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THE EQUIVALENCE OF 03C9-GROUPOIDS AND CUBICAL T-COMPLEXES

by Ronald BROWN and Philip J. HIGGINS

CAHIERS DE TOPOLOGIE

E T GEOMETRIE DIFFERENTIELLE

Vol. XXII-4 (1981)

3e COLLOQUE SUR LES CATEGORIES

DEDIE A CHARLES EHRESMANN

Amiens, Juillet 1980

INTRODUCTION.

The Seifert-van Kampen Theorem involves the category 5"a-p. * of
spaces with base-point, the category Group of groups and the fundamental

group functor II1 : Jap * -&#x3E; Group ; the theorem asserts that the functor 171
preserves certain special colimits.

The generalisation of this theorem to all dimensions thus requires
answers to three immediate questions, namely, what are the appropriate
generalisations of the category Jop*, the category Group and the func-

tor 11’1 ?
In [4,5 , where such a generalised Seifert-van Kampen Theorem is

proved, the answer given to the first question is simple: a space with base-

point is replaced by a filtered space

such that each loop in X0 is contractible in Xi .
However, the second question has a surprisingly rich and varied

answer, even embarrassingly so. The situtation is summarised in the diagram

which shows the known explicit equivalences between five algebraic cat-

egories generalising the category of groups
The category of crossed complexes plays a special role. A homotopy

functor 17: ( filtered spaces) -&#x3E; (crossed complexes) is easily defined and

is a fairly well known construction in homotopy theory ( see [2, 5, 12]). This
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functor replaces 77. in one version of our generalised Seifert- van Kampen
Theorem. Since colimits of crossed complexes can be completely described

in terms of group presentations (see [5] ), this is the natural computational
form of the theorem.

By contrast, the proof of this theorem (see [3] for a sketch exposi-

tion) is carried out mainly in the category of w-groupoids and uses in an

essential way the equivalence of categories

(w-groupoids) H (crossed complexes)

and also the transition

r : (m -groupoids ) - (cubical T-complexes),

both of which were established in [4]. The object of the present paper is

to show that the transition T is part of an equivalence (in fact an isomor-

p hi sm ) of categories.
For the topologist, the interest of this purely algebraic result lies

in its relation to some familiar ideas. The proofs in [5] use the homotopy

w-groupoid p X of the filtered space X . Here p X is related to the singular

cubical complex K X, and the fact that p X is also a T-complex highlights
an intriguing feature of singular complexes.

It is well known that the singular complex K X of a space X is a

Kan complex - a property that is usually expressed succintly as «every box

in K X has a fillers. However, this property of KX is based on the exist-

ence of retractions r : In -&#x3E;Jna,i , where Jna,i is a box in jn , and so is a

property of the models rather than the particular space X . In particular,
the fillers can be chosen simultaneously for all X so that they are natural

with respect to maps of X . Further, the retraction r: In -&#x3E; Jna,i is unique

up to homotopy rel Jna,i . This suggests the potential usefulness of Kan

complexes in which boxes have canonical fillers satisfying suitable con-

ditions.

Such an idea is realised in the notion of a T-complex in which cer-

tain elements are designated «thin» and are required to satisfy Keith Dakin’s

axioms : 
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T 1 ) Degenerate elements are thin;
T 2 ) Every box has a unique thin filler;
T 3 ) If every face but one of a thin element is thin, then so is the re-

maining face.

We prove here that every cubical T-complex admits the structure of an w-

groupoid ; this shows that the simple axioms for a T-complex contain a

wealth of algebraic information, Our proof uses a refinement of the notion

of collapsing which we call reduction, and the methods formalise techniques
implicit in Kan’s fundamental paper [ 10].

Keith Dakin’s original definition of T-complex [7] was in terms of

simplicial sets, and was conceived as an abstraction of properties of the

nerve of a groupoid. Nicholas Ashley proved in [1] that the category of

simplicial T-complexes is also equivalent to the category of crossed com-

plexes. (At present, this seems to be the most difficult to prove of the

equivalences in the diagram above. It generalises the equivalence between

simplicial Abelian groups and chain complexes proved by Dold and Kan

[8, 11].) A fifth algebraic category, of 00 -groupoids, will be defined in [6],
and proved also equivalent to the category of crossed complexes. (This
seems to be the easiest of the equivalences. )

Thus we have an example, possibly unique, of five equationally
defined categories of (many-sorted) algebras which are non-trivially equi-
valent. From an algebraic point of view the equivalences provide a useful

method of transferring concepts and constructions from crossed complexes,
where they are easily formulated, to the other four types of structure, which

are less well understood. (See, for example, [9].)

It is particularly appropriate that this paper, and its sequel [6] ,
should appear in the Proceedings of a conference in memory of Charles

Ehresmann, as he initiated the study of double and multiple categories and

felt clearly that these notions should have important applications in Geom-

etry and Algebra.
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1. T-comPLEXES.

Our methods involve complicated filling processes in special kinds

of Kan complexes, that is, cubical complexes satisfying Kan’s extension

condition [10]. We adopt the following conventions.
A cubical set (= semi-cubical complex) K is a graded set (Kn)n &#x3E;0

with face maps

and degeneracy maps

satisfying the usual cubical relations. But we shall also use cubical sets

without degeneracies and, in particular, jn will denote the free cubical set

without degeneracies generated by a single cube cn of dimension n. Sub-

complexes A of jn will again be without degeneracies and a (cubical) map

f: A -&#x3E; K, where K is a cubical set, will be a graded map preserving face

operators. If A, B are subcomplexes of Im , In , respectively, then A X B

will denote the cubical set ( without degeneracies) such that (A X B)n is

the disjoint union of A p X B q for p + q = n , and the face operators on

A p X Bq are given by

Then Im x In is isomorphic to 1’+’ and we shall identify these whenever

convenient.

Let Jna,i be the subcomplex of jn generated by all faces a
( 03B2 = 0,1 ; j = 1 , 2, ... , n ) of cn except aa cn . For any cubical set K,
a cubical map b; In K is called a box in K , and an extension f: In -&#x3E; K

of b is called a filler of the box b . Equivalently, the box b is determined

by a set of 2n-1 elements

satisfying

A filler f of b is then determined by an element x ( = f ( cn ) ) of Kn sat-
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isfying

The following axioms (in a simplicial context) are due to Keith

Dakin [7].

DEFINITION. A T-complex is a cubical set K having in each dimension

n &#x3E; 1 a set Tn C Kn of elements called thin and satisfying the axioms: 

T 1 ) Every degenerate element of K is thin ;
T 2 ) Every box in K has a unique thin filler;
T 3) If t is a thin element of K and all its faces dBjt except one are

thin, then this last face is also thin.

Recall that a Kan complex is a cubical set in which every box has
a filler. Kan showed in [10] how one can define, for such a complex K,
the n-th homotopy group IIn (K, x) for n &#x3E; 7 and x E Kn-1. We here extend
his methods to show that if K is a T-complex then it carries the structure

of an oj-groupoid as defined in [4]. We shall give the full definition of an

w-groupoid later; for the present it is enough to say that the definition re-

quires that K admit groupoid structures +, +,... , + in dimension n and
1 2 n

also «connections» T 1, T2 ... , Tn : K n -&#x3E; Kn+1 satisfying a number of

laws. Our first aim is to construct the operations +j and prove their basic

propertie s.

As motivation for the construction, let x, Y E K1 satisfy d11 x = a0 y,
and let e = E d11y. Let t f T 2 be the unique thin filler of the box

If we now define x + y = d02t, it is not hard to see that K1 becomes a

groupoid with K0 as its set of vertices. (The proof of the associative law
requires the use of thin elements in dimension 3 . ) The laws for + are

1

more conveniently proved if one also considers arbitrary quadruples of ele-

ments x, y, z, w of K1 which fit together as in the diagram
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and for which there is a thin element t c T with x, y, z , w as faces. (Such

quadruples are, in fact, precisely those for which x +1 w = z +1 y . ) It is this

idea which we generalise to dimension n . 

Let Sn be the subcomplex Ij-1 X I2 X In-j of In+1 . Thus S n is gen-
erated by four cubes of dimension n , namely, daj cn+1 for a = 0, 1, and

i = j, j+1. By a socket in a cubical set K is meant a cubical map 5: Snj -&#x3E; K
for some n , j . Such a socket is specified by j and four elements x, y, z , U’

of Ken satisfying

as expressed in the picture

and is written s = sj (x, y ; z , w ) . For any cubical operator (b ( i, e., any

c omposite of dai ’s and f. J ’s) we abbreviate

An element u of Kn + 1 is said to span the socket s = s j (x, y ; z , w)
( where x, y, z , w E Kn satisfy ( 1 ) ) if

The cubical laws imply that in this case
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and

Note also that u spans s if and only if the unique map û; l n+1 -&#x3E; K such

that û ( cn + 1 ) = u is an extension of s : S nj -&#x3E; K.
Let s = Sj(x,y;z, w) be a socket in Kin. A plug fo r s is an ele-

m ent t of K n+ 1 such that

(3) (i) t spans s, and

( ii ) if A is any cubical operator corresponding to a cube of

I n + 1 BS nj, then 0 t is thin.

A more intuitive way of expressing ( 3 ) ( ii ) is that t and all its faces, ex-

cept possibly those which are x, y, z, w and their faces, are thin.

Not every socket admits a plug, but when it does the plug is unique,
as we shall show. Furthermore any socket which admits a plug is uniquely
determined by any three of the faces x, y , z , w. This crucial result is most

easily proved by refining the notion of collapse for subcomplexes of I n to

that of « reduction » for pairs of subcomplexes. This, we do in the next

section.

We note here that a cubical operator of I n + 1 can be written unique-

ly in standard form as

where

and that A corresponds to a cube of , 

2. REDUCTION.

By a pair of subcomplexes of j" we mean an ordered pair ( A, B)
of subcomplexes such that A D B . We say that a pair ( A, B ) is an el ement-

ary reduction o f ( A’, B ’) , written ( A’, B’) -&#x3E; e ( A, B ) , if there is a p-cube



356

x in A’ (p 2 1 ) and a ( p- i )-face y of x such that

(i) A u x = A’, A n x = x

and (ii) B n x = B’, B n x = x B{y},
where x denotes the subcomplex generated by x, and x = xB{ x}. Thus for
an elementary reduction, B is an elementary collapse of B’ with free face

y, but A ((remembers)) the free face.

We say that (A, B) is a reduction of (A’, B’) if (A, B ) is obtain-

able from (A’, B’) by a finite number (possibly 0) of elementary reduc-

tions. Then B’ collapses to B, while A « remembers) all the free faces

of this collapsing. We write ( A ’, B’)B(A, B).
Before explaining the relevance of this to T-complexes, we give

a crucial example.

PROPOSITION I. If (A’, B’) reduces to (A, B), then ( A’x I, B’xl) re-

duces to (A XI, B xl) and (I x A’, I x B’) reduces to (I X A , I X B ).

P ROOF. It is sufficient to prove that if ( A " B ’ )Be ( A , B) , then

So let

Then X = (x, c1) is a cube of B’XI with Y = (y, c1) as a face. If we

delete X and Y from B’ X I ( and X from A’ X l ) we obtain

Clearly this last pair can be reduced to (Axl, B X I ) in two steps, first

b y d ele tion of (x, 0) and (y,o), then by deletion of (x, 1) and (y, 1). c

COROLLARY 2. 1f 1  j  n, a = 0, 1, i = 1 , 2, then

""’7

P ROO F. This is immediate from Proposition 1 since ( I2 , I2) Be ( j2, J2a,i). *

D EFINITION. Given a pair ( A, B) of subcomplexes of In, we say that B

supports A in dimension n if, given any T-complex K and any cubical

map g: B -&#x3E; K , there is a unique extension g: In -&#x3E; K of g whose values on

In, A are all thin.
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P ROPOSITION 3. If (In, In)B(A, B), then B supports A in dimension n.

P ROOF. Since In supports ¡n , it is enough to show that B supports A in

dimension n whenever ( A’, B’) Be ( A, B ) and B · supports A’ in dimen-

sion n. In this case we have

for some cube x and face y , If g: B -&#x3E; K is a given cubical map, then g
is defined on the box xB{ y} but not on x or on y. Any extension g of g
which takes thin values outside A must map x to a thin element and, by
axiom ( T 2 ), this determines g (x) uniquely, giving a unique extension

g : B ’ -&#x3E; K . Since B’ supports A’, g has a unique extension h: In -&#x3E; K
which is thin outside A’ . Since h (x) = 9(x) is thin, h is thin outside

A , as required, o

It follows from Corollary 2 and Proposition 3 that the subcomplex
Snj of In + 1 is supported in dimension n + 1 by any of the four subcom-

plexes Ii-1 X J2a,i X In-i ( a =0,1, i = 1, 2 ) . We restate this fact in terms

of sockets and plugs.

PROPOSITION 4. L et K be a T-complex and suppose that we are given any
three of x, y, z , w E Kn satisfying two of the conditions (1) o f Section 1

(namely the two which are meaningful). Then there is a unique fourth ele-

m ent such that:

(i ) x, y, z, w form a socket s = sj( x, y ; z , w) ,
and ( ii ) there is a plug t = t,(x, y ; z , w) spanning s .

Furtherncore this plug t is uniquely determined by the three given elements.

3. THE COMPOSITIONS + . .
i

The following proposition, which defines compositions + in any

T-complex K , is an immediate consequence of Proposition 4. 
j

PROPOSITION 5. L et K be a T-complex and l et x, y E Kn satisfy

Then there is a unique element z = x+j y of Kn such that



358

(i) there is a socket s = sj(x, e; z, y) with

and (ii) this socket has a plug.
Further, the (partial) operation +j satisfies left and right cancellation laws
that is, if x, Y, z are related by z = x +j y, then any two of x, y, z det-

ermin e the third uniquely. 

Further properties of these compositions depend on some elementary

properties of plugs in K . Vie assume that x, y, z , w c Kn .

P ROPO SITIO N G. I f t = tj( x, y; z , w) is a plug, then aq t is a plug for

P ROO F. Certainly aq t spans the given socket. Suppose that i  j and

V = da1i1da2ai ... darir is a cubical operator in standard form corresponding to

a cube of In + 1 BSnj-1, so that no ik is j -1 or j . Then the standard form

of Vdaj contain s no dBj or dBj+1. Hence Vdajt is thin as required. The

case i &#x3E; j + 1 is similar. o

PROPOSITION 7.If t = tj(X’y; z,w) is a plug, then fit is a plug for

PROOF. Certainly fit spans the given socket. Suppose that i  j and

i cubical operator of In+2BSn+1j+1] in standard form,
j
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so that no ik is j+1 or j + 2. If no ik is i, then 0 Ei is degenerate and

therefore 0394 Ei t is thin by axiom (T 1 ). If is =0 i then

and since i  j and is -1  i  is + 1 and no ik is j + 1 or j + 2, we see that

A E 
i, 

is a cubical operator of In + 1 BSnj . Thus VEi. t is thin, as required.
The case i &#x3E; j + 1 is similar. ( When i = j + 1 , the form of ci t is slightly
different and need not concern us. ) 0

Applying Propositions 6 and 7 to the definition of + in Proposition

we obtain immediately: 

P ROPOSITION 8. L et x,y£Kn satisfy d1j x = d0jy. Then

A t this stage we c an also prove th at + has appropriate left identitie s.
i

Also f +jf = f for any f of the form f = E j z .
P ROO F. The thin element t = Ej + 1 y spans the socket s j ( f , e; y, y) . The
faces of t in all dimensions are degenerate ( and therefore thin), except
those which are faces of d aj + 1 t = y · Therefore t = tj( f, e; y, y) and so

f +j y 
= y. In particular, f +j f = f for any element f of the form f = Ej z . o

We now make our first and crucial use of axiom ( T 3 )·

PROPOSITION 10. Composites under + o f thin elements are thin.
i
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PROOF. Let z = x +j y in dimension n , where x and y are thin. Let

t = tj ( x, e ; z , y ) , where e = Ejaj y. Then all the n dimensional faces of
t , except possibly z , are thin. Since t is thin, axiom ( T 3 ) implies that

z is thin. n

We use this result in the next proposition, which gives rules for

composing plugs and is vital for the rest of the proof.

PROPOSITION 11 ( For illustrations, see the next page). (i) If

are plugs, then t + t’ is a plug for
j+1

are plugs, then t + t’ is a plug for
1

be plugs and let i t j. If the four composite elements in

are defined, then s is a socket and has as plug

PROOF. (i) By Proposition 8, t" = t + t’ spans the socket s . Also t" is
j + 1

thin, by Proposition 10. Repeated applications of Proposition 8 show that

for any composite A of face operators At" has one of the forms

for suitable k ;

so if 11 corresponds to a cube of In+1BSnj then V t " is thin. Hence t 11 is

aplugfor s.

( ii ), ( iii ): The proofs are similar, o

P ROP OSITIO N 12. ( i ) Eaclz composition 
i 

-E- ( j = 1 , 2, ... , n ) in dimen-

sion n gives a groupoid structure on (Kn , Kn-1 ) with d0j, al and f j as
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initiul, final and identity maps resp ectively,
(ii) The interchange law holds, that is, i f i t j, then

whenever both sides are defined.

P ROO F. (i) There is a graph structure on (Kn, Kn-1) with 9q, d1j as

initial and final maps, and the composition x + y is defined if and only if
i

al x = aqy. To prove the associative law suppose also that d1jy = d0jz and
write

Then by Proposition 10 (i ) there is a plug

Since e + e = e ( by Proposition 9 ), this implies that
i

We now have associativity, left and right cancellation ( Proposition 5 ) and

existence of left identities ( Proposition 9). It follows easily that +j is a

groupoid structure and that c, is its identity map. 

( ii ) In proving the interchange law we may suppose that i  j . Let

satisfy

Write
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p ropos ition 11 gives us a plug

But by p ropos irion 8. So

as required, c

R EM ARK. It is easy to see that an arbitrary socket s = s j(x, y; z , w ) has
a plug if and only if x + w = z + y.

i i

4. w -GROUPOIDS.

We recall from [4] that an (0-groupoid K is a cubical set with the

following extra algebraic structure. Firstly, for each n &#x3E; 1 , the pair: 

(Kn, Kn_i ) has n groupoid structures each with objects Kn-1 and arrows



364

Kn . For i = 1 , 2, ... , n the groupoid «in the j-th directions has operations
written +j, -j ; it has initial and final maps a! and its identity ele-

ments are the degenerate cubes Ej y ( y c Kn-1 ) , Here - is the inverse op-
eration for -E- . The laws satisfied by these operations are the ones which

have already been established for the operations + of a T-complex in the

previous section

Secondly, an a)-groupoid has conn ecti ons

such that f’ix has the following faces : 

and the following rules hold : 

(6 ) each of the connections satisfies the transport laws, namely, if

x, y E Kn and di x = a7 y, then ( see illustrations on the next page)

(It is curious that the 9q, Tj together satisfy the rules for the face and

degeneracy operators of a simplicial set; this was pointed out by R.

Fritsch. )

Suppose now that is a T-complex. For any

we have a relation
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, 
where

So we have a plug tj (x, e; x, e) . We write TjX = tj(x, e; x, e) and call

r i.- Kin - Kn+1 the j-th connection in dimension n +1 .
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THEOREM A. With the definitions o f +j, T j given above, the T-complex
K i s an w-groupoid.

PROOF. We have already verified the laws for +j alone, and we have to

prove (4), (5) and (6). 

Now (4) ( i ) and ( ii ) follow from the definitions, while ( 4 ) (iii)
follows from P roposition 6.

To prove (6 ) ( i ), suppose that x + y is defined. We have

where

where

and Ej+1 y = tj ( e, f; Y, Y ) by Proposition 9. Application of Proposition

11, parts ( i ) and ( ii) gives immediately

The other equality in (6) ( i ) follows by applying the interchange law (Pro-

position 1 2 (ii) ) to

using the fact that Ej y is an identity for the operation i + , Similarly, ( 6 )

( ii) is obtained by a single application of Proposition 11 ( ii).

To prove ( 5 ) we need the following

L EMM A.

P ROO F. If p  q , then Proposition 7 ( with i = q -+ 1, j = p ) gives:

T p Eq = Eq + 1 T p, and the result follows from equations (4) ( iii ). The case
p &#x3E; q is similar. If p = q we let x E Kn and write e = 6 d 1 p x. Then we
have Ep d1pe=e, so

by Proposition 9. However, fp + 1 e 
= Ep e and also, by ( 4) ( ii ),
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The result is therefore true when p = q, o

Now, consider the rule ( 5 ). It is enough to prove that

Write u = Ti Tj x. To show that is by definition to show that

, where

So we must prove : 

and ( c ) the faces of u in all dimensions are thin, except possibly those
which are faces of some daj+1 u or a j +2u. 

The equations ( a ) follow directly from (4) ( i ) and ( 4 ) (iii). Also

by (4) (ii) and (4) (iii),

and this is equal to f by the lemma. When  j , the same argument gives

d1j+1 u = f , while for i = j we h ave

and

This proves ( b).

Finally, to prove (c), we observe that since

, 
where ,

all faces of u are thin except possibly those which are faces of some dai u
or dai+1 u. Each of these four faces is either r. x or e and is therefore

of the form tj ( , ; , ). (Note that e = Eid1iTjx is of the form TjEkd1kx
by the Lemma. ) It follows that any face of u which is not thin is a face

of one of the special faces

However, it is easy to verify that each of these special faces is a face of
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This proves ( c ) and completes the

proof of Theorem A. n 

5. THE ISOMORPHISM OF CATEGORIES.

If (K, T) is any T-complex ( K being the underlying cubical set

and T the collection of thin elements), the construction described above

gives an w-groupoid o (K, T ) = ( K, +,r;). Conversely, given an m-group-
oid (K, +j, r.), it was proved in Section 7 of [4] that K carries a T-com-

plex structure in which the thin elements are all composites under the oper-
ations + of elements of the form

j

We abbreviate this last element to ( ± ) Tm y , and we denote the resulting
T-complex by T (K, +j, Tj ). Both constructions Q and r are clearly func-
torial.

THEOREM B. Let denote the category of T-complexes and G the cat-

egory of w-groupoids. Then the fun ctors o : F -&#x3E; G and T : G -&#x3E; F are in-
v ers e isomorphisms.

P ROO F. Let ( K, T ) be a T-complex and let o (K, T) = (K, +j, Tj). Then
r a (K, T) = (K, T’) where T’ consists of all composites of elements fir
and (± )Tm y. By definition of T-complex, EiY E T. By definition of Tm
in a T-complex, 1rn y E T . Also, if t f T n , we have

11

(since +j gives a groupoid structure on Kn ) and so the socket si( t, e . e, -tj)
has a plug. Since this plug and all its n-f aces other than - t are in T n it

follows that -t c Tn , by axiom ( T 3 ). Hence ( ± ) Tm y c T and Proposition
10 implies that T ’ C T. But this implies that T’ = T ; for if t f T n + 1 and

b is any box consisting of all n-faces of t except one, then b has a unique
filler in T’ ( see [4], Proposition 7.2), whence t E T’n+1 . This proves

that T a is the identity functor on 5 .
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Now let (K, +j, T j) be any given w -groupoid and let

where T’ is defined as above. To show that arK, T’) = (K, +j,1.) we
must show that, for x, y c K n’ 

( i) f-ix is a plug in (K, T’) for the socket s j ( x, e; x, e ) where

then the socket , where f
has a plug in ( K, T’). 

Now r . 1 x certainly spans s j .(x, e ; x, e ) . Also, for any cubical operator

the laws of w-groupoids imply that for

suitable k, 0’, and hence VTj x E T’. This proves ( i ). Similarly, if

d1j x = d0jy, the element spans , and

At c T’’ since it is of the form , This proves ( ii ) and

completes the proof of Theorem B. a
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