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SOME INVARIANT THEORY AMONG QUASI-PROJECTIVES

by Paul CHERENACK

CAHI ERS DE TOPOLOGIE,
ET GEOMETRIE DIFFERENTIELLE

Vol. XVII. 1 (1976)

0. Introduction.

Coequalizers and, in particular, group quotients exist in the category
of affine schemes of a countable type over a field k . See the author’s pa-

per [2] .
The calculation of group quotients in the category of quasi-projec-

tive schemes ( almost always of finite type over a field k ) is an important
facet of geometric invariant theory [8] .

The starting point for this paper consists of the above two remarks.

The appropriate notions are now presented. We assume that k is an algeb-

raically closed field.

DE F INITION. 1 A quasi-projective scheme of countable type over k is an

irreducible, reduced open subscheme of some Pro j A , where A is a count-

ably generated graded k-algebra such that the elements of degree 0 in A

are precisely the elements of k . QP will denote the category whose ob-

jects are quasi-projective schemes of a countable type over k and whose

maps are maps of schemes.

The basic sources for our definitions and notation are Grothendieck

3,41 , and Artin and Mazur [1] . For convenience , we refer to the objects
of QP as quasi-projectives and to the maps of QP as quasi-projective maps.

Let f , g : X -&#x3E; Y be two fixed maps of k-schemes, where X is irred-

ucible and reduced and Y is quasi-projective. In the process of determining
the nature of the coequalizer to f and g , we will first consider the local sit-

uation. Suppose that Y is an open subscheme of Proj A . Y can be covered

by affine open sets of the form Yb = Spec A (b) , where h is a homogeneous
element of A + . Here A+ denotes the set of objects in A which have no
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constant term. See [4] , 2.3.4.
Let Yh be an affine open subset of Y and restrict the maps / and

g so that the maps

are obtained. There correspond to fh and gh two maps of k-algebras

Suppose that f-1 ( Yh ) n g -1 ( Yh ) # O. We define

Then, if f- 1 ( Yb ) n g -1 ( Yb ) is affine, and thus not empty, we know from
[21 that SpecE(h) is the coequalizer of fh and gh in the category of af-

fine schemes of a countable type over k .

If SPec E (b) is a k-valued point, i. e. E(h) is k , it may be the case

that f and g are too rigid from an algebraic standpoint to allow a meaning-
ful coequalizer from a topological point of view. Consider example 1, below.

We wish to associate to a homogeneous element h in A+ and the corresp-

onding k-algebra E(h) (the local case) a graded k-subalgebra ( Eb ) of A
(the global case) such that the coequalizer C of f and g is, as an object,
an open subscheme of Proj ( Eb ) . In this process, we will always assume

that E(h) ;,4- k. ,

Lemma 1 of n° 1 shows that we can choose a countable covering
{ Yh . } i= 1,2... of Y such that

for

Also the empty set 0 is not an affine scheme (our rings are commutative
with unity). From a topological point of view, it makes sense to write

E (b) = A(b) if, for some homogeneous element h E A+ ,

However, because we want and are able to eliminate the situation
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if f-1 ( Yb ) n g-1 ( Yh ) = O for a homogeneous element b E A+ , we write

DE F INITION 2. Let h be a homogeneous element of A+, and suppose that

F.(b) # k or 0. The set

E b = { a E A I a is homogeneous, a/ h E E (b) n &#x3E; 0}

is called the collection o f hypersurfaces invariant in Yh . ( Eh ) will denote

the graded k-subalgebra of A generated by E h . A hypersurface a is called

locally invariant if, for every point P lying on a and Y , there is an affine

open neighborhood Yh of P such that a is invariant in Yh . Note that:

Y b C Y. A point P E Y is locally stable if it lies in the complement of a

locally invariant hypersurface. A point P E Y is stable in Yh if P E Yh and

there is a hypersurface a invariant in Yh such that

and

If a point E Y is stable in some Yh , we call it weakly locally stable.

It is almost immediate that the localization of (E)b at h is E (b) .
Therefore, at least locally on Yh , an open piece of Proj (Eb) defines the

coequalizer of f and g . The global solution to the problem of finding a co-

equalizer of f and g entails these considerations :

a) Assume that {bm } m E M is a collection of locally invariant hyper-

surfaces of Y . Every closed invariant subset of Y is the intersection of

hypersurfaces in {b m}m EM. {h m}m EM is closed under products and non-

zero linear combinations of elements of the same degree.

c) The local coequalizers must determine the same global coequali-
zers, i. e.

for bi , hi appearing in a . From Grothendieck [41 , we see that y is im-
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plied (important implication) by:

Stability condition ( relative to a collection f hn Im em of locally in-

variant hypersurfoces) : There are integers s and t larger than zero such

that

as subsets of A .

Here, (Eb) (s) denotes, as in Grothendieck [4] , the graded k -sub-

algebra of ( E b ) whose elements of degree v are precisely the elements

of degree s v in ( E b ) . If bi = h . , clearly s = t . Also, s , t # 0 .

Theorem 1, below, shows that the conditions a and b and the sta-

bility condition (relative to a ) lead to a coequalizer in QP . There is no

reason to believe that conditions a , b and c are always true. Lacking these

conditions, we introduce the notion of a homogeneous quasi-projective and

of a relative coequalizer. In the process, we formalize the notion of a co-

equalizer in QP .

DEFINITION 3. QP will denote the subcategory of QP whose objects X
are open subschemes of some Proj A , where A is a countably generated

homogeneous ring, and whose maps f : X - Y have a homogeneous represen-
tation f = (a0, a1 ... ) where a0, a1,... are homogeneous elements of A

of the same degree.

DEFINITION 4. Let QP be a subcategory of a category D , Y be an ele-

ment of QP , and f , g : X ::: Y be the maps described at the outset. A co-

equalizer of f and g in D relative to QP is a map c: Y -&#x3E; C in D such

that c o f = c o g and such that, for any map

in with

there is a unique map

in with

If one replaces D and QP in this definition by QP , then c is called a co-

equalizer in QP , or simply a coequalizer.
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One cannot infer from the definition that a coequalizer in D relative

to QP is uniquely determined. The objects of QP are called homogeneous

quasi·projectives.

We can now begin to state our results.

THEOREM 1. I f Y contains a point which is not weakly locally stable, the

coequalizer of f and g ( as an object ) is Spec k. If conditions a and b and

the stability condition ( relative to a ) hold, then the coequalizer of f and

g in QP exists.

Theorem 1 is proved in n° I-3 ( with help from n° 7). In n° 1 we show

how to avoid coverings { Ya, } i EJ such that E (aj) = 0 and, moreover, such

that J is uncountable. We will construct the coequalizing map c : Y - C in

no 2. Before doing this, however, we eliminate the possibility that Y has a

point which is not weakly locally stable. Finally, in no 3, we prove that the

map c constructed in n° 2 is indeed a coequalizer.

Let f, g : X -&#x3E; Y be arbitrary maps of k-schemes where X is irred-

ucible and reduced and Y is quasi-prdjective. Consider the cases when Y

and C are, respectively, open subschemes of projective k-varieties Proj A
and Proj E , i. e. Y and C are quasi-projectives of finite type over k . If

e : Y - C is the coequalizer of f and g in QP , then c is dominant and,

hence, rational. The rationality of c implies that there is a representation
of c , in which the coordinates of c are homogeneous elements of A of the

same degree. A graded k-algebra embedding E -’ A results from the compo-

sition of homogeneous elements of E with c . This argument shows that it

is not, in general, unreasonable to expect that the coequalizer of f and g
arises as an open subscheme of Proj E , where E is a graded k-subalgebra
of A .

The following example shows that, when Y contains a point which

is not locally stable, it is likely that the coequalizer of f and g is Speck .

EXAMPLE 1. Let f , g : p1 -&#x3E; P2 be two k-scheme maps where f is cons-

tant with value P and g is a closed immersion with P E g( P1 ) . The loc-

ally invariant hypersurfaces of P2 all contain P and, hence, P is not a
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locally stable point of P2 . Note, however, that P is weakly locally stable.

If h : p2 -+ V is a map of quasi-projectives of finite type over k and if

h 0 f = hog, writing

a simple calculation shows that in QP the coequalizer of f and g is Spec k .

E X AM P L E 2. Not every locally invariant hypersurface is globally invariant.

Consider X = ll U l2 , the disjoint union of two lines. Let f be the map from

X to k 2 which send’s ll isomorphically onto Xl= 1 and sends l2 isomor-

phically onto X 1 = 2 ; and let g be the map which sends both 11 and 12
isomorphically onto X 1 = 0 . Then ( X 1- 1 ) X1 is locally invariant but not

globally invariant.

EXAMPLE 3. Let f. g: P1-&#x3E; P2 be two closed immersions. Suppose that

f and g have equations

and

Then

and

are locally invariant hypersurfaces of P2. In fact, these hypersurfaces are

globally invariant, and from this it follows that the stability condition holds

when restricted to these three hypersurfaces. This result enables us to con-

struct a coequalizer to f and g in QP . If k is the complex number field,
the real points of the coequalizer to f and g have the appearance of a dou-

ble cone.

Often the assumptions of Theorem 1 can be simplified if Y is a qua-

si-projective of finite type over k . Also, one might replace the condition

that {b m} m EM is closed under products and linear combinations of ele-

ments of the same degree by
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1. Affine coverings with non-empty pullbacks.

. f, g : X a Y are maps of schemes with Y in QP in n° 1. Suppose
that PEX, {bi} i E I is a set of homogeneous elements of A + , where Y is

an open subset of Proj A , and V = U Yb. 

LEMMA 1. Y is covered by a countable number of affine open subsets

where at is a homogeneous element o f A+, g( P ), /( P) i V((ai)) and at
is a linear combination of powers o f the b,. - Here V ((x)) denotes the ze-

ro e s o f x.

P RO O F . Y is covered by a countable number of Ybi where bi is a homo-

geneous element of A+ , and i c I - See n° 7. We can assume therefore that

I is the collection of natural numbers. Unless Y is a point (when the theo-

rem holds), there is some b 1 such that g ( P ) £ V(( b1 ) ) and some b2 such
that f( P ) £ V( ( b 2 ) ) . By taking an appropriate linear combination

I ( p ), g( P ) £ V( ( a 1)). In a similar way, one constructs

and, for i &#x3E; 2 ,

so that

and for each i E I .

Furthermore, it is clear that (c 12’ c 22) and ( c 11 ’ c 21) can be chosen li-

nearly independent. Then

and, hence,
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2. Consitruction of the coequalizer.

The next lemma is an immediate consequence of our definitions.

LEMMA 2. Let b be a homogeneous element o f A+ . I f E(b) # k or 0 , then

LEMMA 3. 1 f there is a point P c Y which is not weakly locally stable, the

coequalizer of f and g in QP is Sp ec k .

PROOF. Let e : Y -&#x3E; Z be a map in QP satisfying e of = e o g. Suppose
that Z # Speck . We can assume that e is dominant and, hence, via Mum-

ford [7] (Proposition 1, Chapter 1), that there is an induced map e *:

k (Z) -&#x3E; k ( Y ) sending the function field of Z into the function field of Y .

Moreover, as k is, algebraically closed,

Let Z be an open subscheme of Proj D where D is a countably

generated k-algebra. As dim Z &#x3E; 0 , it is not difficult finding two homoge-
neous elements a, b E D+ having the same degree and such that
a a ( e ( P )) # 0.

/3 ) b(e( f(Q))), b(e.(P)), b(e(g(Q))) # 0 for some Q EX.

y ) t = a/ b is not a constant.

and e * ( t ) is not a constant. We write e * ( t ) = E where F and H are ho-
H

mogeneous elements of A+ . Because of our choice of b ,

It follows that F H E E (H) and, thus, that F is an invariant hypersurface in

YH . As F ( P ) # 0 , we have obtained a contradiction.

LEMMA 4. Let a. and Cx’ be homogeneous elements in A+. I f

them
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is a pullback diagram. Here, the map e * (resp. e;’ a) is the equalizer of
the k -algebra maps fa and ga ( resp. f a’ * a and g a’* a) defined at the
outset of nO 0; 8 is the localization at al ; and ’y is the map induced be-

cause of the functoriality of equalizers.

PROOF. Clearly,

where A’ = A( a’ a) . Suppose that x E A( a) X E (a’ a) . Let

and 8 be the restriction map from Xa to X .. 0,,,. In that event,

As 6 is a localization in an irreducible and reduced scheme, it is an in-

jection. Therefore,

and Q. E . D.

The proof of the first part of Theorem 1 is Lemma 3. Suppose I =

= {bm }m E M be a set of locally invariant hypersurfaces closed under pro-
ducts and non-zero linear combinations of elements of the same degree sat-

isfying

and such that the stability condition holds with respect to the bm , m E M .

Applying Lemma 1, we can assume that for M -- f 1, 2 , ... }, the set of nat-
ural numbers, ( v ) and the stability condition with respect to the bm , m EM ,

hold. Furthermore, we can assume that fbr hi i E M ,
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Moreover, using Lemma 4, a non-constant element b n/bi where n is a stri-

ctly positive integer belongs to E (hi) Therefore, since E(bi ) # k, (Eb i) ma-

kes sense (Definition 2 ).

Let bi , bj El and hi 1 h. J denote their product in A . 

is equal to

As X is irreducible, the last set is not empty. Applying Lemma 4, as in
h.h.

the last paragraph, we discover that (E l J) makes sense.

As the stability condition holds, for some integers s and t bigger
than zero,

From Lemma 2 and Grothendieck, [4 ] 2.4.7, it follows with

that

and

Because of the functoriality of equalizers, we arrive at the following dia-

gram :
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where the maps H and 6 are open immersions.

This diagram together with the union (v ) above implies :
h.

PROPOSITION 1. There is a map c : Y-+Proj(E 1) induced by the maps

Y, -&#x3E; Sepec E (b.) which maps Y into an open subset

h.

o f Proj ( E t) . T’he map c : Y - C is dominant.

We will show in no 3 that c : Y - C is the coequalizer of f and g in

QP . Clearly, I can be taken to be a subset of I = {bm } m E M defined in

condition a of n° 0. We assume this and that our covering of Y is effected

through the countable in number elements of 1 .

3. Proof of Theorem 1.

Let z : Y -&#x3E; Z be a map of quasi-projective schemes such that zo f =

= z o g , and Z is an open subscheme of Proj B , where B is a countably

generated k-algebra. We wish to show that there is a unique map z’ : C - Z

in QP such that z’ ° c = z . Clearly, as Iz is algebraically closed, we can

assume that dim Z &#x3E; 0 . Let Yb be an affine open subset of Y with i E M .
I

We will first exhibit a map SPec E (bj) -&#x3E;Z.

Homogeneous elements b1 , b2 ,..., bn ,... in B+ which satisfy the

following two conditions are chosen using Lemma 1 :

II) For some Q in X, zo f(Q) = zo g (Q) is in Zb for every
n

integer n &#x3E; 0.

Then, for n = 1, 2, 3, ... , the maps f and g restrict to maps

Because we have assumed that condition a (0) is valid and
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is an invariant closed subset of Y , z -1 ( Zb ) is the union of affine opens
n

Yanp I P EP ( n ) , where an p is a locally invariant hypersurface in 1 . Ap-
np 

plying Lemma 1, one can determine an open affine covering ( using the same

notation ) { Yanp ]pEP (n ) of z -1 ( Z b ) such that, for every integer n &#x3E; 0

and p E P (n)

From the selection of the hi in nO 2 and the irreducibility of Y ,

for ht E 1 , an integer n &#x3E; 0 , and p E P (n) . We fix a hi E I . The map z
restricts to a map

in QP which corresponds to a map

of k-algebras. From the stability condition, we discover, as anp is in I ,

h.
that (bi anp ) S E (Et) for some positive integer s bigger than zero. Since

z : Y - z satisfies z o f = z o g , z:p factors in an unique way through

Here, the last equality follows from Lemma 2 and [4] , 2.4.7.
One has

where n ranges over all integers bigger than zero and p E P ( n ) . But Yh -
I

is affine and, hence, compact. Therefore, there exists a finite set R such

that
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and a, is equal to anp for some integer n &#x3E; 0 and pEP (n) . Also, one

can choose s large enough so that

for all r in R .

If ar = anp , we set w ( r ) = n ..Suppose that zn* f actors through E (bi a np ) 
via the map zr * when anp - ar - Similarly, if

is the map of k-algebras corresponding to z , for some integer s bigger than

zero, there is a factorization

of through

where r, r’ E R . For an integer s large enough, a commutative diagram, for

r,r’ER,

follows from the functoriality of equalizer.

Diagram ( u ) implies that there is a map

To complete our first goal, the determination of a map Spec E (bj )-&#x3E; Z in QP ,
it remains to show that
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where s is an integer chosen suitably large. Again, using the functoriality
of equalizer, there is a diagram

where the horizontal arrow T is an equalizer because it is one of the equa-
lizers which define the sheaf structure on Y and where the two right ver-

tical arrows are equalizers, as one sees, since equalizers commute with

products.
To prove (Y), we need the following lemma. The proof of this lem-

ma is obtained by diagram chasing which we leave to the reader.

LEMMA 5. I f we have a commutative diagram

where a1, a2’ a3 and B1 are equalizers and where B0 is a monomorphism,
then /32 is an equalizer.

In our application,

and 80 is a monomorphism as a localization in X is a monomorphism.

Let bj E I (n°2) and associate R i to bj as we associated R to

bi . Then, by our choice of the set I , R and R i , we obtain

f or r E R an d i*ERi,
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and

The diagram

induces, for an integer s large enough, a commutative diagram

and, hence, a commutative diagram

in QP . This diagram enables us to patch together the maps

to obtain a map z’ : C -Z in QP satisfying z’ o c = z .

z’ will be unique ( i. e. c : Y - C is an epimorphism) if we show

that the local maps

are epimorphisms in QP . This result follows from the next lemma.

LEMMA 6. Let A, B be two integral domains and k-alge.bras. Suppose that
A is a k-subalgebra of B . I f, in the diagram
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where ¡..L is the map corresponding to the inclusion A CB and C is a gra-
ded k-algebra and an integral domain, TJ 0 03BC = K o JL, then 77-K -

PROOF. Suppose that

x E Spec A and n (x)# K(x).

Unless Proj C is a point, as in the proof of Lemma 1, one finds a homoge-
neous element y E C+ such that n(x), K (x) belong to Sp ec C (4,) = Z y.
There are maps, the restrictions of 03BC , q and K , in the diagram

with n # K as the images of 17 and K are distinct. Let ( Spec A ) a be an

affine open subset of SpecA , containing x and contained in

The maps in the above diagram restrict again yielding, this time,

where

and

( t ) induces a dual diagram

of k-algebras which are at the same time integral domains. The above pro-
cedure can be repeated if, for all x , n ( x ) = K ( x ) . Clearly, 03BC * is a mono-

morphism, and it follows that 77 * = K * . This implies that n = K locally,
and hence that 17 = K .

The proof of the lemma is complete.

Theorem 1 has been proven.
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4. Coequalizers of projectives are nearly projective.

PROPOSITION 2. Let I and g be as in Theorem 1. Suppose that c: Y - C

is the coequalizer of f and g and that Y = Proj A. Then, Pro/fE i)- C is

of codimension larger than 1 in Proi(E ’).

PROOF.

where hi E I , n is an integer bigger than zero and p E P ( n ) . See n° 3. One

applies Lemma 5, n° 3, and finds that, as 0y( Y) = k , Uc (C) = k . If C

h.
lies in the complement of a hypersurface of Proj ( E t ) , unless C = Speck ,

UC (C) # k .
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