Čech methods and the adjoint functor theorem
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 26 (1985) no. 3, pp. 245-257.
@article{CTGDC_1985__26_3_245_0,
     author = {Betti, Renato},
     title = {\v{C}ech methods and the adjoint functor theorem},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {245--257},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {26},
     number = {3},
     year = {1985},
     mrnumber = {796350},
     zbl = {0584.55009},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_1985__26_3_245_0/}
}
TY  - JOUR
AU  - Betti, Renato
TI  - Čech methods and the adjoint functor theorem
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 1985
SP  - 245
EP  - 257
VL  - 26
IS  - 3
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://archive.numdam.org/item/CTGDC_1985__26_3_245_0/
LA  - en
ID  - CTGDC_1985__26_3_245_0
ER  - 
%0 Journal Article
%A Betti, Renato
%T Čech methods and the adjoint functor theorem
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 1985
%P 245-257
%V 26
%N 3
%I Dunod éditeur, publié avec le concours du CNRS
%U http://archive.numdam.org/item/CTGDC_1985__26_3_245_0/
%G en
%F CTGDC_1985__26_3_245_0
Betti, Renato. Čech methods and the adjoint functor theorem. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 26 (1985) no. 3, pp. 245-257. http://archive.numdam.org/item/CTGDC_1985__26_3_245_0/

1 R. Betti, Bicategorie di base, Quad. 2/S, Ist. Mat. Univ. Milano, 1981.

2 R. Betti, Shape theory in a bicategory, Cahiers Top. et Géom. Diff. XXV-1 (1984), 41-49. | Numdam | MR | Zbl

3 R. Betti, Cocompleteness over coverings, J. Austral. Math. Soc. (to appear). | MR | Zbl

4 R. Betti & R.F.C. Walters, Closed bicategories and variable category theory, Quad. 5/S, Ist. Mat. Univ. Milano, 1985.

5 R. Betti, A. Carboni, R.H. Street& R.F.C. Walters, Variation through enrichment, J. Pure Appl. Algebra 29 (1983), 109-127. | MR | Zbl

6 D. Bourn & J.-M. Cordier, Distributeurs et théorie de la forme, Cahiers Top. et Géom. Diff. XXI-2 (1980), 161-189. | Numdam | MR | Zbl

7 A. Calder & J. Siegel, Kan extensions of homotopy functors, J. Pure Appl. Algebra 12 (1978), 253-269. | MR | Zbl

8 A. Calder& J. Siegel, A note on Čech and Kan extensions of homotopy functors, J. Pure Appl. Algebra 25 (1982), 249-250. | MR | Zbl

9 A. Dold, Lectures on algebraic Topology, Springer, 1972. | MR | Zbl

10 A. Frei, Kan extensions along full functors: Kan and Čech extensions of homotopy invariant functors, J. Pure Appl. Algebra 17 (1980), 285-292. | MR | Zbl

11 E. Giuli, Relations between reflective subcategories and shape theory, Glasnik Mat. 16 (1981), 205-210. | MR | Zbl

12 P. Johnstone& A. Joyal, Continuous categories and exponentiable toposes, J. Pure Appl. Algebra 25 (1982), 255-292. | MR | Zbl

13 G.M. Kelly, Basic concepts of enriched category theory, Cambridge Univ. Press, 1982. | MR | Zbl

14 C.N. Lee& N. Raymond, Cech extensions of contravariant functors, Trans. AMS 133 (1968), 415-434. | MR | Zbl

15 S. Mardesić& J. Segal, Shape theory. The inverse system approach, North Holland, 1982. | MR | Zbl

16 L. Stramaccia, Reflective subcategories and dense subcategories, Rend. Sem. Mat. Univ. Padova 67 (1982), 191-198. | Numdam | MR | Zbl

17 R.H. Street, Enriched categories and cohomology, Quaest. Math. 6 (1983), 265-283. | MR | Zbl

18 R.H. Street, Absolute colimits in enriched categories, Cahiers TGD XXIV (1983). | Numdam | Zbl

19 W. Tholen, Completions of categories and shape theory, Seminarberichte 12, Fernuniversität Hagen (1982), 125-142. | MR

20 W. Tholen, Pro-categories and multiadjoint functors, Id. 15 (1982), 133-148.