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MANIFOLDS OF SMOOTH MAPS, II:

THE LIE GROUP OF DIF FEOMORPHISMS OF A NON-COMPACT

SMOOTH MANIFOLD *)

by P. MICHOR

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XXI -1 ( 1980 )

ABSTRACT.

It is shown that Diff(X), the space of diffeomorphisms of a lo-

cally compact smooth manifold X , is a Lie group.

This paper is a sequel of [8], where we presented a manifold
structure on the space C °° ( X, Y) of smooth mappings X - Y for (ar-

bitrary non-compact) finite dimensional manifolds X, Y , using the no-

tion of differentiability C°° rr of Keller [4]. The main idea was the intro-

duction of a new topology.
Here we show that Diff( X ) , the space of diffeomorphisms of a

locally compact manifold X , equipped with the Doo -topology of[8], is

a Lie group in the same notion of differentiability C°°rr.
In Gutknecht [3] it is shown that Diff(X) for compact X admits

a Lie group structure in the stronger notion Coo . This is done by the

functorial method of deriving the adjunction relation

for compact Y . An easy corollary of this is the CT·-differentiability of
the composition on Diff(X). Unit and counit of this adjunction are the

C°°T-differentiable mappings :
given by

and evaluation

given by E

If Y is not compact, then the first mapping is not even continuous if

*) P artially supported by a research grant of the City of Vienna, 1978.
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C°° ( Y, X x Y ) is equipped with the Whitney-C0-topology: a continuous
curve stays constant outside some fixed compact of Y if the parameter

stays within some compact set of R . See [9] for a more detailed account

of this. So the above adjunction does not exist, if Y is not compact.

Therefore we are forced to prove the C°°rr-differentiability of the compo-
sition by direct «onslaught»: the proof is complicated and heavy going
and we excuse for the lack of elegance. The method of proof of [6] is

of no help, since it is wrong.

The reader is assumed to be familiar with [8], especially with
the sections dealing with topology (Sections 1,2) and with the Q-Iemma

( 3 .8 ). The manifold structure will be explained again ( 6.3 ) in a some-

what simpler form as presented in [9]. Sections will be numbered from

5 onwards, following those of [8] (Sections 1 to 4), citations with lead-

ing number less than 5 refer to [8] ( e. g. 3.8 ).

5. SOME TOPOLOGY AGAIN.

Let X be a smooth finite dimensional manifold. Let Jn(X, X)
be the smooth fibre bundle of n-jets of smooth mappings from X to X

( see 1.1). Let Jn(X, X)x,y be the fibre over (X,Y)f X x X , i, e,, the

space of n-jets at x of maps f E COO (X, X) with f(x) = y . Further, let

Jn inv (X, X)x,y be the open subset of invertible n-jets from x to y . It

is clear that

where 7T k,n: Jn(X, X)-&#x3E; Jk(X, X) is the canonical projection for n &#x3E; k

(cf. 1.3) and GL( X, X)x,y denotes the open subset of invertible 1-j ets
f rom x to y in 7 (X, X)x,y : : in a canonical chart J1 (X, X)x,y cor-

responds to the space of all dim X x dim X-matrices and GL(X , X)x,y
corresponds to the open subset of invertible ones. By the construction

of the canonical chart for Jn(X, Y) it is clear that

is a smooth subbundle of the fibre bundle Jn (X, X).
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5.1. LEMMA. The mapping

given by , is smooth and

is a smooth fibre bundle homomorphism over

PROOF. By looking at a canonical chart we see that inv (o-) = o--1 cor-

responds just to the inverse power series of the polynomial mapping

R dim X , 0-&#x3E; Rdim X, 0 corresponding to o-, truncated at order n . Since

the coefficients of the inverse power series are rational functions of the

coefficients of the polynomial, the assertion follows. QED

5.2. PROPOSITION. The set Diff(X) of diffeomorphisms X, X is an

open subset of C°°(X , X) in the g)-topology and the D°°-topology.

PROOF. These two topologies are described in Sections 1, 2 respective-

ly. Diff(X) is open in the coarser Whitney-C°°-topology (see [7], Pro-

position 2.5), so the assertion follows. QED

5.3. THEOREM. The mapping

is continuous in the T-topology and the D°°-topology.
P ROO F. First we show that this is so for the D-topology, "We use the
base for it described in 1.5 ( c ) : let f6 Diff(X) and let M’(L, U) be

a basic D-open neighborhood of f’l in Diff(X), i, e., L =(Ln) and
U = (Un) , where each L n is compact in X with (XBLn0) being a lo-

cally finite family, and each Un is open in jn (X, X) for each n &#x3E; 0 .

Then

We want to construct a D-open neighborhood P of f such that
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f-1 c M’(L , U) means

Let L’n be a sequence of compacts of X such that

and such that XBL’ n 0 is still a locally finite family. Let

These two are sequences of compacts and (XBK’0n), (XBKnO) are lo-

cally finite families. Further K’ C Kn0.
Let d be a metric on X and let p be a strictly positive continuous func-

tion on X such that

0  max {p(x) | x c K n  distance between the compact L’ and
the disjoint closed set XBLn0,

for each n E N . Such a function may be found since (XBL’0n) is locally

finite ( cf. Proof of 1.4). Let

then V n is open by 5.1, and let U = (V n).
Consider the basic D-open set M’(K’, V) . We claim that it contains f .
For let n c N and x f XBK’0n , then

but

by the choice of L’n. This implies

Now let Vpof(f) be the D-open neighborhood

( cf. 1.5 : (supp 1/ ’P o f) is locally finite ), and let

We claim that
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we have

and p(f(x)) is less than the distance between L’ and

T ake n f N and x f XBLn0 , then

x E XBLnO implies g-1 (X) E XBK’0n as we saw above, so

s ince g f M’( K’, V), so jn ( g-1 ) (x ) E Un . This shows g-1 E M’ ( L , U) .
To see that Inv is continuous for the D°°-topology too it suffices to note
that Inv is compatible with the equivalence relation from 2.1. QED

5.4. PROPOSITION. Let X, Y, Z be smooth locally compact manifolds.
Then the canonical identification

is a homeomorphism for the T- and the D°°-topologies.
REMARK. A direct proof of this fact can be given along the lines of

([2], Chapter II, Proposition 3.6). Lemma 1.9 plays a vital role in it.

The assertion for the ÐOO-topology will be a consequence of 6.4 below ;
we will not need more than that later on.

6. DIFFERENTIATION.

6.1. The notion o f dif ferentiation : We use the notion of differentiability

C°°rr of Keller [4], but in the formally weaker form of C°°c. In [4] it is

shown that C; == C°°c holds in general.
Let E, F be locally convex linear spaces, let f : E -&#x3E; F be a

mapping. f is said to be of class Cl if, for all x, y6 E and kE R , we

have

in F , where Df (x) is a linear mapping E - F for each x 6 E , and the
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m apping

is jointly continuous.

This concept is applicable with the obvious changes if f is only

defined on some open subset of E .

f is said to be of class C2c if D f is of class C1c as a mapping
E X E -&#x3E; F , and so on for the higher derivatives.

We refer to [4] for more information.

The notion CPc was introduced by Ehresmann ( Bastiani [1] ), who
also showed the following - we include a proof for completeness sake.

6.2. PROPOSITION (partial derivatives). Let E1, E 2’ F be locally
convex linear spaces. Let f: E1 x E2 -&#x3E; F be a mapping. f is 0 f class

C i f f the mappings x 1 |-&#x3E; f ( x1 , x2), x2 |-&#x3E; f ( x1, x2) are o f class C1c
for each fixed x2, x1 respectively, with derivatives D1f (x 1 , x 2 ) y1 and

D2 f (x 1 , x 2 ) y2 respectively, which are jointly continuous in all appear-

ing variables. The derivative of f is then given by

The same is true i f f is de fined on an open subset o f E1 X E2 only.

PROOF. Necessity:

So D1 f is jointly continuous in all appearing variables. Analogously

for D2 f .
Sufficiency :
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The joint continuity of D f in all appearing variables is clear from the

same property of D1f and D2f . QED

6.3. The manifold structure. We give a short review of the manifold struc-
ture on C°° (X , Y), X, Y being locally compact smooth manifolds. "B’tfe

use a simplified form of the manifold structure set up in 3.3, 3.4 and 3.6 ;

this version is described in ( [9] , 8 ).
Let r: T Y -&#x3E; Y be a smooth mapping such that for each y in Y

the mapping Ty: T Y -&#x3E; Y is a diffeomorphism onto an open neighbor-
hood of y in Y , and Ty(Oy) = y. Such a map may be constructed by
an exponential map following an appropriate fibre respecting diffeomor-

phism from T Y onto the open neighborhood of the zero section, on which

the exponential map is diffeomorphic. If rry : T Y -&#x3E; Y denotes the cano-

nical projection, then the mapping (r, 1Ty): T Y - Y X Y is a diffeomor-

phism onto an open neighborhood of the diagonal in Y X Y . In Seip [11J

these maps (which need not be defined globally there) are called « local

additions». We will adopt the same name for convenience sake.

If f6 C°° ( X, Y) , consider the pullback f * T Y which is a vector

bundle over X , and the space D( f * TY) of all smooth sections with

compact support of this bundle, equipped with the 1°°-topology ( which
coincides with the D-topology here). This is a locally convex dually

nuclear (LF)-space, being the straightforward generalization of the space
Ð of test functions with compact support in distribution theory. See 2.7

for further information.

Let be the mapping

Denote by U f the image of t/J f’ which is an open subset of C°° (X, Y) ;
for let be the open neighborhood of
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the graph {(X,f(x)) | x E X} of f in X X Y = J 0 ( X, Y) (in fact a

tubular neighborhood with vertical projection, cf. 3.3-3.5 ). Then Uf
consists of all g E C°° ( X , Y) such that the graph of g is contained in

Z f and g - f ( i. e., g and f differ only on a relatively compact subset

of X ), so U f is D°°-open.

Vif is continuous by 2.5 and has a continuous inverse

as is easily checked up.

will serve as canonical chart centered at f.
Now let us check the coordinate change. Let f, g6 C°°(X, Y) with :

we have

so the map

is given by

by pushing forward sections by a fibre preserving (locally defined) dif-

feomorphism. So the coordinate change is continuous and of differentia-

bility class C°°rr by the Q-Lemma 3.8.

6.4 PROPOSITION. Let X, Y, Z be smooth locally compact manifolds.
Then the canonical identification

is of class C°°rr. The identification is compatible with the choice of ca-
nonical charts.

P ROO F. Let (f, g) E L"(X, Y) x C°° (X, Z) . We write again (f, g) for

the corresponding element of C°° ( X, Y x Z ) given by
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Let T : T Y -&#x3E; Y be a local addition on Y, p : TZ -&#x3E; Z be one on Z , then

r x p is a local addition on Y X Z . We have

and U(f,g) = UfxUg for the canonical charts, and the following diagram

commutes :

6.5. PROPOSITION. For each n &#x3E; 0, the mapping

is of class C°°rr .
PROOF. Let

be local additions for Y and Jk(X, Y) respectively. Let f E C°°(X , Y) ,
then jk f E Coo ( X, jk(X, Y)) ; consider the canonical chart (Uf, cp )
centered at f of C°° (X, Y) and the canonical chart (U jkf, cpjkf) center-

ed at jk f of C°°(X, Jk(X, y)). We have to check wether the mapping

is of class we have

where

is the (functorially) induced mapping. Now j k s c C°° ( X , Jk( X , Y)) by
definition but in fact it is an element of the closed subspace DJk( f * T Y)
of smooth sections with compact support of the vector bundle ¡k (f* T Y )
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over X , which consists of k-jets of sections of the bundle f * T Y (cf.

[10]). We will write jk s if we consider it to be a section of jk (f* T Y) .
The mapping

is linear and continuous (being a complex of partial differential opera-
tors on a space of test functions - in a canonical chart ) so it is trivially
of class 77 Therefore we have

and it is easily seen that

I.-i

is a fibre preserving smooth mapping, so pushing forward sections by
it is of class q by the Q-Lemma 3.8. The assertion follows by the

chain rule. QED

6.6. REMARK. The mapping T : C°°(X, Y) -&#x3E; C°°( T X, T Y) is not even
continuous in the :D-topology, neither in the D°°-topology : let fn be a

sequence converging to f in Coo ( X, Y). Then fn equals f off some

fixed compact set in X for all but finitely many n (2.3 or [9] ). But if

fn differs from f for infinitely many n at some x E X, then T fn differs

from T f on the whole fiber Tx X , so T fn cannot converge to T f in ge-
neral. Thus there is no chance for T to be differentiable. But it can be

shown that the mapping

is continuous and even differentiable ( compare [7], 2, Proposition 6),
since we may write

where comp: T X x X ,J1 (X, Y) -&#x3E; T Y is just composition of matrices

and vectors locally, which is smooth. We will use this technique in a

much more complicated situation later on.

6.7. THEOREM. Let X be a locally compact smooth manifold. Then the
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space Diff(X) of all dif feomorphisms of X is a Lie group in the D°°-

top olo gy.

Diff(X) is open in C°°(X , Y) in the S- and the D°°- topology,
composition is continuous by 2.5 and inversion is continuous by 5.3, so

Diff(X) is a topological group in the D-topology and in the D°°-topology.
In the latter it is an open submanifold of C°°( X , Y) , and we will show
that it is a Lie group in this induced manifold structure. The proof of

this will occupy Sections 7 and 8.

7. THE COMPOSITION IS DIFFERENTIABLE.

7.1. Before we can begin with the proof, we need some preparation.If

p: E -&#x3E; X is a vector bundle then let us denote by V ( E) = ker T (p) the

vertical subbundle of the bundle TE - E . If E, = p.1 (x) is the fibre

over x c X and ix : Ex -&#x3E; E is the embedding, then we may identify

T v( Ex) with Ex itself for v E Ex via the affine structure of Ex and

define

It is clear that V = VE : E ® E -&#x3E; V ( E ) is an isomorphism of vector bun-

dles over X . V(v, w ) will be called the vertical lift of w over v . The

mapping:

is called the vertical projection.

L EMMA. 1° V(E), VE, ÇE commute with pullbacks o f vector bundles.
20 Let a : E , E’ be a smooth fibre mapping between vector bun-

dles as given by the diagram

then the fibre derivative of a , the mapping dfa : E ® E - E’ over (3 is
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given by

P ROOF. If f : X’-&#x3E; X is a mapping, then the pullback bundle f*E is

given as the following categorical pullback:

In view of this, we have :

where 0x is the zero section of X , both as a manifold and a mapping,
and V 

f * E 
= VE X 0X’ . assertion 2 of the lemma is clear. Q ED

REMARK. If f : X-&#x3E; Y is a smooth mapping and T: T Y -&#x3E; Y is a local ad-

dition, then we w ill denote by Tf: f* T Y - Y x X the diffeomorphism into

given by

Clearly we have if we identify (f*TY)x
w ith Tf (x) Y. 

7.2. THEOREM. Let X, Y, Z be locally compact smooth manifolds.
Then the composition mapping

given by Comp (g, f) = g o f, is o f class C’
Here C°°prop (X, Y) denotes the open subset of proper mappings

of Coo (X, Y) (cf. 1.9, 2.5 ).

P ROO F. Let We w ill show that Comp
is differentiable in the canonical charts centered at g, f and g o f res-

pectively, as described in 6.3. Let
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be local additions, inducing the canonical charts.

We will suppose that U f and Ug are small enough such that

- to be precise we should restrict to open subsets of Uf and Ug respec-

tively, using continuity of the composition ( 2.5 ), but we will not spe-

cify this to save notation. So by some abuse of language we consider

the mapping ( 1 ) :

We have to show that c is of class - and we will do this by showing
that it is of class C’- using 6.2.
The mapping c is given for , by

There is some abuse of notation in this formula too: we did not distin-

guish vector fields along f with compact support from sections of the

vector bundle f *T Y , i, e., we have identified Df(X, T Y) with the iso-

morphic space D( f* T Y ), to save notation. Let us first look at the dif-

ferentiability of the mapping

Since r s ~ f and f is proper, Ts is proper too, so the mapping

is continuous and linear.

Then we consider the fibre respecting (but not everywhere defined) dif-

feomorphism over IdX : 
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It is clear that

By the chain rule and the Q-lemma the mapping ( 3 ) is therefore of class

C°°rr and its derivative is given by ,

Here we again considered tr s, t’r s both as sections of the bundle

(g r s ) * TZ and as mappings X -&#x3E; TZ . We used heavily Lemma 7.1. The

last line of formula ( 7 ) shows that D 1 c ( t, s ) t’ is jointly continuous

in s, t, t’ (use 6.4, the continuity of the composition and the fact that

the mapping

is continuous).

Now we investigate the differentiability of the mapping

for fixed t

For fixed t we define the mapping

Then we have
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where a(t) is a fibre mapping over IdX . So by the Q-Lemma and by
the chain rule the mapping ( 8 ) is of class 77 and the derivative is giv-
en by:

But the m appin g t |-&#x3E; a (t) is no t continuous ( there is a non proper open

embedding on the right of t ) neither is t 1, dfa ( t). So we have to re-
arrange the expression ( 11 ) in such a way as to see the joint continuity

in t, s, s’. We compute as follows, again using Lemma 7.1 :

So it remains to show that the mapping

is continuous. For that we use the manifold

which is a submanifold of the product, and the following composition
evaluation mapping 11: M -&#x3E; T Z given by :

Since p is locally just multiplication of matrices, it is C°° . Then we

h ave :

This expression is jointly continuous in t, s, s’ by 5.4, 6.4, 6.5 and by
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the fact that s |-&#x3E; T s is continuous

In view of 6.2 we have shown that c is of class CIc and that

(17) The higher derivatives : If we want to show that c is of class

C2c we have to check that D c is of class C1c . In order to apply 6.2 a-

gain we have to compute all partial derivatives of D c and have to show

that they are jointly continuous in all appearing variables. Now ( 7 ) and

( 15 ) are composita of expressions that look like ( 2 ) again and by 6.5

jl (t) is of class C°°rr in t . So we may apply what we have already prov-
ed and get C2c. By induction we get C°°c= C°°rr . Q ED

7.3. COROLLARY. Let X, Y be locally compact smooth manifolds. Then

the evaluation mapping Ev: X X C°° (X, Y)-&#x3E; Y is o f class C°°rr (and

consequently D°°-continouous).

P ROO F. First we show that

diffeomorphically, where * denotes the one-point manifold.

L et r : T X - X be some local addition. Then the canonical chart (Ufl Of)
centered at f : * -&#x3E; X corresponds to the chart (Im T f(* ), T f (*)-1) center-

ed at f (*) of X.
Now the following diagram commutes and so the assertion follows from

the differentiability of the composition :

7.4. COROLLARY. Let X, Y, Z be locally compact smooth manifolds.
Then the canonical mapping

takes its values in Coo ( Y X X, Z ).

REMARKS. 10 Since X is finite dimensional we need not specify the
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notion of differentiability in C°°(X , C °° ( Y, Z )) , since all reasonable

notions coincide ( s ee [4] ); C°°( Y, Z) is equipped with its canonical

C; -manifold structure.
° This canonical mapping is not surjective on C°°( Y x X, Z ) by

topological reasons, as we already mentioned in the introduction. It is

surjective, however, if Y is compact. That has been shown by Gutknecht

[3] for the stronger notion of differentiability CF ; in order to be com-

plete we will prove this fact in our setting too (7.5 ).

PROOF OF 7.4. Let f E C°°(X, COO(Y,Z)). Then the canonical map-

ping associates to f the mapping f : Y x X -&#x3E; Z given by

7.5. THEOREM. Let X, Y, Z be smooth manifolds, X, Z locally com-

pact and Y compact. Then

via the canonical identification.

P ROOF. In view of 7.4 it remains to show that the canonical identifi-

cation mapping is onto C°° ( Y x X, Z) , and by abstract non-sense it

suffices to show that the mapping

is of class then

is of class C°°rr by the Q-Lemma or by 7.2, so f*o n : X -&#x3E; Coo ( Y, Z) is

of class C°°rr too; this latter mapping is easily seen to be the canonical

associate to f (77 is the so-called unit of the adjunction, in categorical
terms ).

Now fix xo c X and let r : T X -&#x3E; X and p : T Y - Y be local additions.

Then

is a local addition; let
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be the canonical chart of C°°( Y, Y x X ) , centered at 77(x0), which
comes from p X r . Since 77(x0) is given by y |-&#x3E; (y, Xo) we see that

as bundle over Y , so

In view of this identification we have for x c X near xo and y 6 Y :

So cp77(x0) o 71 is given by the sequence

which is clearly differentiable in any sense, where V is a suitable neigh-
borhood of xo in X and where B is the continuous linear mapping which

maps each point of T x0 X into the constant function Y - 7" X . B is

well defined and continuous iff Y is compact. QED

7.6. PROPOSITION. The tangent mapping o f the composition

is given by

PROOF. Since we know already that Comp is differentiable we may com-

pute the tangent mapping by considering one parameter variations through

g and f with «tangent vectors » t and s and differentiating their com-

position pointwise, i, e., for fixed x c X , using Lemma 4.4.

8. THE INVERSION IS DIFFERENTIABLE.

8.1. THEOREM. Let X be a locally compact smooth manifold and let

Diff(X) be the open subset of diffeomorphisms of C°°(X , X J. Then in-
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v ersion I nv : Diff(X) -&#x3E; Diff(X) is o f class C°°rr.
PROOF. (1) It suffices to show that Inv: Diff(X) -&#x3E; Diff(X) is of class

in a neighborhood U of the identity I dX of X . For let f E Diff(X) , 
then

is a neighborhood of f by 2.5. For any g E V f we have

thus

J

Since (f -1)* and (r-1)* are of class C°°rr ( by 7.1 or by the A- and n-

Lemma respectively) the chain rule implies that In v | Vf is of class

( 2 ) Now let T : T X -&#x3E; X be a local addition and let

canonical chart centered at I d E Diff(X) , and let

and

be the chart maps. We have to show that the mapping

is of class C°°rr. There is again some abuse of notation involved: to be

precise we have to restrict the domain of the mapping Inv 0 f/J to an open

subset of D(TX) so that its image is contained in the domain ll of cp.
This is possible by 5.3, and we will silently assume this in the follow-

ing to save notation. Consider the mapping

of 7.2 ( 1 ) (here too we have some silent restrictions involved). Then

for any s E D( T X) we have:

Experience with finite dimensional Lie groups or the formula of Ver


