore \in \|_{Q}$,

$$
\operatorname{card} U \cap\left(\overline{Z^{\prime}} \cdot \alpha\right)=\beta \geqslant \alpha \text { for each } U \in \mathcal{L}
$$

- a contradiction.

NOTE 3.2. The embedding $\psi: \mathbb{R}_{\alpha} \rightarrow g$ defined above has the property that, if $f:(X, Y) \rightarrow(Y, Z))$ is a morphism in \mathfrak{G} which lies in the image of ψ;
then for each $\mathcal{H} \in \mathcal{U}$ there exists $A \in \mathcal{H}$ such that f is one-to-one on A. This follows from the above proof.

We shall now investigate $g^{\mathcal{G}}$ where \mathcal{G} is a filter on a set V such that

$$
\operatorname{card} P \mathscr{G}=1, \quad \operatorname{card} A=\operatorname{card} V \text { for each } A \in \mathscr{G} .
$$

Write

$$
\mathcal{G}^{*}=\{A \cdot P \mathscr{G} \mid A \in \mathcal{G}\}
$$

and notice that

$$
\operatorname{card}(X)=\operatorname{card}(*(X)=\operatorname{card}(Y)
$$

for arbitrary sets $X \subset Y$ with card $X=$ card Y.
definition. A system \mathfrak{H} of subsets of a set X is said to be α-almost disjoint if

$$
\operatorname{card} A=\alpha \quad \text { for each } A \in \mathfrak{Z},
$$

while

$$
\operatorname{card} A \cap B<\alpha \quad \text { for each } A, B \in \mathfrak{M}, A \neq B
$$

theorem 3.4. For each cardinal a there exists an a-almost disjoint sys. tem $\mathfrak{l l}$ on a set X such that card $\mathfrak{A}=\operatorname{card} 2^{X}$.

Proof. Define cardinals β_{i}, where i is an ordinal:

$$
\beta_{0}=\aleph_{0}, \quad \beta_{i+1}=2^{\beta_{i}}, \quad \beta_{i}=\sup _{i>j} \beta_{j} \text { if } i \text { is a limit ordinal. }
$$

Put

$$
\mathscr{B}=\left\{U \subset \beta_{a} \mid U \subset \delta \quad \text { for some } \quad \delta<\beta_{a}\right\} .
$$

Clearly card $B=\beta_{a}$. It is easy to see that $\left(\beta_{a}\right)^{\alpha}=2^{\beta}$ so that there exist $2^{\beta_{\alpha}}$ subsets L of β_{α} whose power is α, i.e. $2^{\beta_{\alpha}}$ monotone mappings

$$
f: \alpha \rightarrow \beta_{\alpha} \quad\left(\text { put } f=f_{L} \quad \text { if } f(\alpha)=L\right)
$$

Put for each L :

$$
T(L)=\left\{f_{L}(\delta) \mid \delta<\alpha\right\} \subset B
$$

Then

$$
\mathfrak{l}=\left\{T(L) \mid L \subset \beta_{\alpha}, \operatorname{card} L=\alpha\right\}
$$

is an α-almost disjoint system : clearly card $T(L)=\alpha$ and if $L_{1} \neq L_{2}$, then $\operatorname{card}\left(T\left(L_{1}\right) \cap T\left(L_{2}\right)\right)<\alpha$.
Clearly card $2 l=2^{\beta_{a}}$.
COROLLARY 3.5. For each filter (V, \mathcal{S}) such that

$$
\operatorname{card} V=\operatorname{card} A=\alpha \geqslant \aleph_{0} \quad \text { for each } A \in \mathscr{S}
$$

there exists a set X with $\operatorname{card} \varrho(X)=\operatorname{card} 2^{X}$.
proof. Let X be a set with an α-almost disjoint system on X such that

$$
\operatorname{card} \mathfrak{N}=\operatorname{card} 2^{X}
$$

for each $T \in \mathfrak{Z}$, let $f_{T}: V \rightarrow X$ be a one-to-one mapping with $f_{T}(V)=T$. Then clearly $T_{1}, T_{2} \in \mathfrak{\lambda}, T_{1} \neq T_{2}$ implies $f_{T_{1}}(\mathcal{G}) \neq f_{T_{2}}$ ($\left.\mathcal{G}\right)$.

CONSTRUCTION 3.6. We are going to construct for each filter ($V, \mathcal{S}_{\text {) }}$) a rigid object (X, O) of $G^{\mathcal{G}} . X$ is a set with

$$
\operatorname{card} \mathscr{G}(X)=\operatorname{card} 2^{X}
$$

Put $\alpha=$ card V. First of all we shall introduce the following notation (each cardinal is considered to be the well-ordered set of all ordinals of smaller type) :

$$
\widetilde{H}=\{Z \subset X \mid \operatorname{card} Z=\alpha\}
$$

- assume that \overparen{H} is well-ordered,

$$
\tilde{H}=\left\{Z_{i} \mid i \in \operatorname{card} \tilde{H}\right\}
$$

Given $f: X \rightarrow X$, put

$$
\begin{gathered}
\left.W^{\prime} f\right)=\{x \in X \mid f(x) \neq x\}, \\
\mathfrak{T}=\{f: X \rightarrow X \mid \operatorname{card} W(f) \geqslant a\}
\end{gathered}
$$

- assume that \mathfrak{T} is well-ordered,

$$
\mathfrak{T}=\left\{f_{j} \mid j \in \operatorname{card} \mathfrak{T}\right\} .
$$

Choose distinct $a, b \in X$ and put

$$
\mathfrak{T}=\{f: x \rightarrow x \mid f \notin \mathcal{T} \text { and } W(f) \cdot\{a, b\} \neq \varnothing\}
$$

- assume that \mathscr{T} is well-ordered,

$$
\bar{T}=\left\{g_{j} \mid j \in \operatorname{card} \bar{T}\right\} .
$$

We are going to define

$$
\mathfrak{u}_{\beta} \subset \mathscr{S}^{*}(x), \quad \vartheta_{\beta} \subset \mathscr{G}(x)
$$

by transfinite induction:

$$
\mathcal{O}_{-1}=\varnothing, \mathcal{U}_{-1}=\left\{\mathcal{H}_{1}^{*}, \mathcal{H}_{2}^{*}, \mathcal{H}_{3}^{*}\right\}
$$

where

$$
\mathcal{H}_{1}^{*}, \mathcal{H}_{2}^{*}, \mathcal{H}_{3}^{*} \in \mathscr{G}^{*}(X) \quad \text { are distinct. }
$$

Now assume that $\mathrm{U}_{\gamma}, \mathcal{O}_{\gamma}$ are defined for all $\gamma<\beta$.
a) If card $\beta \leqslant \operatorname{card} \hat{H}$, then we may choose $\mathbb{Q}_{\beta} \in \mathcal{G}\left(Z_{\beta} \cup\{a\}\right)$ with

$$
P \mathbb{Q}_{\beta}=\{a\} \quad \text { and } \mathbb{Q}_{\beta}^{*} \notin \mathcal{U}_{\gamma} \text { for any } \gamma<\beta .
$$

b) Either $\operatorname{card} f_{\beta}\left(W\left(f_{\beta}\right)\right)<\alpha$ then choose $\mathfrak{B}_{\beta} \in \mathscr{G}\left(W\left(f_{\beta}\right) \cup\{b\}\right)$ with

$$
P \mathfrak{B}_{\beta}=\{b\} \text { and } \mathscr{B}_{\beta}^{*} \notin \underset{\gamma<\beta}{\cup} \mathcal{U}_{\gamma} \cup\left\{\mathbb{Q}_{\beta}^{*}\right\},
$$

or $\operatorname{card} f_{\beta}\left(W\left(f_{\beta}\right)\right) \geqslant \alpha$ then use the theorem on mappings $[6,7]$ to obtain a decomposition $X=X_{0} \cup X_{1} \cup X_{2} \cup X_{3}$ with

$$
x_{0}=X \cdot W\left(f_{\beta}\right) \text { and } f_{\beta}\left(X_{t}\right) \cap X_{t}=\varnothing, t=1,2,3 .
$$

Choose t with $\operatorname{card} f_{\beta}\left(X_{t}\right) \geqslant \alpha$. Then there is

$$
Y \subset X_{t} \quad \text { with card } Y=\alpha
$$

such that I is one-to-one on Y. Choose

$$
\begin{gathered}
\mathfrak{B}_{\beta} \in \mathscr{G}(Y \cup\{b\}) \quad \text { with } P \mathscr{B}_{\beta}=\{b\} \text { and } \\
\mathfrak{B}_{\mathcal{B}}^{*} \notin \underset{\gamma<\beta}{\cup} U_{\gamma} \cup\left\{\mathbb{Q}_{\beta}^{*}\right\} \quad \text { and } f_{\beta}\left(\mathscr{B}_{\beta}\right)^{*} \notin \underset{\gamma<\beta}{\cup} U_{\gamma} \cup\left\{\mathbb{Q}_{\beta}^{*}\right\} .
\end{gathered}
$$

c) If $\operatorname{card} \beta \leqslant \operatorname{card} \bar{T}$, choose

$$
\mathfrak{C}_{\beta} \in \mathscr{G}\left(\left(x \cdot W\left(f_{\beta}\right)\right) \cup\{t\}\right), P \mathcal{C}_{\beta}=\{t\},
$$

where $t \in W\left(f_{\mathcal{B}}\right)-\{a, b\}$, such that

$$
\mathfrak{C}_{\beta}^{*} \notin \underset{\gamma<\beta}{\cup} U_{\gamma} \cup\left\{\mathbb{Q}_{\beta}^{*}, \mathscr{B}_{\beta}^{*}, f_{\beta}\left(\mathscr{B}_{\beta}\right)^{*}\right\}
$$

Put

$$
\begin{aligned}
& \mathcal{U}_{\beta}=\underset{\gamma<\beta}{\cup} \mathcal{U}_{\gamma} \cup\left\{\mathfrak{Q}_{\beta^{*}}^{*} \mathfrak{B}_{\beta}^{*}, \mathcal{C}_{\beta}^{*}, f_{\beta}\left(\mathfrak{B}_{\beta}\right)^{*}\right\}, \\
& \bigoplus_{\beta}=\bigcup_{\gamma<\beta}^{\cup} \mho_{\gamma} \cup\left\{\mathfrak{Q}_{\beta}, \mathfrak{B}_{\beta}, \mathcal{C}_{\beta}\right\}
\end{aligned}
$$

(if \mathbb{Q}_{β} was not chosen, then the definition of $\mathcal{U}_{\beta}, \mathcal{O}_{\beta}$ is the same, only without \mathbb{X}_{β}, analogously \mathcal{C}_{β}). The object we construct is

$$
(X, \vartheta), \text { with } \vartheta=\bigcup_{\beta \in c a r d} X \vartheta_{\beta} .
$$

We are going to show that (X, \mathcal{O}) is rigid. Let $f:(X, \mathcal{O}) \rightarrow(X, \mathcal{O})$.

- If $f \in \mathcal{T}, f=f_{j}$, then, since clearly for each

$$
A \in ß_{j}, \quad \operatorname{card} f_{j}(A) \geqslant \alpha,
$$

f is one-to-one on some set which belongs to \mathbb{B}_{j}, therefore $\left.f\left(\mathcal{B}_{j}\right) \in(\urcorner\right)$. It is quite evident from the construction that $f_{j}\left(\mathcal{B}_{j}\right) \notin \mathcal{O}$.

- If $f \in \mathcal{T}, f=g_{j}$, then $f=1$ on some $A \cdot P \mathcal{C}_{j}, A \in \mathcal{C}_{j}$. Then f is one-to-one on some $A^{\prime} \in \mathcal{C}_{j}$, therefore $f\left(\mathcal{C}_{j}\right) \in \mathcal{O}$. This is a contradiction with:

$$
f\left(P \mathcal{C}_{i}\right) \neq P \mathcal{C}_{j} \text { and } f\left(\mathcal{C}_{i}^{*}\right)=\mathcal{C}_{i}^{*}
$$

- Finally if $f \nsubseteq \mathscr{T} \cup \mathcal{T}$, then $W(f) \subset\{a, b\}$. Let $a \in W(f)$, let

$$
\mathcal{H} \in \mathcal{O} \text { with } P \mathcal{H}=\{a\} .
$$

Then $f(\mathcal{H}) \in \mathcal{O}$ and we get a contradiction as above. Analogously if $b \in W(f)$. Therefore $W(f)=\varnothing$, i. e. $f=1_{X}$.
construction 3.7. Let (X, \mathcal{O}) be the object of \mathscr{G} defined above. Put: $T=(X \cup\{c, d\})$. Define objects of $\mathcal{G},(T, \mathfrak{C})$ and (T, \mathscr{O}) : choose filters $\mathscr{F}_{1}, \mathcal{F}_{2}$ on T with

$$
\mathcal{F}_{1}^{*}=\mathcal{H}_{1}^{*}, \quad \mathcal{F}_{2}^{*}=\mathcal{H}_{2}^{*}\left(\text { see } \mathcal{U}_{\cdot 1}\right), \quad P \mathcal{F}_{1}=\{c\}, \quad P \mathcal{F}_{2}=\{d\} ;
$$

put $\mathcal{W}=\mho \cup\left\{\mathcal{F}_{1}, \mathcal{F}_{2}\right\}$; choose a filter \mathcal{F}_{3} on T with

$$
\mathcal{F}_{3}^{*}=\mathcal{H}_{3}^{*} \text { and } P \mathcal{F}_{3}=\{a\} ;
$$

put $\mathcal{O}^{\prime}=\mathscr{O} \cup\left\{\mathcal{F}_{3}\right\}$. Analogously as above we can prove that $1^{\circ}\left(T, W^{\circ}\right)$ and (T, \mathscr{O}°) are rigid;
2° there is no morphism from ($T,\left(0^{\circ}\right)$ to! $T,\left(0^{\circ}\right)$.
THEOREM 3.8. There exists a strong embedding from \mathcal{R} into \mathcal{G}.
Proof. Given a graph (H, R), put $\tilde{H}=H \vee(X \times H \times H)$ and let ($\widetilde{H}, \widetilde{R}$) be an object of $g^{乌}$ such that

$$
\widetilde{R}=\overparen{O} \text { on }\left\{k_{1}, k_{2}\right\} \vee\left(X \times\left\{\left(k_{1}, k_{2}\right)\right\}\right) \text { where }\left(k_{1}, k_{2}\right) \in H \times H \cdot R
$$

and

$$
\widetilde{R}=\mathscr{O}^{\prime} \text { on this set if }\left(k_{1}, k_{2}\right) \in R
$$

(more precisely, for $\left(k_{1}, k_{2}\right) \in H \times H$ denote $\phi_{k_{1}, k_{2}}: T \rightarrow \tilde{H}$,

$$
\begin{gathered}
\phi_{k_{1}, k_{2}}(c)=k_{1}, \quad \phi_{k_{1}, k_{2}}(d)=k_{2} \\
\text { and } \quad \phi_{k_{1}, k_{2}}(x)=\left(x, k_{1}, k_{2}\right) \quad \text { if } \quad x \in X,
\end{gathered}
$$

then

$$
\left.\widetilde{R}=\left\{\phi_{r}(\mathcal{K}) \mid r \in H \times H, \mathcal{K} \in \mathscr{U}\right\} \cup\left\{\phi_{r}\left(\mathcal{F}_{3}\right) \mid r \in R\right\}\right) .
$$

Given a morphism $f:(H, R) \rightarrow(K, S)$ in R, let

$$
\tilde{f}:(\tilde{H}, \widetilde{R}) \rightarrow(\tilde{K}, \tilde{S}), \quad \tilde{f}=f \vee\left(1_{X} \times f \times f\right)
$$

We shall prove that this defines a strong embedding from \mathfrak{R} to \mathscr{G}. The only fact whose verification is not routine is that this is a full functor. Let $g:(\overparen{\Pi}, \widehat{R}) \rightarrow(\widetilde{K}, \tilde{S})$ be a morphism in \mathscr{G}. To prove that $g=\tilde{f}$ for some f, it is enough to show that for each $\left(h_{1}, h_{2}\right) \in H \times H$ there exists

$$
\begin{gathered}
\left(k_{1}, k_{2}\right) \in K \times K \text { with } \\
\left.g!\left(X \times\left\{\left(b_{1}, b_{2}\right)\right\}\right) \cup\left\{b_{1}, b_{2}\right\}\right) \subset\left(X \times\left\{\left(k_{1}, k_{2}\right)\right\}\right) \cup\left\{k_{1}, k_{2}\right\}
\end{gathered}
$$

- then the existence of f follows from the properties of $\left(T, T_{O}\right)$ and ($\left.T, \mathscr{O}^{\circ}\right)$. Assume that on the contrary there exists $\left(b_{1}, b_{2}\right) \in H \times H$ such that for no $\left(k_{1}, k_{2}\right) \in K \times K$,

$$
\left.g\left(\left(X \times\left\{!b_{1}, b_{2}\right)\right\}\right) \cup\left\{b_{1}, b_{2}\right\}\right) \subset\left(X \times\left\{\left(k_{1}, k_{2}\right)\right\}\right) \cup\left\{k_{1}, k_{2}\right\}
$$

a) $g\left(a, b_{1}, b_{2}\right) \in X \times K \times K$. Denote $\left(x, k_{1}, k_{2}\right)=g\left(a, b_{1}, b_{2}\right)$. Let us show that card $A<\alpha$ where

$$
A=X \times\left\{\left(b_{1}, h_{2}\right)\right\}-g^{-1}\left(X \times\left\{\left(k_{1}, k_{2}\right)\right\}\right) ;
$$

if not, $\operatorname{card} f(A) \geqslant \alpha$ as we can choose a filter

$$
\mathcal{F} \in \widetilde{R} \quad \text { with } A \cup\left\{\left(a, b_{1}, b_{2}\right)\right\} \in \mathcal{F} \text {; }
$$

therefore there exists a set A_{1} with card $A_{1}=\alpha$ such that f is one-to-one on A_{1}; choose a filter

$$
\mathcal{F}_{1} \in \widetilde{R} \quad \text { with } \quad A_{1} \cup\left\{\left(a, b_{1}, b_{2}\right)\right\} \in \mathcal{F}_{1} .
$$

As $f\left(\mathcal{F}_{1}\right) \in \tilde{S}$ we have a contradiction. Therefore $\operatorname{card} A<\alpha$. There exists

$$
y \in X \quad \text { with } g\left(y, b_{1}, b_{2}\right) \notin X \times\left\{\left(k_{1}, k_{2}\right)\right\} .
$$

Choose $\mathfrak{E} \in \mathcal{O}$ with $P \mathcal{E}=\{y\}$; then $\mathcal{E} \times\left\{\left(b_{1}, b_{2}\right)\right\} \in \widetilde{R}$ and so there exists

$$
\mathfrak{D} \in \widetilde{S} \text { with } \mathscr{D} \subset g\left(\tilde{E} \times\left\{\left(b_{1}, b_{2}\right)\right\}\right)
$$

Therefore there exists

$$
\mathcal{E}^{\prime} \in \mathcal{O} \quad \text { with } \mathscr{D}=\mathcal{E}^{\prime} \times\left\{\left(k_{1}, k_{2}\right)\right\}
$$

Let $g^{*}: X \rightarrow X$,

$$
g^{*} \neq 1_{X} \quad \text { and if } g\left(x, b_{1}, b_{2}\right)=\left(x^{\prime}, k_{1}, k_{2}\right) \text { then } g^{*}(x)=x^{\prime}
$$

then $g^{*}:(X, \mho) \rightarrow(X, \mathcal{O})$, a contradiction with $g^{*} \neq 1_{X}$. Analogously

$$
g\left(\left\{b_{1}, b_{2}\right\}\right) \subset\left\{k_{1}, k_{2}\right\} .
$$

b) $g\left(a, b_{1}, b_{2}\right) \in K$. Let

$$
\tilde{E} \in \widetilde{R} \text { with } P \mathcal{E}=\left\{\left(a, b_{1}, b_{2}\right)\right\} .
$$

There exists $\mathcal{E}_{1} \in \mathscr{S}$ with $\mathcal{E}_{1} \subset g(\mathcal{G})$, in particular there exists

$$
X_{1} \subset X \text { with card } X_{1}=a
$$

and such that g is one-to-one on $X_{1} \times\left\{\left(h_{1}, h_{2}\right)\right\}$. Then $X_{1} \subset \tilde{I}$ (see the beginning of Construction 3.6) and so there exists $\mathcal{E}^{\prime} \in \widetilde{R}$ which contains $X_{1} \times\left\{\left(b_{1}, b_{2}\right)\right\}$ and with $P \mathcal{E}^{\prime}=\left\{a, b_{1}, h_{2}\right\}$. We have $g\left(\mathcal{E}^{\prime}\right) \in \tilde{S}$. Let $X_{2} \subset X_{1}$ with

$$
g\left(X_{2} \times\left\{\left(b_{1}, b_{2}\right)\right\}\right) \subset X \times\left\{\left(k_{1}, k_{2}\right)\right\} \quad \text { for some } k_{1}, k_{2} \in K
$$

Denote $k=g\left(a, b_{1}, b_{2}\right)$; then $k \in\left\{k_{1}, k_{2}\right\}$; as at most two filters in \widetilde{S} contain $\{k\} \cup g\left(X_{2} \times\left\{\left(b_{1}, b_{2}\right)\right\}\right)$, there clearly exists a set

$$
Z \subset g\left(X_{2} \times\left\{\left(b_{1}, b_{2}\right)\right\}\right) \quad \text { with } \quad \operatorname{card} Z=a
$$

and such that no filter in \mathfrak{S} contains $Z \cup\{k\}$ and has $\{k\}$ for its meet. Put $X_{3}=X_{2} \cap g^{-1}(Z)$; then $\operatorname{card} X_{3}=\alpha$ and g is one-to-one on X_{3}. Then there exists $\mathcal{F} \in \widetilde{R}$ which contains $\left(X_{3} \cup\{a\}\right) \times\left\{\left(b_{1}, b_{2}\right)\right\}$ and with

$$
P \mathcal{F}=\left\{\left(a, b_{1}, b_{2}\right)\right\} .
$$

But then

$$
g(\mathcal{F}) \in \tilde{S}, \quad P g(\mathcal{F})=\{k\} \text { and } Z \cup\{k\} \in g(\mathcal{F})
$$

- a contradiction.
note 3.9. The embedding $\psi: \mathcal{R} \rightarrow \mathscr{G}$ defined above has the property that, if $f:(X, \mathcal{U}) \rightarrow(Y, \mho)$ is a morphism in \mathcal{G} which lies in the image of $\psi^{\prime \prime}$, then for each $\mathcal{H} \in \mathcal{U}$ there exists $A \in \mathcal{H}$ such that f is one-to-one on . 1 . This follows from the above proof.

4

Let F be a set functor. Denote by $S(F)$ the category whose objects are

$$
(X, H) \text { where } X \text { is a set, } H \subset F X,
$$

and whose morphisms $f:(X, H) \rightarrow(Y, K)$ are mappings

$$
f: X \rightarrow Y \text { with } F f(H) \subset K
$$

definition. For each set functor F and each $x \in F X, X \neq \varnothing$, denote by $\mathcal{F}_{F}^{X}(x)$ the filter on X of all sets $A \subset X$ such that $x \in F j(F A)$, where $j: A \rightarrow X$ is the inclusion. $(\exp X$ is a trivial filter on X.) See $[14,15]$.
lemma 4.1. For any set functor F and any $f: X \rightarrow Y, x \in F X$,

$$
f\left(\mathcal{F}_{F}^{X}(x)\right) \subset \mathcal{F}_{F}^{Y}(F f(x))
$$

and if f is one-to-one on some $A \in \mathcal{F}_{F}^{X}(x)$, then

$$
f\left(\mathcal{F}_{F}^{X}(x)\right)=\mathcal{F}_{F}^{Y}(F f(x))
$$

Proof: see [8].

Denote by \mathcal{S} a fixed full subcategory of \mathcal{G} with the property that, if $f:(X, \mathcal{U}) \rightarrow(Y, \vartheta)$ is one of its morphisms, then for each $\mathcal{H} \in \mathcal{U}, f$ is one-to-one on some $Z \in \mathcal{H}$.

TheOREME 4.2. For each functor F such that there exists $x \in F X$ for which $\mathcal{F}_{F}^{X}(x)$ is neither a free filter nor an ultrafilter there exists a strong embedding from R into $S(F)$.
proof. Define for each $(X, \mathcal{U}) \in \mathcal{S}$:

$$
\bar{U} \subset F X, \quad \bar{U}=\left\{x \in F X \mid \mathcal{F}_{F}^{X}(x) \in \mathcal{U}\right\}
$$

then the strong embedding from δ to $S(F)$ is

$$
(X, \mathcal{U}) \rightarrow(X, \bar{U}), \quad f \mapsto f
$$

this follows from the property of \mathcal{S} and from Lemma 4.1.
NOTE 4.3. Let F be a set functor. If $\mathcal{F}_{F}^{X}\left(x_{0}\right)$ is a fixed ultrafilter for some $x_{0} \in F X$, then it is a fixed ultrafilter for each $F f\left(x_{0}\right) \in F Y, f: X \rightarrow Y$.

THEOREM 4.4. If F is such a set functor that each $\mathcal{F}_{F}^{X}(x)$ is either a free filter or an ultrafilter, then $S(F)$ does not contain a rigid object whose underlying set has power bigger than card $2^{F 1}$. In particular, $S(F)$ does not contain more than card $2^{F\left(2^{F 1}\right)}$ rigid objects and so it is not binding.
proof. In fact, no object (X, R) with $\operatorname{card} X>\operatorname{card}(\exp F 1)$ is rigid. Really, put, for each $x \in X$,

$$
p_{x}: 1 \rightarrow X \text { with } p_{x}(0)=x
$$

then as card $X>\operatorname{card}(\exp F 1)$, there exist distinct

$$
x_{1}, x_{2} \in X \quad \text { with }\left(F p_{x_{1}}\right)^{-1}(R)=\left(F p_{x_{2}}\right)^{-1}(R)
$$

we shall prove that the transposition of x_{1} and x_{2} is a morphism

$$
f:(X, R) \rightarrow(X, R)
$$

Let $1 \cdot \in R$. If $P \mathcal{F}_{F}^{X}(\imath)$ contains neither x_{1} nor x_{2}, then

$$
x \cdot\left\{x_{1}, x_{2}\right\} \in \mathscr{F}_{F}^{X}(v) \quad \text { and so } F f(v)=v .
$$

If $P \mathcal{F}_{F}^{X}(v)=\left\{x_{1}\right\}$, then there exists

$$
u \in\left(F p_{x_{1}}\right)^{-1}(R) \text { with } F p_{x_{1}}(u)=v
$$

Then $F p_{x_{2}}(u) \in R$ and so $f \circ p_{x_{1}}=p_{x_{2}}$; we have $F f(1) \in R$. Analogously for $P \mathcal{F}_{F}^{X}(v)=\left\{x_{2}\right\}$. That proves the theorem.

A set functor F is said to preserve unions of pairs if

$$
F(X \cup Y)=F j_{X}(X) \cup F j_{Y}(Y)
$$

for arbitrary sets X, Y where

$$
j_{X}: X \rightarrow X \cup Y, \quad j_{Y}: Y \rightarrow X \cup Y
$$

are the inclusions. F is said to preserve unions of a set witl a finite set if

$$
F(X \cup Y)=F j_{X}(X) \cup F j_{Y}(Y)
$$

for arbitrary sets X, Y one of which is finite. Denote by K_{M} the functor

$$
K_{M} X=X \times M, \quad K_{M} f=f \times 1_{M}
$$

A transposition pair (r, f) on a set X is a transposition $r: X \rightarrow X$ (i. e.

$$
r(a)=b, \quad r(b)=a \quad \text { and } \quad r(x)=x \text { if } x \neq a, b)
$$

and a mapping $f: X \rightarrow X$ with

$$
f(x)=x \quad \text { iff } \quad x=a \quad \text { or } x=b
$$

MAIN THEOREM 4.5. Given a set functor $F, S(F)$ is binding if and only if F does not preserve unions of a set with a finite set.

PROOF. We proved above that $S(F)$ is binding iff some $\mathcal{F}_{F}^{X}(x)$ is neither a free filter nor an ultrafilter. Now if

$$
x \in F(A \cup B) \cdot\left(F j_{A}(F A) \cup F j_{B}(F B)\right)
$$

where A is finite and

$$
j_{A}: A \rightarrow A \cup B, \quad j_{B}: B \rightarrow A \cup B
$$

are inclusions, then $\mathcal{F}_{F}^{X}(x)(X=A \cup B)$ is not an ultrafilter since

$$
A \notin \mathcal{F}_{F}^{X}(x), \quad B \notin \mathcal{F}_{F}^{X}(x)
$$

and $\mathcal{F}_{F}^{X}(x)$ is not free since $A \cup B \in \mathcal{F}_{F}^{X}(x), A$ finite, would else imply $B \in \mathcal{F}_{F}^{X}(x)$. If, conversely, $\mathcal{F}_{F}^{X}(x)$ is not free (i.e. $P \mathcal{F}_{F}^{X}(x) \neq \emptyset$) and it
is not an ultrafilter, then we choose $a \in P \mathcal{F}_{F}^{X}(x)$ and put

$$
A=\{a\} \text { and } B=X \cdot\{a\}:
$$

$x \in F(A \cup B)$ while $x \notin F j_{A}(F A) \cup F j_{B}(F B)$.
COROLLARY 4.6. The following conditions on a set functor F are equivalent:
1° a) R is strongly embeddable into $S(F)$;
b) $S(F)$ is binding;
c) $S(F)$ contains more than card $2^{F\left(2^{F 1}\right)}$ rigid objects;
d) $S(F)$ contains a rigid object on a set with power $>$ card $2^{F 1}$.
2° a) F does not preserve unions of a set with a finite set;
h) F does not preserve unions of a set with a one-point set;
c) $\mathcal{F}_{F}^{X}(x)$ is neither an ultrafilter nor a free filter for some $x \in F X$;
d) There exists a transposition pair (r, f) on a set X such that for some $z \in F X$ hoth $F f(z) \neq z$ and $F r(z) \neq z$;
e) There exists a cardinal a such that, for each transposition pair (r,f) on a set X with pouer at least α, there exists $z \in F X$ with both

$$
\operatorname{Fr}(z) \neq z \quad \text { and } \quad F f(z) \neq z
$$

PROOF. The equivalence of conditions $1 a, 1 b, 1 c, 1 d, 2 a, 2 c$ follows from above.
$2 a \Longleftrightarrow 2 b$ is easy.
$I_{c} \Rightarrow 2_{e}$. Let $x \in F X$ such that $\mathcal{F}_{F}^{X}(x)$ is neither free nor an ultrafilter. Let card $Y \geqslant$ card X, let $r: Y \rightarrow Y$ be a transposition of $a, b \in Y$ and

$$
f: Y \rightarrow Y \text { with } f(t) \neq t \text { iff } t \neq a, b
$$

There exists $Y^{\prime} \subset Y$ with

$$
\text { card } Y^{\prime}=\operatorname{card} Y \text { and } f\left(Y^{\prime}\right) \cap Y^{\prime}=\varnothing
$$

(see [6,7]). Let $\pi: X \rightarrow Y$ be a one-to-one mapping,

$$
\pi(X)=Y^{\prime} \cup\{a\} \text { such that } a \in \pi\left(P \mathcal{F}_{F}^{X}(x)\right)
$$

Then

$$
F f(F \pi(x)) \neq F \pi(x) \quad \text { and } \quad F r(F \pi(x)) \neq F \pi(X)
$$

which follows easily from the properties of $\mathcal{F}_{F}^{X}(-)$.
$2 e \Rightarrow 2 d$ is easy.
$2 d \Rightarrow 2 a$. Let (r, f) be a transposition pair on a set X,

$$
F r(z) \neq z \neq F f(z)
$$

where r is a transposition of $a, b \in X$. Put $Y=\{a, b\}$. Then

$$
F j_{Y}(F Y) \cup F j_{X-Y}(F(X \cdot Y))
$$

does not contain $z \in F X=F(Y \cup(X-Y))$: if on the contrary $\approx \in F j_{Y^{\prime}}(F Y)$, we have

$$
f \circ j_{Y}=j_{Y} \quad \text { and so } \quad F f(z)=z,
$$

which is not true, and if $z \in F j_{X \cdot Y}(F(X-Y))$ we have

$$
r_{\circ} j_{X \cdot Y}=j_{X \cdot Y} \quad \text { and so } \quad F r(z)=z
$$

COROLLARY 4.7. In the finite set-theory the following conditions on a set functor F are equivalent:
$1^{0} S(F)$ is binding;
2° a) F does not preserve unions;
b) F is not naturally equivalent to $K_{M} \vee C$ for any set 11 and any constant functor C.

PROOF. The equivalence of $2 a$ and $2 b$ is proved in [13,15].

REFERENCES

1. N. BOURBAKI, Théorie des Ensembles, Herman, Paris.
2. Z. HEDRLIN, A. PULTR, On full embeddings of categories of algebras, Ill. J. of Math. 10 (1966), 392-406.
3. Z. HEDRLIN, A. PULTR, On categorical embeddings of topological structures into algebraic ones, Comment. Math. Univ. Carolinae 7(1966), 377-400.
4. Z. HEDRLIN, Extension of structures and full embeddings of categories, Actes $d u$ Congrès international des Math. 1970, Tome 1, 319-322.
5. J.R.ISBELL, Subobjects, adequacy, completeness and categories of algebras, Rozprawy Matem. XXXV, Warszawa, 1964.
6. M. KATETOV, A theorem on mappings, Comment. Math. Univ. Carolinae 8 (1967), 431-434.
7. H. KENYON, Partition of a domain,..., Amer. Math. Monthly 71 (1964), 219.
8. V. KOUBEK, Set functors, Comment. Math. Univ. Carolinae 12 (1971), 175-195.
9. L. KUČERA, A. PULTR, On a mechanism of defining morphisms in concrete categories, Cabiers Topo. et Géo. Diff. 13-4 (1973), 397-410.
10. A. PULTR, On selecting of morphisms among all mappings between underlying sets of objects..., Comment. Math. Univ. Carolinae 8 (1967), 53-83.
11. A. PULTR, Limits of functors and realizations of categories, Comment. Math. Univ. Carolinae 8 (1967), 663-683.
12. A. PULTR, On full embeddings of concrete categories with respect to a forgetful functor, Comment. Math. Univ. Carolinae 9 (1968), 281-307.
13. V. TRNKOVA, P. GORALCIK, On products in generalized algebraic categories, Comment. Math. Univ. Carolinae 10 (1969), 49-89.
14. V. TRNKOVA, On some properties of set functors, Comment. Math. Univ. Carolinae 10 (1969), 323-352.
15. V. TRNKOVA, On descriptive classification of set functors, Comment. Math. Univ. Carolinae 12 (1971): Part I, 143-174; Part II, 345-357.
16. P. YOPENKA, A. PULTR, Z. HEDRLIN, A rigid relation exists on any set, Comment. Math. Univ. Carolinae 6 (1965), 149-155.
[^0]
[^0]: Katedra Zakladnich Matematickych struktur
 Matematicko-fysikalni Fakulta, Karlova Universita, Sokolovska 83
 18600 PRAHI 8-Karlin
 TCHECOSLOVAQUIE

