
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VÁCLAV KOUBEK
On categories into which each concrete
category can be embedded
Cahiers de topologie et géométrie différentielle catégoriques, tome
17, no 1 (1976), p. 33-57
<http://www.numdam.org/item?id=CTGDC_1976__17_1_33_0>

© Andrée C. Ehresmann et les auteurs, 1976, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_1976__17_1_33_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


33

ON CATEGORIES INTO WHICH EACH CONCRETE CATEGORY

CAN BE EMBEDDED

by Vaclav KOUBEK

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVII- 1 (1976)

Hedrlin and Kucera proved that under some set-theoretical assum-

ptions (the non-existence of «too many » measurable cardinals) each con-

crete category is embeddable into the category of graphs. Therefore under

these assumptions each concrete category is embeddable into every binding

category, i. e. a category into which the category of graphs is embeddable.

The aim of the present Note is to characterize the binding categories in a

class of concrete categories, the categories, S (F), defined as follows: let

F be a covariant functor from sets to sets ; the objects of S ( F ) are pairs
(X, H ) where X is a set, H C FX , and the morphisms from ( X, H) to r Y, K)

are mappings f : X -&#x3E; Y such that Ff (H) C K.
The categories S(F), explicitely defined by Hedrlin, Pultr and Trn-

kova, are categories which play an important role in Topology, Algebra and

other fields. They also describe a great number of concrete categories cre-

ated by Bourbaki construction of structures. They are investigated in a lot

of papers [ 1,3,4,9,10,11] .

The main result : S ( F) is binding if and only if F does not preserve
unions of a set with a finite set ; assuming the finite set-theory, S (F) is

binding for all functors F with the exception (up to natural equivalence) of

C X I) VK, where C , K are constant functors and I is the identity functor.

I want to express my appreciations to J. Adamek and J. Reiterman

with whom I discussed various parts of the manuscript.
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CO N V E N T ION . Set denotes the category of sets and mappings. A covariant

functor from Set to Set is called a set functor.

DE F I N I TI ON . Let (K, u ), (L, V ) be concrete categories. A full embedding

O: (K, U ) -&#x3E;(L, V ) is said to be strong if there exists a set functor F,

such that

conimutes. The functor F is said to carry O.

PROPOSITION 1. 1. Denote R the category o f graphs (relations (X, R),

R C X X X) and compatible mappings

with

and Rs its full sr,rhcategory of undirecteu’, antire flexive, connected graphs

(syrnrnetric antireflexive rPl ations where each pair of vertices is connected

by s()rllf? Path). There exists a strong embedding of R into Rs.
Proof : see [l2].

DEFINITION. An object o of a category is rigid if {1o}=Hom’ (o,o).
PROPOSITION 1.2. For each infinite cardinal a ( considered to be the set 

o f all ordinals u’ith type smaller than a) there exists a full subcategory Ra
of Rs into u bich R is strongly embeddable such that for each (X, R) in

Ra, a CX, and for each f : (X,R)- (Y,S) in Ra, f/a=1a.
PROOF. In [l2] a strong embedding of the following category R222 into
Rs is con structed : objects of R222 are ( X , R1 , R2, R3 ) with Ri C X X X.
morphisms X, R1, R 2’ R3) -( Y, S1, S2, S3) are mappings

with j

Furthermore it was proved in [l6] that there exists a rigid graph (a., T ) .
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Given a graph ( X , R) , put ( X*, R 1 , R2 , R3)E R222’

Then for each morphism

there exists a compatible mapping

with

In other words, a strong embedding % - R 222 is formed

such that the image Ra of R under OYa has the required properties.

PROPOSITION 1. 3. If F is a sub functor of a factorfunctor of (i, then S ( F) )

is strongly embeddable into S ( G ) .

Proof: see [11].

CONVENTION. All set functors F are supposed to be regular, i.e. each

transformation from (’ 0,1 ( where

to F has a unique extension to a transformation of C1 to F . In particular,

if F is constant on the subcategory of all non-void sets and mappings, then

F = CX for some X ( which is the reason for this convention). For each

set functor F we clearly have a regular functor F’ coinciding with F on

non-void sets and mappings; S( F) is binding iff S( F’ ) is.

2

DE F INITION. Denote by 9 the concrete category the objects of which, cal-

led spaces, are pairs (X, U) where X is a set and 11 C exl) X , and mor-

phisms from (X,U) to ( Y,V) are mappings f : X -’’ Y such that

1° for each A e h there exists B E 0 with B C f (A) ;
2° if f is one-to-one on A E ’11, then f ( A) e V.

Furthermore, given a cardinal a, denote by 9a the full subcategory of
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over all ( X, U) such that :

if A E ’1.1 then

The spaces of 9 a are called a-spaces.
CONVENTION. Given (X, U) E 9, x E X, denote

LEMMA 2 . 1. L et f : ( X , 11) -+ ( Y,V) be a morphism in G. 1 f f is one-to-one

then f or edch x E X , st Ux  st V f (x) . I f moreover (x,U)=Y,V) and

X is finite, then st 11 x = stV f (x) .
Proof is easy.

CONSTRUCTION 2.2. For each natural number n &#x3E; 3 we are going to cons-

truct a rigid n-space

where

which has the following properties :
1° for each a, b E X there exist T,S E U with a, b E T , a E S, b E X- S ; ;

2° denote by m (or M) the minimum (the maximum, respectively) of all

st’ll a, a E X ; then m -t- M  card U and there exists just one y E X with

st’l1y=m.

The construction is done by induction. The n-th space is denoted by

(X,’U ). 
I. n = 3. 1L contains the following set ( { } is omitted) :

012, 024, 026, 036, 056, 134, 156, 235, 245, 246, 356.

Conditions 1 and 2 are easily verified. To prove that ( X3 , ‘1.13 ) is rigid, the

above Lemma 2.1 can be used. Any morphism qf: (X3’ U3) -( X3 ,U3) must
be a bijection and routine reasoning concerning

shows that f must be the identity.

II. n &#x3E;3 . Choose x, y E Xn-1 with
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and choose

with

Choose arbitrary n-point subsets ZI ’ Z2 of X n-I with Z1QZ2 ={y}
and define 11 n as the following collection :

for all

for all with

The condition 1 is easy to verify. Let us check 2 :

and because

for each

we have stU 2 n = m n and 2 n is the only eleme nt with st’U = mn ; further n n

if a E ,Y n-1- { y I , then

and

and so

The last thing to prove is that (X , h ) is rigid. Letn n

then f is a bijection, due to 1, and

( as ? 2n-1 is the only element with st 11 = Mn). Therefore f (X n-1)= X n-1
n

and clearly the restriction of f is an endomorphism of ( X n-1’ Un-1). so,
f = 1X. 

It

PROPOSITION 2.3. Given the rigid n-space (X ,U) as above, let P be an -
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arbitrary ( n- 1 )-point subset o f X and let p E P . Then ( Y, D) is a rigid

n-space, where Y = X X { 0, 1} and

with

PROOF. Let f: ( Y, 0) -+( Y, V). Clearly if SEV then ll s is one-to-one

and so / ( 3’ ) E (3 . Let us show that 

or

If f ( a, 0 )= ( a1, 1) for some a, a1 , then f(Xx{0}CGx{1}; if not,

let /f h, 0) = ( bi 0 ) , let TEll contain { a, b} ( see condition 1, above ) ;
we have f ( T X { 0 1) 6 0 and so necessarily f ( T X { 0 } = So , in particu-
lar a 1 = p and b, 6 P . Therefore, if x c X then

implies
and

implies and

(if x 1- a , then

but it follows from the condition 1 that f is one-to-one on XX {0} and on
XX{1}) ). Therefore

- a contradiction, as f is one-to-one on XX {0} and card P  card X - 1. So

or .

Analogously
or

It follows that

( since (X ,U) is rigid ). As

we have

CONSTRUCTION 2.4. For each infinite cardinal a we shall construct a ri-
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gid a -space ( X , U).
Put X = a U {a,b} (recall that a is the set of all ordinals with

type less than a , assume a, b E a, a =b) .

U con* ists of the following subsets of X :

where x runs over all limit ordinals in a. and zero while n runs over

all naturals ;

if :

if

PROOF. Let f: (X,U) -(X,U) ; we shall show that f = 1X . As E. E U,
card f ( E ) = a. , therefore there clearly exists j E C E such that:

a) card JE- a ;
b) f is one-to-one on JE ;
c) either

Analogously jo CO.

or

Assume that, on the contrary, either

with

or

with

In the former case jg U{ 181 ’ 03B22, b} E If and so there exists

There follows

while

or

clearly there is no such T E U. In the latter case either there exists

with
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but then

or

and you get a contradiction in a similar way - or (3 is the only one. Choose

distinct 03B21,03B22EE-{03B2};thenas

clearly f ( b) c f a, b} , but while J6 U{ 03B21, 03B2, b} EU, this leads to a con-
tradiction in the same way as above.

2° f (O) CE or f (O) CO. Analogous.

3 ° f is one-to-one.

a) f is one-to-one on 0, E . In fact, let

with

then f (03B21) = f (03B22) because else the meet of f ( J-o U {03B21,03B22-b}) with

either E or 0 would have at most one element - a contradiction ( analogous
as above).

b) f is one-to-one on O U E . Le t

We may choose 03B21 EO-{ 03B2} such that f is one-to-one on J E U { 03B21, 03B25 , 
- th en f ( JE U { 03B21, 03B2, b} ) E ’U , again a contradiction.

c) f is one-to-one - clearly f ( O UE) = 0 U E and c easily follows.

Now we have f ( D) = D because D is just the element of 11 with

There follows f ( 0 )=1 and as either

or

clearly f (0) = 0 . Clearly then f ( P0) = P0 ; furthermore

and

Let us prove that f = 1 X . If not, we can choose the least ordinal

y , with f (y) y ; we have

and clearly



41

If f ( y)  y, then y E E because f is one-to-one while Pf (Y) meets the

set {d l d  y ) ; analogously y EO. Therefore f (y) &#x3E; y ; if y E O then

but as / (E) = E and

this is a contradiction - analogously if y E E : That concludes the proof.

TH EO R EM 2.5. For each cardinal a&#x3E; 1 there exists a strong embedding

o: Rs -Ga carried by the sum o f the identity functor and a constant func-

tor. o has the following property:

given a morph ism f : ( X ,U) - ( Y , V) in S a wh ich is an image o f a

morphism in Rs under o, then f is one-to-one on each set A E U.

PROOF. 1° Cx is finite.
As Rs = 52, we may assume a &#x3E; 3 . Let (X,U) and ( Y, 0) be the ri-

gid a-spaces from Construction 2.2 and Proposition 2.3. Let V be an ( a-2)-

point subset of X , disjoint from P (see 2.3). Define

where

if f: ( Z1, R 1 ) -+ ( z 2’ R2 ) , then

on. on Y .

Clearly , is a faithful functor.

Let us prove that o is full. Let (M, R), ( N, Q) be graphs of Rs; let

be a morphism in 9,,, - We shall show that f (M) C N and f/M is a compatible
mapping.

If, on the contrary, f (x , i) E N for some ( x , i) E Y ,
choose T E U with xET; as f ( T X{i}) E VQ necessarily

and so for an arbitrary i, E V there exists
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with

Choose

with

and apply the same reasoning to T’ - there exists

with

Choose T" E 11 with y1, y2 6 T " ; then / = j’ because else

Therefore i ( y1 , i) = f ( y2 , i ) - a contradiction with

b), I -= 1 y on Y - follows from the fact that ( Y, 0) is rigid.

c) f (M) C N . Assume on the contrary f ( z ) E Y with z E M . Let

z1E M with (z,z1) E R ;
then

and

we have f (z)E Xx {i} for both i = 0 , 1 - a contradiction.

d) / is compatible. This follows easily from

for all

2° a is infinite.
Let ( X, It) be the rigid a -space from Construction 2.4. Define

where

if / : (Z1, R 1 ) -(Z2, R2) , then

on ,

Again T is clearly a faithful functor and we shall prove that it is full.To this

end, let

be a morphism in 9a. Then as E c VR , clearly card f ( E) = a and so there
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exists /- C E such that card JE - a , f is one-to-one on J E’

f ( JE) C E or f (JE ) CO and card F - f (J E) = card O - f (J E) = a .

Analogously J6 C O .

a) f ( a ) , f ( b ) E {a,b} . Choose 03B21, 03B22 E JE; as

there is A E V
Q 

with

clearly f(J-OU {03B21,03B22,b}), meets {a,b} - therefore f (b)E {a,b}
Analogously f (a) E {a,b}.

b) f (X) C X (thus f = 1X on X). Let 8 E E with f (03B4) EN ; then

f is one-to-one on J6 U f d, 03B2,b} for some /3 E JE , but clearly

- a contradiction. Analogously 8 E 0 - therefore

and so

c) f(M) C N . Assume that, on the contrary, there exists z E.B1 with

f (z)E X . Let z 1 E M with ( z , z1) E R ; then as

there is

with

As f (z) E X, clearly T e h - an evident contradiction.

d) f is compatible. This follows easily from the construction of 0R ,FQ.
Thus we found a full embedding (f : Rs-9a for all  a&#x3E; 1 ; a straightfor-
ward verification of the required properties of q5 is left to the reader.

3

CONVENTION. Let ? be a filter on a set V .. Put
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Given a mapping f : V - X , let f (F) be the f ilter on X with

for some A E F}.

For each set X put

where

DEFINITION. Let be a filter on a set V . Den-ote by j9 the concrete ca-
tegory whose objects are couples (X. ,11) where 11 C G(X) , and whose mor-
phisms f from ( X, ’1.1) to ( Y, 0) are mappings f : X - Y such that :

1° for each H E U there exists K e 0 with f (Jo CK ;
2° if f is one-to-one on some A 6 K 6 li , then f (H) 6 0.

NOTE. JG=Ja if 9 is a filter with

and

Therefore if

and c

there is a strong embedding of Rs do to JG - see Theorem 2.5.
THEOREM 3.1. Let § be a filter such that cardp q &#x3E; 1. Then there exists

a strong embedding of R into 59.
PROOF. To prove the theorem we shall construct a strong embedding ’If of

Ra into 9 g ( see Proposition 1.2) where a =lGl. Let I,,.. Rs -J03B2 be the

strong embedding constructed in Theorem 2.5,

Put 03A8 (Z,R) = (Z,UR), where
and

and if f is a morphism put Yf 2013 of. Then til" is easily seen to be a faith-

ful functor. To prove that f is full, assume that 
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we shall show that g is a morphism from (Z, (B ) to (,i" m Q) in g /3’ Then
xp is full because o is full and y=o on morphisms.

Let U E W R ; we have to show that g (U)EWQ If a &#x3E; 03B2 then there

exists Y c a with card Y= a such that g is one-to-one on Y. Denote by
T the underlying set of the filter §. Let h: T -Z be a. one-to-one map-

ping with

and

Let HE UR with

and

As there exists ? 6 ’l1Q with

for some

clearly g(U) )PFEWQ, If a  f3 then we prove that again g is one-to-

one on a set Yea with card Y = rx and proceed analogously as above. As-

sume the contrary. Then card g (03B1)  a.. Let E C X 18 as in Construction 2.4.
As card (03B1, U E) &#x3E; 03B2 ( take H EWR with

and

and proceed with g (H) as above), there exists S1 C E with

9 is one-to-one on SI and either

or

Clearly there exist ki k2 E O such that g is one-to-one on

Let KE UR with PK = C . Then there exists P- E IIQ such that for each

/3 I- k we have R (B) E 2. That is clearly impossible if g ( S1)Q03B1 = O. As
LEUQ, 

for each

- a contradiction.

NOTE 3.2. The embedding Y : Ra-JG defined above has the property that,
if f: ( X , U ) - ( 1’, V) is a morphism in 19 which lies in the image of Y,
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then for each h e h there exists A E H such that f is one-to-one on A. This

follows from the above proof.

We shall now investigate j9 where 9 is a filter on a set V such

that

for each

Write

and notice that

for arbitrary sets X C Y with card X = card Y .

DEFINITION. A system 21 of subsets of a set X is said to be 03B1-almost dis-

joint if

for each

while

for each

TH E O R E M 3.4. For each cardinal Cx there exists an 03B1-almost d is joint sys-

tem 1 on a set X such that card U = card 2X .

PROOF. Define cardinals f3i ’ where i is an ordinal:

if i is a limit ordinal.

Put

for some

Clearly card 03B2= 03B203B1. It is easy to see that (03B203B1)03B1 =2f3a so that there exist

2 
03B203B1 

subsets L of 03B203B1 whose power is a , i. e. 203B203B1 monotone mappings

Put for each L :

Then
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is an a-almost disjoint system : clearly card T (L) = a and if L1 = L 2 ’ then

Clearly card U = 2 03B203B1.
CO ROL LARY 3. 5 . For each filter (V, G) such that

for each

there exists a set X with card G (X) = card 2X . 

PROOF. Let X be a set with an a-almost disjoint system U on X such that

for each T E U, let fT: V - X be a one-to-one mapping with fT( V) = T .
Then clearly T1 , T2 E U, T1;f:. T2 implies fT1 ( G )= fT 2 (G) .

CONSTRUCTION 3.6. We are going to con struct f or each filter ( V, 9) a ri-

gid object (X , V) of JG. X is a set with

Put a m card V . First of all we shall introduce the following notation ( each

cardinal is cons idered to be the well-ordered set of all ordinals of smaller ty-

pe ) :

- assume that it is well-ordered,

Given f: v X -X, put

- assume that F is well-ordered,

Choose distinct a, b E X and put
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and I

- assume that J is well-ordered,

We are going to define

by transfinite induction :

where

are distinct.

Now assume that are defined for all

a) If card 03B2  cardi-1, then we may choose (î f3 E G( Z03B2 U {a}) with

and for any

b) Either card f 03B2 ( W ( f03B2))  a then choose 03B203B2 E G ( W ( f03B2)U{b} ) with

and

or card f 03B2 ( W (f03B2)) &#x3E; 03B1 then use the theorem on mappings [6,7] to obtain a

decomposition X = Xo U Xl U X 2 U X3 with
and

Choose t with Then there is

with

such that f is one-to-one on Y . Choose

with

and

c) If card 03B2 cardt, choose

where such that
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Put

(if 03B103B2 was not chosen, then the definition of U03B2, V03B2 is the same, only
without 03B103B2, analogously C03B2). The object we construct is

with

We are going to show that (X, 0 ) is rigid. Let f : (X, V) - (X, V) .

- If f E 5, f - fj, then, since clearly for each

f is one-to-one on some set which belongs to B, therefore f (Bj)EV. It is
quite evident from the construction that fj (03B2j)E V.

- If f c 3B f = gi , then f = 1 on some A - P Cj, A c Ci - Then f i s one-

to-one on some A’ E(Cj, therefore f ( Cj)EV. This is a contradiction with :

and

- Finally if f E F U F, then W (f) C {a,b}. Let a E W (f) , let

with

Then f (H) e I and we get a contradiction as above. Analogously if b E W (f).
Therefore W( f ) = 0, i. e. f = 1 X . 

CONSTRUCTION 3.7. Let (X, 0) be the object of j9 defined above. Put:
T= ( X U {c, d}) . Define objects of JG , (T , W) and ( T , 0’ ) : choose fil-
ters F1, F2 on T with

put W =VU{F1 ,F2} ; choose a filter j= 3 on T with

and

put W’ = WU{ F3} . Analogously as above we can prove that
10 (T, rn) and ( T,W’) are rigid;
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2° there is no morphism from ( T, W’) to ( T, W).

THEOREM 3.8. There exists a strong embedding from R into J9.
PROOF. Given a graph ( H , R), put H = HV (XxHxH) and let (2H,2R) be
an object of JG such that

2R=W on wh ere

and

on this set if (

( more precisely, for ( k1 , k2 ) E H X H denote ok1, k2: 11 - 2H,(more precisely, for ( k1 , k2) E H x H denote o k1,k2 - 2H,

and if

then

Given a morphism f : ( H , R)- ( K , S ) in R, let

We shall prove that this defines a strong embedding from % to JG. The on-
ly fact whose verification is not routine is that this is a full functor. Let

g: ( fr , 2R) -( 2K, k) be a morphism in JG. To prove that g - T for some f ,
it is enough to show that for each ( b1 , b2) E H x H there exists

with

- then the existence of f follows from the properties of ( T , U)) and ( T , U)’ ) .
Assume that on the contrary there exists ( b1 , b2) E H x H such that for no

(k1, k2)E K x K,

a) g (a,b1, b2) E X x X K x K. Denote (x,k1,k2) ---g(a,b1,b2). Let

us show that cardA  a where
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if not, card f ( A ) &#x3E; a, as we can choose a filter

with

therefore there exists a set A 1 with card A1 = 03B1 such that f is one-to-one

on A 1 ; choose a filter

with

As f (F1) E S we have a contradiction. Therefore card A  a . There exists

with

Choose E E V with PE = {y} ; then Ex{(b1,b2)}E R and so there

exists

with

Therefore there exists

with

Let g*: X -X,

and if then

then g * : ( X, 0) -( X , 0) , a contradiction with g * # 1X . Analogously

b) g(a,b1,b2)EK. Let
with

There exists E1 E S withE1 C g (E) , in particular there exists

X1 C X with card X1 = a.
and such that g is one-to-one on Xl X {( b1 , b2)}. Then X 1 C 11 ( see the

beginning of Construction 3.6) and so there exists E’ E R which contains

X1 X{( b1 , b2)} and with P E’={a , b1 , b2} . We have g (E’) E S . Let X2 C X1
with

for some

Denote k = g ( a, b1, b2 ) ; then k E {k1,k2} ; as at most two filters in ?
contain {k} Ug (X2 X{b1 , b2) }) , there clearly exists a set
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with

and such that no filter in 3e contains Z U{k} and has {k} for its meet.

Put X 3 = X2 Q g -1 ( Z) ; then card X3 = c1 and g is one-to-one on X3 . Then
there exists ? E R which contains ( X3 U { a } X {b1, b2)} and with

But th en 

and

- a contradiction.

NOTE 3.9. The embedding Y : R -JG defined above has the property that,

if f : (X, U) -( Y, 0) is a morphism in JG which lies in the image of Y,
then for each H E U here exists A E H such that f is one-to-one on A.

This follows from the above proof.

4

Let F be a set functor. Denote by S (F) the category whose objects
are

where X is a set, IICFX,

and whose morphisms f : ( X , H ) - ( Y, K ) are mappings

with

DE F INIT ION. For each set functor F and each x E F X , X =O , denote by

FXF(x) the filter on X of all sets A C X such that xEFj (FA), where

j : A - X is the inclusion. ( exp X is a trivial filter on X.) See [14,15].

LEMMA 4.1. For any set functor F and any f: X -Y, x E FX,

and i f f is one-to-one on some A E FXF ( x), th en

Proof : see [8].
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Denote by 8 a fixed full subcategory of JG with the property that,
if f : ( X, 11) - ( Y, 0) is one of its morphisms, then for each K 6U , f is

one-to-one on some Z E H.

T H E O R E M E 4.2. For each functor F such that there exists x E FX f or which

FXF ( x ) is neither a free filter nor an ultrafilter there exists a strong embed-

ding from 9l into S ( F ).

PROOF. Define for each ( X , 11) ES :

then the strong embedding from S to S ( F ) is

this follows from the property of S and from Lemma 4.1.

N O T E 4.3. Let F be a set functor. If FXF ( x0) is a fixed ultrafilter for some

xo E F X , then it is a fixed ultrafilter for each F f (xo ) E F Y, f : X - Y.

THEOREM 4.4. I f F is such a set t f unctor that each FXF ( x) is either a free

lilter or an ultrafilter, then S ( F ) does not contain a rigid object whose un-

derlying set has pou)er bigger than card 2 F1. In particular, S(F) does not

contain more than card 2F (2 F1) rigid objects and so it is not binding.

PROOF. In fact, no object (X, R) with card X &#x3E; card ( exp F1) is rigid. Re-

ally, put, for each x EX,

with

then as card X &#x3E; card( ex p Fl ) , there exist distinct

with (

we sh-all prove that the transposition of x 1 and x2 is a morphism

Let ER . If P fF ( v) contains neither x 1 nor x2, then

and so

If then there exists
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with

Then F px2 r (u) E R and so f o pxl = px2 ; we have F I (v) E R . Analogously

for P FXF (v) = {x2}. That proves the theorem.

A set functor F is said to preserve unions o f pairs if

for arbitrary sets X, Y where

are the inclusions. F is said to preserve unions of a set UJitb a litiitc set if

for arbitrary sets X, Y one of which is finite. Denote by KM the functor

A transposition pair (r, f) on a set X is a transposition r : X - X ( i . e.

and if

and a mapping f : X - X with

MAIN THEOREM 4.5. Given a set functor F, S(F) is hinding if and only

i f F does not preserve unions o f a set with a finite set.

PROOF, We proved above that S(F) is binding iff some FXF (x) is neither
a free filter nor an ultrafilter. Now if

where A is finite and

are inclusions, then FXF(x) ( X = A UB ) is not an ultrafilter since

and FXF(x) is not free since AUBE FXF (x), A finite, would else impl y

BEFXF (x). If, conversely, FXF (x) is not free ( i. e. P X F (x) # O) and it
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is not an ultrafilter, then we choose a E P FXF (x) and put
and

x E F(AUB) while x E FjA(FA)UFjB(FB).

COROLLARY 4.6. The following conditions on a set functor F are equi-
valent :

1 u u) R is strongly embeddable into S ( F ) ;

h) .S ( F ) is binding ; 
F(2 

F1
c) S (F) contains more than card2 rigid objects;
d) S ( F) contains a rigid object on a set with power &#x3E; card 2 F1.

2° a) F does not preserve unions o f a set with a finite set;

h) F does not preserve unions of a set with a one-point set;

c) FXF ( x) is neither an ultrafilter nor a free filter for some x E F X ; 

d) There exists a transposition pair ( r, f) on a set X such that for
some z E FX both F f ( z) 1- z and Fr (z) # z ;

e) There exists a cardinal a such that, for each transposition pair

( r, f) on a set X with potter at least a, there exists z E F X with both

and

PROOF. The equivalence of conditions 1 a, 1b, 1 c , 1 d , 2a, 2c follows from

above.

2a =&#x3E; 2h is easy.

2r = 2c . Let x E F X such that FXF(x) is neither free nor an ultrafilter.

Let card Y&#x3E; card X , let r : Y - Y be a transposition of a, b E Y and

with iff

There exists I" C Y with

and

(see [6,7j ). Let 77 : X- Y be a one-to-one mapping,

such that

Then

and
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which follows easily from the properties of FXF(-) .
2e = 2d is easy.

2d = 2a . Let ( r, f ) be a transposition pair on a set X ,

where r is a transposition of a, b E X . Put Y = { a, b} . Then

does not contain z E F X = F ( Y U( X - Y ) ) : if on the contrary z E F j y ( F V ),

. we have

and so

which is not true, and if z E F jX-Y ( F ( X - Y ) ) we have

and so

COROLLARY 4. 7. In the finite set-theory the follou,ing conditions on a set

functor F are equivalent:
1 ° S( F) is binding;
20 a) F does not preserve unions ;

b) F is not naturally equivalent to KM V C for any set ,B1 and any

constant functor C. 

P RO 0 F. The equivalence of 2a and 2b is proved in [13,15] .
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