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COHERENT EUCLIDEAN GEOMETRY

by Rosanna Succi CRUCIANI *

CAHIERS DE TOPOLOGIE

ET CtOMtTRIE DIFFERENTIELLE
CATÉGORIQUES

Vol. XXVI-1 (1985)

R6sum6. Nous donnons des axiomes pour une th6orie de la
Géométrie Euclidienne consideree comme une cat6gorie logique
E : nous pr6sentons les objets et les morphismes qui "engendrent"
E et nous en decrivons les propri6t6s. Nous indiquons une th6orie
d’anneaux appropri6e et, à. partir d’un modele de cette th6orie,
nous construisons un modele de la géométrie ; nous montrons que
la cat6gorie E/S2 (S2 = "objet des couples de points séparés") fournit
un modele de la th6orie d’anneaux et donc un modele de la

géométrie ; celui-ci est isomorphe au foncteur S2X ( ) : E -&#x3E; E/S2.

INTRODUCTION. 

Following the foundational, philosophical and didactic motivations

expounded by F.W. Lawvere since 1978 in view of a new foundation
of Euclidean Geometry, we showed in [16] how Euclidean Geometry can
be regarded as a logical category E : with our axioms, we produced
the objects and morphisms that "generate" E and gave their properties.

In [13 ] it is shown how logical categories are the "same" as

theories in a finitary coherent logic : roughly speaking, one can say
that, for all practical purposes, using one or the other framework is

equivalent in the sense that each axiom or inference can be stated
either in a logical category or in a coherent theory, and the passage
from one setting to the other is always possible. (The coherent logic
is a logic that we can call "positive" because the formulas are built by
means of a, V, 3 and the rest of the logical operators cannot be used
at all.)

The categorical aspect is of great significance for us, because
the mathematical processes of Euclidean Geometry (geometric construc-
tions, algebraic operations, etc.) can be unified under the general con-
cept of mapping (for example, the fundamental map x: S2xLxL -&#x3E; P
of our axiomatization represents the process of drawing the perpendicular
to a line through one of its points) ; moreover the composition of maps
and other processes (images, cartesian products, etc.) yield further

maps, thus representing the development of our geometrical thinking.

In Section 1 we describe the axiomatization we gave in [16].
The choice of axioms has been guided by the proposal of obtaining,
by means of coherent logic, the properties of order, parallelism and
metric properties of Euclidean Geometry. On the other hand, we had
* This work was supported by the Ministero della Pubblica Istruzione.
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in mind significant models for our axioms, such as Grothendieck toposes :
this is why we did not introduce strong properties as, for example,
total order on the line. In our approach, there are not only Space-
objects, as the line L, the plane P and the object S2 - PxP of pairs
of points that "lie apart", but also Quantity-objects : the semiring Q
of pure quantities, , the Q-semimodules A object of lengths and the

object of areas A ; this corresponds to the philosophical and didactic
motivations of Lawvere (according to him, we have to accept the two
aspects, geometric and algebraic, and to analize the interactions bet-
ween the two : he claims that, in this way, the axiomatic for Euclidean

Geometry can be made simpler) but its significance will become more
evident as soon as one exhibits a model in which those quantity-objects
are not canonically isomorphic. We also remark that the object
A will enable us to complete the axiomatic with a "measure theory"
in the plane.

In our axiomatics two points have a distance only if they lie on
a line ; we didn’t need more than that in our context, but the main
motivation is the fact that, by removing the distance map on the
line and the axioms that imply

we would like to describe an "Euclidean Geometry with infinitesimals"
and so to obtain significant models in those sheaf toposes that arise
in Synthetic Differential Geometry (see [8J) (for this we will have to
leave the world of coherent logic).

In Section 2 we describe a theory (i.e. a logical category S ) of
local rings that are ordered, pythagorean and normed, and we construct
as-model M of the theory outlined in Section 1.

In Section 3 we consider the category E of Section 1 and the
’functor S2X ( ) : E - E/S2 ; we show that S2X ( ) "transforms the theory
of Euclidean Geometry of Section 1 into the theory of rings described
in Section 2" ; indeed we show that the object

of E/S2 is a ring object which satisfies all the properties of that theory ;
moreover, if we construct from R a model M : E -&#x3E; E/S2, as well
as we did in Section 2, we prove that there is an isomorphism of models
S2x ()=M .

We often write (particularly in proofs) as if the category in which
we work were the category of sets, however it is clear that it is pos-
sible to express everything in a logical category.

We want to thank A. Joyal, A. Kock and F.W. Lawvere for their

stimulating discussions.
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1. In this section we describe the "Plane Euclidean Geometry
Theory" regarded as a logical category E (i.e. a category with finite

limits, stable finite sups and stable images) : with our axioms we

produce the objects and the morphisms that "generate" E and give
their properties.

As we shall specify later, we assume that there are in E "Space
objects" (as the "Line", the "Plane", their subobjects...) and "Quantity
objects" (as the "object of lengths", the "object of areas", ...) : the
last are equipped with an algebraic structure ; we analize the inter-

actions between such objects introducing the fundamental morphisms
of E and their properties.

We begin giving the first axioms that define E .
Let us assume that there exists in E a "Line object" L, an

"object of lengths" A and an "object of pure quantities" Q and the

maps, between "quantity objects", representing the "algebraic operations":

we assume that (A, +) is a commutative monoid object and (Q , +, .) a
commutative semiring object with zero and unit ; furthermore a

map 6: QxA -&#x3E; A makes A a Q-semimodule.
Let us suppose that there exist in E maps

and d: LxL - A (distance map)

that represent the interactions between the "line" L and the "monoid of

lengths" A ; the maps ti represent the actions of A on L : "each length
gives translations L-&#x3E; L in two directions" ; on the other hand "each

point of L, by means of ti , gives rise to two maps A% L "; Lawvere
calls "Coordinate system" this kind of map, from "Quantity objects" to
"Space objects", and "Variable quantity" a map from "Space objects" to
"Quantity objects", as the distance map d : LxL-&#x3E; A.

If 1 e A and Q e L, we also denote

and, if Qi, Q2 E L, d (Q1, Q2) = Qi Q2 ; let us assume that the maps t;
and d satisfy the following obvious axioms : 

Let us assume that there is in E an "object of lengths which
are apart from zero" Ao -&#x3E; A ; by pullback we can define :
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(If (Q1, A2) E Sl we say "Q 1 is apart from Q2 ").
We assume the following axioms L° to Lo5; from LO and Lo5 it

follows that the map 

given by

defines a strict order relation on L and Lo3 means that "any couple
(QI, Q2) e S 1 individualizes either order" ; the axiom L4, already men-
tioned by Heyting in [3J, is important because it lead to very employed
Proposition 1.1 and then to the structure of local ring for the object
S2xL -&#x3E; S2 of E/S2 (cf. § 3).

is f alse.

The following axioms Q1 and Q2 concern the actions of the

semiring Q on A and the connection between A° and the object
of "invertible elements of Q ".

Let us denote (k, 1) t--4 kl the product 6 : Qx A-* A.

Q1. The map 

is an isomorphism (the inverse will be denoted (l, 1°) l-&#x3E; (p(I, 1’), 1))·
Q2. If k E Q, I E Ao : kl E AO =&#x3E; k E U( Q), where U(Q)is

the object of units of Q.

Let us define two maps

by L" 3 and L4 (this very employed notation is useful to have a fluent

language ; "Q(+) kQIQ2 (Q(-)k Ql Q2) is the point, kQIQ2 distant from
Q, that follows (precedes) Q in the order individualized by the couple
(Q1, Q2) "): 

Then in particular is the point that
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lies in the same half-line of Q2 (Q 1 ) with origin Qi (Q2) and whose
distance from Qi (Q2) is k Q1Q2 ".

From Lo3 and LO 4 it follows : 

Proposition 1.1. I f (Q 1, Q2) E S 1 , Q E L :

Definition 1.2. Let X be an object of E ; a map f : XxL -&#x3E; L is called

X-isometry if :

In [16] we have proved the following proposition ; it states that
"isometries are isomorphisms and preserve the order".

Proposition 1.3. If f : XxS1xL -&#x3E; L is an (XxSJ-isometry :

where we wrote f(x, (Q1, Q2 ), Q) simply as f(Q).
ii) Pl, p2,f&#x3E;:XxS1xL-&#x3E; XxSlxL is an isomorphism. (We denote p j

the projection X1 x ...xXn -&#x3E; Xi , Pij the projection X1 x...xXn -&#x3E; XixXj,
etc).

The following axiom D is equivalent to "the isometries preserve
the distance for all couples (Q, Q’) E LxL " (we refuse this statement
as a definition of isometry because many of our considerations are

valid even if we remove the distance map d ; then they can be used,
for example, to describe an "Euclidean Geometry with infinitesimals"
in which a distance map is not opportune).

With the following axioms we admit in E an "object of areas" A , 
a "Plane object" P and a subobject S2-&#x3E; PxP of "couples of points
of P that are apart". The axioms a1,a2 a3 state the interactions bet-
ween A and the objects Q and A by means of the "operations" (3 and a ;
the "area map" a : S2xP-&#x3E;A is a "variable quantity" and "for each
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(A1, A2, A) E S2XP, a (A1, A2, A) can be interpreted as the area of

the parallelogram given, in an evident way, by (Al, A2, A) ".

We assume that there is in E an "object of areas" A, which is a

Q-semimodule (whose product B: Qx A -&#x3E; A will be denoted (k, a) l-&#x3E; ka )
together with a map a : Ax A -- A such that

is an isomorphism.

Let us assume that there is in E a "plane object" P and a

subobject S2’-+ PxP (if (AI, A2) E S,, we say that "Ai is apart from
A2 ") so that 3 (AI, A2), (Al, A2) E S2, and there is a map a : S2XP -+ A
such that

Let us assume that there is in E a map tt: S2xLxL-&#x3E; P such that,
taking

the following axioms tt1 to tt 5 are satisfied ; the maps r and,7, between
"Space- objects", are maps representing "geometric constructions"
and their properties mean that r represents the S2-indexed family
of "lines connecting two points A1 and A2, (A l, A2) E S2 " and that
iT represents the (S2xL)-indexed family of the "lines perpendicular to
the lines through A1 and A2 in the point r(A 1, A2 , Q), (Ai, A2, Q) E S2xL"

II1. p1,tt1: s S2xLxL-&#x3E; S2xP is an isomorphism.
We let

and

tt2. Let r = (S2xAL)tt: S2xL-&#x3E; P and let q = ql, q2&#x3E;: S2-&#x3E; LxL be
the map given by 

If

Let

also denoted d2(A1, A2) = A1 A2·

Definition 1.4. Let X be an object of E ; a map f : XxL + P is called an
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X-isometry if :

tt3. r and 1T are an 52-isometry and an (S2xL)-isometry respectively.

To understand the sense of axioms tt4 and tt5, let us consider the

following elementary arguments : "two lines r1 and r2 through a point
A give rise to a function assigning to each couple of lengths (say
the positive real numbers a and b ) an area (ab sin r1 r2) " ; the axioms

tt4 and tt5 mean, among other things, that "the perpendicular to line

r1 is the unique line through A E rl, that with r 1 gives the map a ,
in the above mentioned sense".

If f : XxL -&#x3E; P is a map of E, if x E X and A E P, we shall write
3 Q E L, A = f (x, Q) simply as A E f(x, -).

If I we shall write ;

simply as A1(+)kA1A2 and for A2(-) k A1 A2 similarly

From 1.1 we can deduce :

In [161 we have proved that, if 7T I : S2xLxL -&#x3E; P is a map satisfying
tt1 to 7j and such that it gives the same rnap d2 : S2-&#x3E; L as rr , then

there are two maps f : S2xL -&#x3E; L and g: S2xLxL +L, an S2-isometry
and an (S2xL)-isometry respectively, so that

is isomorphic and, for all
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simply as (A±1 )ttA 1 A2 respectively ; then " (A+1)tt A1 A 
and (A-1)tt A1 A2 are

the two points on the perpendicular to r(A1, A2, -) through A, 1 distant
from A ".

Let us assume the following axiom T ; it means that "if Ai, A2
are points of a line r and (Al, A2) E S2, the translations with direction
perpendicular to r preserve apartness, the distance A lA2 and the area

of any parallelogram with two vertices Al and A2 ".

If (A 1, A2) E S2 and A E P, we shall write r(A1, A2, h’(A1 , A2, A))
simply as ttr(A1, A2, A) ; then 7r(Ai, A2 , A) is the "foot of the perpend-
icular to r(Al, A2, -) through A ".

Now we define a map p: S2xPxL-&#x3E; P to represent the (S2XP)-
indexed family of the "lines parallel to r(A l, A2, -) through A c P ".

From 1.1. we have :

if we let

and

If is "the
distance between A and the line r(Al, As, -) " and we shall write it

simply as hA A1 A 2.
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We let

We can prove

Proposition 1.6. If

Let us consider the subobject of S :

If (Ai , Asy A3) E T, we will say "the line r(A1, A2, -) is apart from
the line r(A I, A3, -) ".

We will use some propositions that, roughly speaking, we can

enunciate as follows : 

Proposition 1.7. For all (AI, A2) E 52, k E U(Q), A E r (Al , A2, -),
if A ’1’ A2, A’ are the points which correspond to Al, A2, A under the
orthogonal projection 1) on a line parallel to r (A1, A2, -) or it) on a
line such that r(AI, A2, -) is apart from the direction perpendicular
to such a line :

Proposition 1.8. For all (Al, A2, A3) E T, r(Al, A2, -) intersects any
parallel to r (AI, A3, -) in a unique point.

Proposition 1.9. For all (Al,A2, A3) E 5 , k E U(Q), A E r (A1 , A2, -) , 
if A’2, A’ are the points which correspond to A2 , A on r(Al, A3y -) ,
under a projection parallel to a line apart from r (A,, A2, -) and from
r (A I, A3, -) :

Let us assume the following two axioms S and P ; from them it

follows Pythagoras’ Theorem and the following Propositions 1.10 and

1.11. 

S. If (AI, A2) E S2, Q E L, A E r(Al, A2, -), B E tt (A1 , A2, Q, -),
let C = r(A 1, A2, Q) (then "A, B, C are the vertices of a right triangle") :

In the classical case, where the order on the line is total, the
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following axiom P expresses the "commutativity of the scalar product",
that in our theory we can state as in Proposition 3.7 ; Axiom P

is stronger because it implies that "in any right triangle (ABC),
the foot of the perpendicular through C to the hypotenuse AB is

inside the interval [AB ] (defined in an obvious way by the order on

the line)" ; it follows that jn the ring object SxL -&#x3E; S2 of E /S2
(cf. § 3) "any square is positive".

Proposi ti on 1.10. I f k 1) ,, k2 2 E Q :

Pro posi tj on 1.11. I f

2. We obtain a model of the theory described in Section 1,
i.e. a logical category S with a logical functor M : E + S (i.e. it pre-
serves finite limits, regular epis and sup), if we consider a logical
category S in which there is a commutative ring object R that
is a local ring, i.e. so that :

If x, y E R : (x + y) inv -&#x3E; x inv V y inv
(x inv means 3y E R, xy= 1) ;
and furthermore so that :

Moreover, let R be an ordered ring object such that :

2.3. If x, y e R : x &#x3E;0A y&#x3E; 0A ( x inv V y inv) =&#x3E;(x + y) inv.
2.4.IfxeR: x inv =&#x3E; x &#x3E; 0 V -x &#x3E; 0

( x &#x3E; 0 means x&#x3E; 0 x inv).

Finally, if R&#x3E;= [x e R l x &#x3E;0], suppose there exists a map
R -+ R = denoted x l-&#x3E;lxl such that :

From 2.2, 2.3, 2.4 and 2.8, it follows :
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and in
this case we will write

From results of [131, we have that, to find a model M , it is

enough to assign, for every object and map of E, objects and maps of
S so that the axioms of Section 1 hold in S. We obtain this hy taking
the objects and the maps as follows :

and the maps M(t.) : R" xR -&#x3E; R are refined by means of addition and
sub-tr8ction ; tf1e map M(d) : RxR-&#x3E; R- is given by (x, y)l-&#x3E;l x - y I ;

&#x3E;0 &#x3E;0 &#x3E;0

and M(d), M(B), M(a) : RxR -+ R= are defined by means of multipli-
cation ; M(P) = RxR ;

the map is given by

and let , be the map given by

let J be the set of maps

where f : M’S2)xR -&#x3E; R is a M(S2)-isometry and g : M(S2)xRxR + R a
(M(S2)xR)-isometry (X-isometries are defined here as in 1.2 by means
of fv1( 1B °) and M(d) ) so that : 

p u f &#x3E; and p1. p2, g &#x3E; are isomorphisms and then p1, p 12 f, g&#x3E;
is an isomorphism. The map M(7) is given by the map n "up to isomorph-
isms of J" in the sense that, for all b E J , the map bTf satisfies the
axioms of Section 1. -
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We don’t have any difficulty in finding models with values in a

topos. For instance, the properties of R are satisfied by the object of
Dedekind reals in a topos with natural number object and, in particular,
in the category of sheaves over a topological space X, where the object
of Dedekind reals is the sheaf of continuous real-valued functions on X.

Furthermore we can obtain a model by considering a small full

subcategory R of the category of rings in which all objects satisfy
all the properties listed in this Section ; then (see [8]) a model is

given by the category S = 5etR in which R is the forgetful functor.

3. Let E be the logical category described in Section 1. Let
us consider the comma category E /S2 and the functor E - E /S2,
denoted S2x( ), given by

and defined on the maps in a natural way ; it is easy to verify that

E /S2 is a logical category and that the functor S2X( ) preserves finite
limits, regular epis and sups, and hence preserves the "logical structure "
of E (see [9]).

In this Section we show that the object pi : S2xL -&#x3E; S2 of E/S,,
that we call R, is a ring object which satisfies all the properties of
ring theory described in Section 2 ; moreover, if we construct from R,
as we did in Section 2, a model M : E -&#x3E; E/S2, we have an isomorphism
of models S2x() = M .

If (A,, As) e S2, in the following we will denote (Ql, Q2) = q(A1, A2)-

Proposition 3.1. The object R = (S2xL -&#x3E;S2) of E/S2 carries the struc-

ture of a commutative ring.
Proof. Let us define the map + : RxR -&#x3E; R as the map

a given by (see 1.1) :

Let us define the map 0 : 1 -&#x3E; R as the map

and the map op : R - R as the map pl, u&#x3E;: S2xL -&#x3E; S2xL, ).1 given by :
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Let us define the map . : RxR -&#x3E; R as the map
v given by

and the map as the map given by

We can prove all the ring properties, distinguishing the different
cases we have by 1.1 ; the commutativity of R follows from the

commutativity of the product in Q.

The following proposition characterizes the invertible elements of
R. Let us write

simply as

Proposition 3.2. If (A 1, A2) E S2, Q E L :

Proof. -&#x3E;: By 1.1 we have

the first case is trivial ; for the second, distinguishing the cases

and recalling the definition of the product in R, we have, in the

Proposition 3.3. R carries the structure of a local ring, i.e. :

is false.
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Proof. i) follows from Lo1 and L3.
ii) : by 1.1 we have to calculate only in the case

and, because E 51, in the case in which furthermore

we have

from here it follows (Al, A2, Q’) inv A (Ai, A2, Q) inv.

Proposition 3.4. R is an ordered ring, i.e. there exists (in E/S2 ) a
relatlon ()-&#x3E; 52xLxL which is an order relation and which is comp-
atjble with the operations. Moreover the propertles 2.3 and 2.4 are

satisfied.

Proof. Let us define ( ) in the following manner :

then it is straightforward that () is an order relation and that it is

compatible with the operations. Moreover 2.3 follows from 3.2 and L
and 2.4 is 3.2, because the relation (  ) is given by

We observe that we have not yet used the distance and its pro-
perties (axioms L3, L4 and D) ; we used only the property :

that follows from L4-

The following proposition states that in R there is a norm satis-

fying 2.5 and 2.6.
letll ll : S2xL-&#x3E; Q the map given by

and l l: S2xL -&#x3E; L the map given by

Proposition 3.5. 1) If (
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Proof. We can prove i distinguishing the different cases we have by
1.1 and using the axiom D. ii is straightforward.

We observe that R- is isomorphic to the subobject S2XQ -&#x3E; S,xL
of R given by .

and that the norm in R is defined by the map p 1 , ll ll&#x3E;: S2xL -&#x3E; S,xQ .

For the following proposition we use the plane axioms ; taking
account of the definition of product in R, it means that "vertical pro-
jection of a line r(Ai, A , -) onto a line r(Ai, A2, -) preserves ratios".

Ptoposition 3.6. If (A1, A2, A) E S, B e P, h, k E U(Q), let

Proof. i and ii follow from 1.7 because A’ = Al(+)h A lA2 entails that
" r(A1, A, -) is apart from the direction perpendicular to r(A1 , A2, -) ".
For iii and iv we distinguish the two cases (Proposition 1.11)

Let (A 1, A2? A) E T ; by Axiom S, (A, A2) E S2 and moreover the lines
r(A 1, A, -) and reAl, A2, r) are both apart from r (A, A2, -) ; if we

consider the projection parallel to r (A, A2, -) of reAl, A, -) on r(A1, A2,-)
and if we call C the projection of B, from B = A1 (+) k A1 A it follows
(Proposition 1.9)

from here it follows iii. -We obtain iv "projecting on p (A,, A2? A, -) "

and applying iii. - Let (AI, A’2, A) E T ; we can prove iii and iv
using 1.7 and distinguishing the two cases
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Using 3.6 i, iii and Axiom P we can prove the following proposition ;
it states the "symmetry of the vertical projection ratio of two lines".

let

The following proposition states that R satisfies 2.7 and 2.8.

Proposition 3.8. i) If (Al, A2) E S2, Q, Q’ E L :

Proof. i) We have

in the first case i follows from 3.5, ii ; in the second, we can prove it

by using 1.6 and 3.6 iii.

ii) let us distinguish the cases

and

the first is trivial by 3.5 ii ; in the second we apply 3.7, 3.6 iv and
Axiom P to the configuration

The following proposition states that R satisfies 2.1 and 2.2.
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Proof. i) Distinguishing the two cases

only the second one is possible ; in this cbse, if we let

using 3.8 ii and Pythagoras’ Theorem, we have
A’ = A1 and then Q = Q1 .

ii) We have 

and then by 1.10,

if we take S = A1(+) h Q1 Q2, by 3.8 ii we obtain ii.

We observe that, if 7T S2xLxL-&#x3E; P is a map satisfying Tri to tt5
and which gives the same map d 2 : S2 -&#x3E;L as TTy we obtain a ring R’
and a map R +R’ given by a map f: S2xL-&#x3E; L that is an S2 -isometry
(cf. § 1) ; from 1.3 it follows that  pm f&#x3E;: S2xL -&#x3E; S2xL is a ring iso-
morphism and that it preserves () ; moreover, from the Axiom D,
it follows that it preserves l l. 

We proved that the object R of E/S2 satisfies all the properties
mentioned in Section 2. The following considerations show that there
is an isomorphism of models S2 x( )= M , as we said at the beginning of
this Section. 

&#x3E;0

We know that there is a canonical isomorphism (S2X Q -&#x3E; S2) = R
and it is easy to verify that there are canonical isomorphisms

given by Qi, Q2 and a3 ; moreover "un4er these isomorphisms" the

maps S2x t1 : S2x axL -&#x3E; S2 xL "are" (in the sense that

"are" the multiplication
Now we define a map to prove that, in E/S2,
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assigns to each point of P its coordinates".
For all (Al, A2, A) E S2XP let us denote (leaving out the notation

X is defined by (see 1.5) :

Similarly, Y is defined considering A’2 and Ay .
It is clear that

is an isomorphism and then that, in E /S2, (S2xP -&#x3E; S2)- RxR.

Proposition 3.10. The object pi : (S2x52 -&#x3E; 52) of E/S2 is isomorphic to

Proof. By Axiom S and 1.11, we have :

and, if we denote for all (AI, A2, A) e S2XP (leaving out the notation

A lA2)

it is easy to prove that in t/S, we have :

and for (Ay, By) analogously. 

Pcoposition 3.11. With the notations above mentioned, in E/ 52 we have :

Proof. Let us define C E P by means of the isomorphism  pl, X, Y&#x3E; , 
by xc = xM + Q2 and yC = y M and C’ = (M + MC)ttMC; let us prove
from 1.5, we have 

in the first case let us denote t = (A,, A2, Q1(+)h Ql Q2) and in the second
t = (A,, A2, Q2(-)k Q1Q2). We obtain =&#x3E; by distinguishing the four cases
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of the proposition 3.6, applied to (M, C, N) and (M, C’, N) E S, and
considering 1.7. 
Let us prove = ; by 1.11 we have (M, C, N) e T V (M, C’, N) £ T ;
in the first case, by 1.8 

,

and, by -&#x3E;

as yM - Y N is invertible, we have t = t’ and A = A’ E r(M, N, -). In the
second case, the proof is analogous. 

Using some results of [16J, we can prove :

Proposition 3.12. If

Using also 3.11, we have :

Proposition 3.13. Let  p1, f&#x3E;; S2xS2xP -&#x3E; S2xP be the map defined
under the canonical isomorphisms, by the map S2x RxR-&#x3E;RxR given by

speaking) :
i) p1, pz, f&#x3E; is isomorphic,
ii) "f preserves the alignment". 
iii) "f multiplies by II(m2 + n2)2 1 2 ll the distance of two points which

lie on a line".

iv) "f preserves the erpendicularity" a
v) "f multiplies by m 2+ n2ll the areas".

Propositions 3.14. Let a : S2xRxR-&#x3E; R- be the map given by

the following dlagram commutes (in E/ S2 ) :
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Proof. For every (A1, A2, M, N, B) E S2xS2xP, let A E P be such that

f(A 1, A2, M, N, A)= B (3.13, i) ; then

and, by

As R satisfies 2.7, we obtain

and then the statement.

Proposition 3.15. L et 5 : S2xRxR -&#x3E; RxR be the map given by :

with

let us define the set J of maps of EIS, as in Section 2 ; there is a

map b from J such that (S2xn) is given, under canonical isomorphisms,
by biT.
Proof. By canonical isomorphisms, I gives a map

and 7’ (with the obvious modifications) satisfies (in E) all the properties
71, ··, 75 and because of Proposition 3.12 we can prove that there are
two maps 

an (S2xS2)-isometry and an (S2XS2xL)-isometry respectively, such that

Under canonical isomorphisms, p1, p 2, p123 f, g&#x3E; is a map of J .
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