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THE TOWER AND REGULAR DECOMPOSITION

by John L. MACDONALD and Arthur STONE

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFERENTIELLE

Vol. XXIII - 2 (1982)

3e COLLOQUE SUR LES CATÉGORIES

DÉD/É A CHARLES EHRESMANN

Amiens, Juillet 1980

Composition and its infinitary analogues are among the partially
defined operations on the morphisms of a category. Thus a given morphism

may have an infinitary decomposition corresponding to a given ordinal.

Furthermore, such a decomposition may have certain universal properties.
VG’e first examine the regular decomposition of morphisms described

by Isbell [13] (cf. Kelly [14 ) and point out the universal properties of

that decomposition. An example suggests the relationship between partially
defined algebraic structures and regular decomposition length.

Secondly, in the same light, we consider the adjoint tower decom-

position of an adjunction. This decomposition is already implicit in Beck’s

[16] factorization of an adjunction through its category of algebras and

is more explicitly described in Applegate -Tiemey [11 (cf. Day [5] ). The

universal properties of this decomposition are entirely analogous to those

of the regular decomposition. However, the adjoint tower is not in general
a regular decomposition, as shown by an example in the second section.

Finally, we give a class of examples illustrating the nontriviality
and interrelatedness of these two decompositions for each ordinal. The

examples are essentially algebraic in the sense of Freyd [6] and show

how the regular length of the counit is related to the essential length of

the tower.

1. CHAIN COMPOSITES AND REGULAR LENGTH.

In this section the chain composite f of a family

of morphisms is defined for given ordinal A. Then the regular epic com-

ponent (or largest regular epic « bite») of a morphism f is described and
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conditions are given for its existence as well as for that of the canonical

regular epic decomposition of f , the latter being a specifically defined

chain composite, for a certain ordinal k , of regular epics followed by a

monic (cf. Isbell [13] ; Kelly [14]). The ordinal À (when it exists) is call-
ed the regular length of f .

We identify an ordinal X with the ordered set (considered as a cat-

egory) of ordinals less than X and let a B denote the unique morphism from
a to B when a  B . 

D E F INIT ION 1.0 .A chain of ob j ect length A in a category C is a diagram
( = functor) X -* C where A is an ordinal. The morphism length of a chain

is the order type of the family of morphisms c a B with (3  A and 6 =a+1.
So morphism length equals object length when this is 0 or a limit ordinal;

otherwise morphism length equals object length minus one. A cochain of

objects colength À in C is a con travariant functor x - C .

Note that in an ordinal k (regarded as a category) each object y
is the colimit of the diagram of morphisms a/3 with a  y and B = a + 1.
Call a chain cocontinuous (of course) if it is cocontinuous as a functor.

For each object Ca in a cocontinuous chain * the family of morphisms
c 
ea ( 0  a ) forms a colimit cone.

Note that finite chains are always cocontinuous.

DEFINITION 1.1. A morphism f is a chain composite of the morphisms

f a B (ctA? B = a + 1 ) if there is a cocontinuous chain C of object length
k + 1 with

When h is finite chain composite equals composite.

Recall that an epimorphism e is :

( 1 ) regular if for som e set {x a’ Y} a E I of ordered pairs of morphisms

satisfying e x a = e ya we have that h xa = h ya (for all a ) implies the

existence of a morphism d with d e = h ;
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and

( 2 ) strong if whenever b e = m a with m monic, there is a «diagonal»
d with d e = a and m d = b.

The class of regular epics in a category need not be closed under

composition (Herrlich -Strecker [11], p. 262). However, a regular epic is

s tron g and

P ROPOSITION 1.2. A chain composite o f strong epics is strong epic.

P ROOF. By induction on the length of the chain. For the induction step
consider the diagram

where e’ and e are strong epic, m is monic, and b e e’ = m a . We have a

diagonal d’ since e’ is strong epic. Then the strong epic e gives us a

diagonal d for the square m d’ = b e . At a limit ordinal the (infinite) dia-

gram is similar, and the diagonal d exists by the definition of colimit. 0

DEFINITION 1.3.

The regular epimorphism f 01 is a regular epic component of morphism f if

f = f1 , f01 for some (necessarily unique) f 1 and whenever f = A.g with

g a regular epic, there is a (necessarily unique) j with j , g = f01 .
Note that the usual «uniqueness» proof applies, so that when g is

another regular epic component of f , above, j is an isomorphism. A reg-
ular epic component factors out of f as much as we can get in one regular
epic « bite».
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PROPOSITION 1.4. I f f 01 is a coequalizer morphism for a kernel pair for
f , then f 01 is a regular epic component o f f .
P ROO F .

Let p , q be a kernel pair for f , with coequalizer morphism f 01 , and
f= f1 , f01 . Let g be a regular epic for the family {xa’ ya}a E I with

f = h . g . Then f . xa = f-ya ( a E I) so by the definition of kernel pair we

get a family {ha} a E I satisfying

Since f01 . p - f01. q this gives us f 01 . xa = f01 . Ya and hence a mor-

phism j. o

DEFINITION 1.5. A canonical regular epic decomposition of a morphism

f : Sce f - Tgt f in a category C is a chain

in the comma category C/ Tgt f in which

(0) f= f0, 
( 1 ) when B = a + 7 the morphism f a B is a regular epic component of f a
( 2 ) the chain is cocontinuous, and

( 3 ) f a is non-monic for a  k ; f À is monic.

Such a decomposition is easy to construct given enough limits and

colimits, for example we have:

P ROP OSITION 1.7. Let th e category C have kernel pairs, coequalizers o f
kernel pairs and col imits o f (possibl y large) chains o f regular epimorphisms.
Then every morphism f in C has a canonical regular epic decomposition.
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PROOF.If f is monic, then f has a canonical regular epic decomposition
in which the chain has morphism length 0 . When f is not monic, proceed

by induction using 1.4 and colimits at limit ordinals. We get a chain com-

posite of coequalizer morphisms fag as in 1.6 which proceeds through the
ordinals. However, if y is least ordinal with cardy &#x3E; card C then f a = f B
for some pair (a, B) with a  B  y . It is straightforward to show that

f a = f B for a  B implies f a monic. Let k be the smallest ordinal such

that f k is monic.

PROPOSITION 1.8. Cano nical regular epic decompositions o f mo rphi sms
(when they exist) are unique up to unique isomorphism of diagrrxms.

P ROO F . Fo llo w s inductively from the note following 1.3.

The regular length of a morphism f is the morphism length of a

canonical regular epic decomposition of f. (The regular length is undefined
when there is no such decomposition.) The regular length o f C , if it is def-

ined, is the supremum of the regular lengths of the morphisms of C .

So monomorphisms have regular length zero. Categories with (reg-
ular epic)-monic factorizations (and at least one non-monic) have regular

length one.

It can be shown that Cat has regular length 2. A basic typical

example of a regular length 2 , strong epimorphism in Cat (in notation sug-

gesting it to be the value of the counit of an adjunction) is the natural func-

tor E o3 : G°3 - 3 . Here 3 is the ordinal number À =3 regarded as a cat-

egory and G ’3 is the disjoint union of six copies of 2 , one for each mor-

phism of 3 . If a (x ) denotes the copy of a in 2 indexed by x in 3 then

E°3 maps

Let C1 3 differ from 3 by having an additional morphism introduced by

requiring that 02 # 12.01 . It is a straightforward exercise to show that

6°3 has a canonical regular epic factorization
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2. THE TOWER AND MONADIC LENGTH.

In this section we show how an adjunction has a decomposition
(when enough colimits exist) with the same type of universal properties
as regular decomposition. To bring out this point we use well known results

of Beck [16] on adjunctions and monadicity and of Applegate -Tierney
[1] on towers freely throughout omitting proofs of standard results.

More specifically, the monadic component (or largest monadic «bite» )
of an adjunction is described and conditions given for its existence as well

as for that of the canonical monadic decomposition, the latter being a spe-

cifically defined chain composite, for a certain ordinal 3 , of monadic ad-

junctions (the successive « bites ») followed by an idempotent adjunction
with invertible unit (cf. Applegate -Tierney [1]). The ordinal 8 is called

the monadic length of the adjunction.
When 8 is a successor ordinal it happens in some (but not all)

cases that in the canonical monadic decomposition the composite of the

last adjunction (with invertible unit) with the preceding monadic adjunction
is itself idempotent. Then we say that the essential length k is one less

than the monadic length 6 . Otherwise we let k = 8 .

This decomposition is not the same as the canonical regular epic

decomposition as we show by presenting an example of a monadic compon-
ent which is not epic, even in a rather weak sense.

NOT ATION . An adjunction N consists of left and right adjoint functors

F and U together with a choice of unit and counit 77 and f. (The choice

of one of 71 and c determines the other.) The monad = triple determined

by N is

Following MacLane [16] we take the source and target of N to be

those of F and say that N is the composite N B A N a of!f/3 and Nu when

Then we have:

LEMMA 2.1-If N = NB ANa, then
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In the adjoint tower the composite of certain adjunctions satisfy
the hypotheses of

LEMMA 2.2. When

Call an adjunction N monadic ( = tripleable) if its right adjoint U

is monadic. Recall (e.g., MacLane [16]):

P ROP OSITION 2.3. I f the adjunction N is monadic, then the counit c is

regular epic; it i s a co equaliz er for E G and G E (where G = F U ).

DE FINITION 2.4. A monadic adjunction N01 is a first monadic component
of an adjunction N if

t 
r some

PROPOSITION 2.5 (c f. Beck [16]). I f A has coequalizers, then every ad-

junction has a first monadic component.

PROOF.

Let XI denote the category of Eilenberg- Moore algebras X 1 = X, a&#x3E;

where a : T X -&#x3E; X is an Eilenberg -Moore structure morphism in X , and let

Fol and U 01 be the Eilenberg -Moore free and underlying functors (thus

F01 X =  U F X, U E F X&#x3E;). Choosing the unit by setting n01 = n fixes

the adjunction. The counit (01 maps  X, a&#x3E; l-&#x3E; a (regarded now as a

morphism in X 1 ) .
The Beck comparison fu nctor U1 maps A l-&#x3E;  U A , UE A &#x3E; . Then clear-
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ly FO 1 = U’F. It is then routine to verify that N = N1 A N01 using the

well known [16] description of the left adjoint FI of Ul and its associat-

ed unit 7y and counit fl. 0

We have the following uniqueness property for the adjunction N’
of 2.4:

P ROP O SITION 2.6. I f

with N01 monadic, 11 = 11°1 and Fol = V1 F = VY F, then there is a unique
natural isomorphism F1 -+ FY (and a unique natural isomorphism U Y , Ul ).
P ROO F . If Na is monadic, then ca and 1 are a coequalizer morphism and

object for the pair Gaca, fl Ga by 2.3. Left adjoints Fl and FY pre-

serve the coequalizer diagram. If

then the resulting pair when a = 0 1 is

So Fl and FY are coequalizer objects for the same pair. o

A first monadic component N01 of an adjunction N is maximal (in

an obvious sense) among the monadic adjunctions Na through which

factors; it takes out of N as much as can be had in one monadic « bite »,

just as the regular epic component of a morphism f factors out as much as
we can get in one regular epic « bite ».

P ROP O SITION 2.7. L et N - N1 A N 01 = N A N a with N a monadic and

N01 a first monadic component o f N. Then there is an adjunction N8 with
N01 = N8ANa and (up to isomorphism) NB = N1 A N8, provided Xl has
coe qual iz ers.

P ROO F . For simplicity assume that the categories Xl and XB are (and

not just equivalent to) the Eilenberg-Moore categories for the monads To’
and ra, and let U1 be (not just isomorphic to) the comparison functor.
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If N = NBANa then there is a natural transformation

(which is in fact a morphism of monads). The right adjoint ve maps

is a Ta-algebra ; if the mor-

phism h in X is a T-homomorphism, then it is also a Ta-homomorphism).
The comparison functor for Na : X - X f3 is the identity. Thus for Y in

we have Hence

and Thus

In particular,

Furthermore

by definition of UO , using i

The natural transformation r and the left adjoint Fd are defined

by this coequalizer diagram in (XB, X1 ) :

and the counit 6 is the unique morphism from the coequalizer object F d Ud

so that E8.T U0 = E01 . The unit TJO is the unique morphism from the co-
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equalizer object 1 = Tgt Ea for which TJ (). f1 = U8T .nB Ga so, by the

proof that f1 is a coequalizer, 770 is determined by

We remark that the usual «uniqueness» proof applies, so that if

N Q is another first monadic component of N , then NO is an isomorphism
(or more accurately, there is an adjunction N8 such that the right adjoints
6 and U% are inverses ).

Proposition 2.6 shows that a first monadic component of an adjunc-
tion has certain characteristics of an epimorphism. However, monadic ad-

junctions are not necessarily epic, not even pseudo-epic : N a monadic and
NB A Na = Ny 0 Na need not imply FB isomorphic to F y . For example, in

let Na be monadic and let the algebras of B have exactly twice the al-

gebraic structure of the algebras of A . To be concrete let the algebras of

A have, say, one unary operation (no axioms) and let the algebras of B

have two. Then there are non-isomorphic monadic (somewhat forgetful) func-

tors U,8 and UY for which the composites with the forgetful functor Ua

are equal.

A monad T = (T,n, 03BC ) is said to be idempotent if n is an isomor-

phism and trivial if, in addition, -q is an isomorphism. An adjunction N is

idempotent or trivial if its associated monad is.

P ROPOSITION 2.8. The adjunction N is idempotent i f and only i f any one

o f the natural transformatiohs

is an isomorphism, i f and only i f any two distinct natural trans formations
2.9 with th e sarne target and source are equals (say E F U = F U E ).

In particular N i s idempotent if c is monic (since c. (F U = E .FU E ).
The proof of the proposition uses only repeated applications of the adjunc-
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tion equations, the naturality of 71 and c and the fact that

DEFINITION 2.10. A canonical monadic decomposition of an adjunction
N is a chain

in the comma category of adjunctions over A in which :

(0) N =N0 
-

(1) when 13 = a + 1 the adjunction Nai3 is a first monadic component

of N a , hence FaB = UB Fa and n aB = na ;
(2) when K is a limit ordinal X K is the limit in Cat of the diagram

of right adjoints U aB ( a  B  K ) , with

(3) N a is non trivial for a  6 ; N 6 is trivial.

VG’e refer to the adjunctions ¡ya¡3 in 2.11 as monadic components of

N . Monadic decompositions are examples of adjoint towers. Conditions for

the existence of auch a decomposition are given by the following result

(cf. Applegate -Tiemey [1]).

T H EO R EM 2 012. 1 f A has coequalizers and colimits of (perhaps large)
chains of strong epimorphisms, then every adjunction N : X -&#x3E; A has a ca-

nonical monadic decomposition.

P ROO F . By induction on a - When j3 = a + 7 apply 2.5. when K is a limit

ordinal we must define N aK and N K in such a way that N a = N K A N a K ,

( 2 ) holds. We present only a few of the important details. An object X K of

X K is an indexed family  X a &#x3E; a  K of objects of the categories X a sat-
= =

isfying U aB XB = Xa (a B K). Furthermore, UaK( X8 &#x3E;8k ) =Xa
and the limit comparison UKA -  Ua A &#x3E; aK° Furthermore, FaK = tJK Fa
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and F"is a colimit of the diagram

of (companentwise) strong epimorphisms.
Thus if we do not stop when Na becomes trivial we can push the de-

composition 2.11 through all ordinals a . But we have assumed that the

categories of this paper are at most large (relative to a universe U [18] ).

Consequently there are at most 2card U distinct natural transformations (a

in 2.11. Let A be the first ordinal for which we have

Then by 2.2 (1) F B n BF kB = 1 and (since E B F B is a one-sided inverse
for F B n B)

So E À F À U À = 1 - which by 2 implies that N À is idempotent.

If, on the other hand, we let À be the first ordinal for which N k is

idempotent, then 6 is isomorphic to E B for all j8 &#x3E; À. This follows, by

induction, from the equation

and the fact that F B E a BU B is a coequalizer when B =a+1 for the pair

Gaca, EQGa - which is non-distinct when À  a.

So N B is idempotent for B &#x3E; X.

Claim : if N X is idempotent and B = À + 1 then N B is trivial. For if

CXFX is an isomorphism, then so is B À B (since it is a coequalizer of the

pair GÀEÀB, EÀBGÀB = UBEÀFÀUÀB -with common-one-sided inverse

FÀBnÀBUÀB). Hence, so are UÀFBEÀkB and nkUkB (one-sided inverse
of UÀBEÀB) - which by definition of nB have Uxt8riP as their composite.
Since UkB is faithful, TJ f3 is an isomorphism.

The ordinal 8 of 2.10 is À if N À is trivial; otherwise 6 = À + 1 . o

The uniqueness of canonical monadic decompositions (up to iso-

morphism) follows inductively from the remark following 2.7. In particular:

PROPOSITION 2.13. In 2.11 the ordinal 8 is uniquely determined the X a
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are determined up to e quivalence of categories and once the Xa are chosen
the T a (associated to Na ) are determined up to isomorphism o f monads.

DEFINITION 2.14. When an adjunction N has a canonical monadic de-

composition, the essential length (monadic length) of N is the smallest

ordinal A in 2.11 such that y- is idempotent (trivial).

In the proof of 2.12 we have already seen that for a given adjunc-
tion monadic length equals either essential length or essential length plus
one. An example with essential length 1 and monadic length 2 is the usual

adjunction from sets to torsion free abelian groups.
The torsion free abelian groups is typical of a general phenomenon :

where X and 8 denote the essential and monadic lengths, all the « visible »

operations of the algebras in X 6 already appear in XX.

PROPOSITION 2.15. I f A is at most large then the monadic length of an

adjunction N : X -&#x3E; A (when defined) has cardinality at most that of the
universe U .

The proof calls for a reexamination of the proof of 2.12. There, to

avoid clutter, we spoke of natural transformations ca in place of morphisms

E a A . If A is at most large, then for each object A there are at most

card U distinct morphisms E a A . Now in the proof of 2.12 let ÀA be the

smallest ordinal k for which we have E À A = E B A for some B &#x3E; À and let

À = sup A E A À A . 0

Note that in the proof of 2.12 we do not need all the cocomplete-
ness that we ask for in the statement of the proposition. We need only the

coequalizers T aB X B of pairs Fa U a B E a B X B, E a Fa Ua B X B for Eilen-

berg-Moore algebras X B (B = a +1 ) and colimits of the resulting chains

for limit ordinals K  À.

REMARK 2.16. Monadic decompositions are a refinement of the Day factor-

izations [5] of adjunctions, analogous to the refinement of strong epic-

monic factorizations by regular decompositions.
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3. AN EXAMPLE.

A simple example that will produce adjunctions of any desired

length X and epimorphisms of regular length X is obtained by letting
A = Ah be the category of algebras A for a sequence of partial operations

m (B  X) where

mB defined at a c A iff ma a = a for all a  B.

( So m = m0 is everywhere defined. ) Homomorphisms f : A -&#x3E; B are func-

tions satisfying ma f (a) = f (ma a ) whenever ma a is defined.

For consideration of this example, which is essentially algebraic
in the sense of Freyd [6], let the a-sequence of an element a (when def-

ined) be the sequence

and call this sequence free if its elements are distinct. There is an adjunc-

tion Nay: Aa-&#x3E; AY a  y ) in which vaY forgets the operations m

( a  8  y ) and F aY A is the algebra A with a new free a-sequence ad-

joined at a for each element a satisfying me a = a ( 8  a It is easy

to see that the Eilenberg-Moore category for N a y is isomorphic to AB 
where 8 = a + 1 - and that N0 À has essential and monadic length X . 

The example can be modified to give

monadic length = essential length + 1 .

For example we might impose upon the algebras A of Aa ( 0  a ) the re-

quirement that they satisfy an axiom of the form

(m0 leaves fixed the elements of Im me ) for a = 8 + 1 , and for a a limit

ordinal we might let the axiom be

( m0 leaves fixed the elements of 02 a Im me ) .
We next show how epimorphisms of regular length X arise as values

of the counit c of N 0 À. The unit n ay of N aY (a y ) consists of the ob-
vious embeddings Aa -&#x3E; Uay FayAa . The counit morphisms



211

maps a l-&#x3E;a for a E A B and maps mn m aa l-&#x3E; mn m aa (defined freely on

the left and using the structure of AB on the right) whenever ma is def-
ined at a .

For A = 2 the canonical monadic decomposition and regular conuit

decomposition look as follows :

Using this we construct an explicit length 2 regular decomposition
of the counit c at the object 2 of A 2 described as follows : the underlying
set l2l of 2 is that of the category 2 , which is just the set 10, 11 . The

operations of 2 are

and E 2 has regular decomposition

In the same way for an ordinal A an object A of /4" may be des-
cribed for which E A has length A regular decomposition. More explicitly,
the underlying set l À I of À is that of the category k , in other words, the
set of ordinals less than À. Furthermore, a partial operation ma is def-
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ined on ) A) i for each a  À as follows : given B c Aj I the element m a B is
undefined for 8  a,

An adjunction model induced by a set L of cardinality m of ob-

jects of A is one whose right adjoint U: 4 -+ Ens maps

In this terminology we see that N0 k: A0-&#x3E; Ay is model induced by the set

L whose only member is F0Y of the one element set, i. e,, the free 0-

sequence on one element.
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