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ON TOPOLOGICAL MODULES AND DUALITY

by Brian J. DAY

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XX -3 (1979)

INTRODUCTION.

If R is a commutative limitspace ring with identity, then the cat-

egory V of limitspace modules over R is symmetric monoidal closed;

that is V = ( V, R ,0 ,[-, -] , ...). This follows from the fact that we are

here dealing with a finitary commutative algebraic limitspace theory on

the cartesian closed category of all limitspaces and continuous maps.
Thus it makes sense to talk about duality in V with respect to the inter-

nal Hom of V (that is, the structure of continuous convergence on the

function spaces) and some basic dualising object Q for which the cano-

nical map Q -&#x3E; [ [ Q, Q], Q] is an isomorphism. An object A f V for which

the canonical map A -&#x3E; [A, Q], Q] is an isomorphism is called Q-re-

flexive.
In the first instance we are interested in studying Q-reflexive to-

pological R-modules in the case where Q itself is a topological R-mod-

ule with no small submodules. This is done by considering Q to be just
one Q-reflexive model in a class 11 C V of Q-reflexive topological R-mod-

ules. We then form the epireflexive hull H of M in V . It is seen that, if

Q is an injective cogenerator in H , then the limit closure M of M in V

is a reflective full subcategory of H , hence of V . The main result here

is that all the objects of M are then Q-reflexive topological R-modules.

Up to this point we consider only the Ens-based epireflective hull

of M in V . However, we could also consider the V-based epireflective
hull V’ of M in V . The reason why we do not consider the V-hull V’ in

the first instance is that we do not know that Q is an injective cogene-
rator of V’ .

Next we form the epireflective V-hull V" of M in V’ and obtain
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a symmetric monoidal closed category (namely V" ) in which Q is a strong

V-cogenerator. This then leads to a duality R°p =R where I denotes

the category of all Q-reflexive limitspace R-modules. This extends known
dualities since (R contains M under the above condition on M and Q .

Some references to material which has already appeared on the

topic may be found in Binz [2 and 3]. We shall assume some familiarity
with Binz and Keller [4] and with the method used in Day [8]. For general

category theory we refer the reader to Mac Lane [11].

The contents of this article are :

1. The basic situation.

2. Duality o f strong projective limits.

3. Preliminaries on injectivity.
4. Duality of corepresentable modules.
5. The V-hull of Q .
6. Some remarks on pointwise structures.
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1. TH E BASIC SITUATION.

The basic situation for our investigation is the following. Let Top

denote the category of all topological spaces and continuous maps and

suppose that Top is epireflectively embedded in some cartesian closed

extension U . We shall suppose that U is complete and cocomplete, has

7 (the term inal object) as a generator, and has canonical epi ; strong-
mono} factorisations. We shall also suppose that U is cowellpowered
(that is, each object of U has only a small set of epi-images) and is

weakly wellpowered (that is, each object of U has only a small set of

strong subobjects ).

Given U (which the reader can most conveniently take to be the

category of limitspaces or the category of Choquet pseudotopologies),
we form the symmetric monoidal closed category

of R-modules in U for some fixed commutative ring object R ( with an

identity) in U ; see, for example, Borceux and Day [5]. Then V is com-

plete and cocornplete, has R as a generator, and has canonical {epi ;
strong-inonol factorisations. It is also cowellpowered and weakly well-

powered. In fact, V is U-monadic over U for a finitary commutative al-

gebraic U-theory.

Among the objects of V there are the topological R-modules ; that

is, the R-modules over U whose underlying U-space structure lies in Top.
The category of topological R-modules and continuous R-module homo-

morphisms is closed in V under set-indexed products and strong subob-

jects, and consequently is epireflexive in V.

We shall denote set-indexed powers by {X, A} and copowers by
X . A , the context making it clear which category we are forming these in.
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2. DUALITY OF STRONG PROJECTIVE LIMITS.

A limit lim Ak, Ac A , of topological R-modules is said to be strong
if A is a small cofiltered category and each projection pX : lim Ax - Ax is
an identification map. For example, a topological product II AY may beYEr
regarded as a strong limit indexed by the finite subsets of F .

L EMM A 2.1. Given a strong limit lim AÀ o f topological R-modules, the
collection I kerpx I XE A } is a filter base on lim AÀ ’ which converges
to 0.

P ROOF. Since the limit is strong, the collection

is a base for the topology on lim Ax . For suppose

is a sub-basic open set in limAk . Because A is cofiltered, there exists

an a c A and connecting maps

Thus

where

Hence the standard sub-base is a base; and kerpa approaches 0. //

We now fix in V a topological R-module Q which has no small

submodules.

LEMMA 2.2. Given a strong limit lim Ak of topological R-modules, the
canonical map from colim [Ak,Q] to [lim Ax , Q] is a surjection in V .

PROOF. By Lemma 2.1, kerpx approaches 0 . Thus each map factors

through some projection because Q has no small submodules. Thus the

canonical map from colim [ Ak, Q ] to [lim Ax , Q ] isasurjection. //

THEOREM 2.3. If I AÀ’ X f A} is a family of topological R-modules, each
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o f which is Q-reflexive (i. e., AÀ = [ [ AÀ’ Q], Q] for all À c A) , then

any strong limit l im AÀ is Q-reflexive.

P ROO F. The surjection of Lemma 2.2 yields a mono m in the diagram :

defining r . But it is easily seen that r7l = 1 . //

As a corollary we have that a product of Q-reflexive topological
R-modules is Q-reflexive. It is of interest here to see that there are simple
examples of strong limits other than products.

PROPOSITION 2.4. Let lim Ak be a co filtered limit o f topological R-mo-

dules, each of whose connecting maps is an open surjection. Then each

projection pk : lim AÀ -) AÀ is an open mapping provided it is a surjection.

P ROO F . As already established, the sub-base

is a base for the topology on lim AÀ . Also

so, for each a c A , choose B (a) c A and morphisms

Then

which is open in Ax- / /

COROLL ARY 2.5. If {fn : An+1 -&#x3E; An I -°°  n  oo ) } is a chain o f open
surjections, then lim An is strong.

P ROOF. Clearly each projection lim Ax -&#x3E; AÀ is here a surjection. //
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3. PRELIMINARIES ON INJECTIVITY.

For this section we fix in V a class M of topological R-modules

which is closed under finite products. We suppose that M contains an R-

module Q which cogenerates M.

The module Q is said to be M-injective if, given any submodule

A  fl Mx in V , MkE M, and any homomorphism f: A -&#x3E; Q , then exists
kcA

a homomorphism g: flMX - Q which extends f .
The module Q is said to be M-separating if, given any closed sub-

module A  II Mk and any x E II Mk with x £ A , there exists a homo-
k EA

morphism g: IIMk -Q such that g(A) = 0 and g(x) £O.
Let H denote the epireflective hull of M in V .

P ROP O SITION 3.1. (i) If Q is M-injective, then it is an injective cogen-
erator in H and all strong monics in H are regular.

(ii) If, in addition to (i), Q is M-separating, then the closed sub-

modules are precisely the strong monics in H .

The proof of this proposition is exactly the same as the proof giv-
en in Day [8], Section 2.

It is a simple consequence of the fact that all strong monics in

H are regular (so that the regular monics in H are closed under compo-

s ition ) that the limit closure of M (denoted M ) in H (hence in V ) exists

and is reflective in H (hence in V ). Here we use the fact that Q co-

generates M , hence H , and the special adjoint-functor theorem.

We now seek special conditions under which Q is M-injective and

M-separating. On having fixed M and Q , we call a neighborhood V of

0 E Q M-e f fective if it contains no non-zero submodules and, for each map

f: M - Q, M c M , f is continuous iff f -1 V is a neighborhood of 0 E M .

PROPOSITION 3.2. The module Q is M-injective if it contains an M-effec-
tive neighborhood and each submodule (subspace topology) A  M, M c M,
allows the li fting o f homomorphisms into Q .



303

The proof is directly inspired from that of Kaplan [91 Theorem 1.

For example, let /!==()= R or C , and suppose that each M E M

is a normed linear space. Then Q is M-injective by Proposition 3.2 to-

gether with the Hahn-Banach Theorem. 

For another example, let R = Q = K be any topological field con-

t aining a non-trivial open neighborhood of 0 f K . Let

Then K is M-injective by an adaptation of the proof of Kaplan [9] Theo-
rem 1.

Let Q = HomZ(R, R/Z) and suppose each M E M is locally com-

pact and Hausdorff. Then Q is M-injective since we have :

see Kaplan [9] Theorem 1 for the case R = Z . For the case of R dis-

crete, duality has been studied in this context by St8hr [12] .

In order to examine the M-separating condition we first suppose

that each M c M has the property that the closure of an R-submodule A  M

is again an R-module. Next we suppose that, given any closed submodule

A  M, M c M , and any xE M, x$ A , there exists a homomorphism f: M -+ Q
such that f (A) = 0 and f (x)£ 0 . Under these assumptions on M and

Q it is a simple matter to check the proof of Kaplan [9] Theorem 2 and

see that Q is M-separating.

4. DUALITY OF COREPRESENTABLE MODULES.

We again choose in V a full subcategory M C V of Q-reflexive

topological R-modules such that Q c M . It is easily seen that Q is then

cogenerating in M . The family M is thought of as a collection of models

from which we can construct such objects as M-corepresentable R-modules

and also pro-M-objects. From Section 2 we know that

Let A be an M-corepresentable R-module in the sense that there
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exists an equaliser presentation:

Then we have the following:

PROPOSITION 4.1. I f V(IIMX, Q)- V ( A , Q) is a surjection, then A is

Q-reflexive. 

P ROO F. Consider the diagram :

where A* denotes [ A, Q] . The dashed arrow is a mono since the map

A** -&#x3E; (flMx)** is a mono, and the result follows. / /

COROLLARY 4.2. I f Q is injective in H, then A is Q-reflexive.

The injectivity of Q in H is sometimes an unnecessary assum-

ption since it may happen that the limit closure of M in H (hence in V )

consists entirely of pro-M-objects ( see Day [7] for the definition of a pro-

M-object) and that each pro-M-object is Q-reflexive. This happens, for

example, when R = Q is a discrete principal ideal domain and M con-

sists of the (discrete) free R-modules of finite rank.

In order to generalise this example, suppose E denotes the cat-

egory of topological identification maps and let D - E n M . Then

is a strong projective limit, for each A E H , if each map f: A - M , A c H ,
M c M , factors as
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where e E E and N E M . Note that this limit is cofiltered since any pair

el: A - M1 and e2: A -+ M2 yields a canonical map A -+ M1 e M2 which

factors as an e E E followed by an N -+ M 1 e M2 , N c M , by hypothesis
on M .

PROPOSITION 4.3. The canonical map

is a bijection.

P ROO F. It is a surjection because each f E H( A, M) factors appropriate-

ly. It is an injection since any two factorisations of f E H (A, M ) are re-

lated by identification maps to a third factorisation :

Now M cogenerates H so Q cogenerates H if it cogenerates M , which

it does if each object of M is Q-reflexive. Thus, if Q has no small sub-

modules, each map 
E 

lim M -&#x3E; Q factorsthrough someprojection for all
E(A,M) 

A c H . This, in turn, means that the canonical map

i s a surjection for all A E H .

PROPOSITION 4.4. The canonical map A -&#x3E; lim M is an epi in H for
E(A,M)

all A c H .

P ROO F. Consider the diagram
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and use the fact that Q cogenerates H . / /

Thus A = lim M in H iff A -&#x3E; 
E 

lim M is a strong monic in
E(A,M) E(A,M)

H . Note that, by Kelly [10], H has canonical {epi; strong-mono } factor-

isations, so we can consider the epireflective hull P of M in H .

PROPOSITION 4.5. P = M .

P ROO F. If AcP then the canonical map A -&#x3E; f {H( A, M), M } is a strong
M

mono in H . Thus we can consider the following diagram :

and obtain that A - j E(A, N), N I is a strong mono in H , hence is

an isomorphism. //

5. THE V-HULL OF Q.

So far we have considered only the ordinary Ens-based epireflec-
tive hull of M in V . However, we could also consider the V-based epi-
reflective hull ( which we shall denote by V’ ) although we do not know

that Q is injective in V’ .

First let us consider the V-hull in V of a class M C V . The ob-

j ects B in this hull V’ are defined as the objects of V which satisfy

the condition that there exists a strong mono

where Mx c M and A is a small set. If M happens to be small, then it is

equivalent to require that the canonical map

be a strong mono in V .

P ROP O SIT IO N 5. 1. I f each M c M is Q-reflexive, then the V-hull of M in
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V coincides with the V-hull of Q in V .

P ROO F . Simply consider the strong mono :

Thus we need only consider the V-hull V’ of Q in V. This hull

is a reflective symmetric monoidal closed subcategory of V (it is closed

under exponentiation in V so is symmetric monoidal closed by Day [6] ).

Next we consider the V-hull V" of Q in V’. It is straightforward
to verify that V’ has canonical epi ; strong-monot factorisations ( see

Kelly [ 10] ) and that Q is a strong V-cogenerator of V" . Also, again by

D ay [6] , V" is a symmetric monoidal closed category.

PROPOSITION 5.2. In V" an object A is Q-reflexive iff [A, Q] is Q-

reflexive.

P ROO F . This follows from the triangle identity:

and the fact that Q is a strong V-cogenerator. //

Thus if we consider the full subcategory R of V" consisting of

the Q-reflexive objects, then Rop = R . This duality extends known dual-

ities for various instances of R and Q, since we already know that

contains, for example, all strong projective limits. The category V" also

enables us to express the dual of a strong projective limit as a colimit

of the duals ; more precisely:

PROPOSITION 5.3. The dual of a Q-reflexive limit lim AÀ of Q-reflexiveX EA

objects AÀ is isomorphic to colim [AÀ’ Q] in V" .XCA

PROOF. We have
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so the canonical map

is an isomorphism. The result then follows from the fact that Q strongly

V-cogenerates V" . / /

6. SOME REMARKS ON POINTWISE STRUCTURES. 

Given a class M of topological R-modules and a Q E M which co-

generates M, the ordinary Ens-based hull H of M in V is equipped with

a pointwise internal-hom (A, B) obtained by topologising H(A, B) as

a subspace of IUA,Bl. If we now suppose that R = ( Q, Q) , then H
becomes a symmetric monoidal closed category ( H ,R , ® , ( - , - ) , ... ) ( cf.

Barr [1] ). A Q-reflexive R-module is now taken to mean an R-module A E H

such that A = ((A, Q), Q).

PROPOSITION 6.1. 1 f Q has no small submodules, then IX,QL is Q-

re fl exive for all X c Ens. I f, in addition, Q is M-injective, then ( A , Q)
is Q-reflexive for all A c H .

PROOF. Since Q has no small submodules we have an epi

Thus {X, Q} is Q-reflexive ( see the proof of Theorem 2.3). Secondly,

for any A c H , consider the diagram

The diagonal is an epi, so the canonical map A 4 ((A, Q), Q) is an epi

for all A E H . Thus, by the triangle identity :
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we have (A, Q) = (((A, Q), Q), QJ as required. //

Next consider WC H ; the objects B of W are those of H which

satisfy one of the following equivalent conditions :

(i) There exists an A E H and a strong mono B - ( A , Q) in H ;

( ii ) The canonical map B - (( B, QJ, Q) is a strong mono in H .

The category W is epireflective in H and is closed under (pointwise)

exponentiation in H . This implies that each B c W is Q-reflexive, since

each B c W admits an equaliser presentation of the form :

Thus, to summarise, W is a symmetric monoidal closed category
and each object of W is Q-reflexive, so the tensor product, duality and

internal-hom are related by:
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