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CAUCHY COMPLETION IN CATEGORY THEORY
by Francis BORCEUX and Dominique DEJEAN

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATEGORIQUES

Vol. XXVII-2 (1986)

RESUME. Une cat6gorie C est dite Cauchy complete si tout idem-

potent se scinde ; toute petite cat6gorie a une completion
de Cauchy. Ce problbme peut 6tre abord6 en termes de colimites
absolues ou de distributeurs. Nous prouvons un th6orbme de fonc-
teur adjoint ob la condition usuelle de completion est remplac6e
par une completion de Cauchy. Toutes ces notions et r6sultats peu-
vent 6tre enrichis dans une "bonne" cat6gorie ferm6e. En regardant
un anneau comme une cat6gorie enrichie dans sa categorie de mo-
dules, sa completion de Cauchy est la cat6gorie des modules pro-
jectifs finiment engendr6s. En considérant un espace m6trique
comme une cat6gorie enrichie sur R+, sa completion de Cauchy
cat6gorique est exactement sa completion en tant qu’espace m6-
trique, à 1’aide des suites de Cauchy.

This paper is to be considered as a survey article presenting an
original and unified treatment of various results, scattered in the litte-
rature. The reason for such a work is the grewing importance of every-
thing concerned with the splitting of idempotents and the lack of a
reference text on the subject. Most of the work devoted to Cauchy
completion has been developped in the sophisticated context of bicateg-
ories : it’s our decision to focuse on direct proofs in the context of
classical category theory.

An idempotent endomorphism e splits when it can be written as
e = i o r with r o i an identity. Every small category C has a completion
for the splitting of idempotents (called its Cauchy completion) given
by the retracts of its representable functors or, equivalently, by its

absolutely presentable presheaves or even by the distributors 1 C
which possess a right adjoint. The Cauchy completeness of a category
C is also equivalent to its completeness for the absolute colimits or
to the existence of a right adjoint for every distributor 0 -ö-+ C ...

but this last equivalence is itself equivalent to the axiom of choice.

The classical adjoint functor Theorem involves the assumptions
of completeness of the domain category and continuity of the functor.
In fact completeness can be replaced by the much weaker assumption
of Cauchy completeness and, clearly, the continuity means now the
absolute flatness of the functor. We prove the adjoint functor Theorem
under those very weak assumptions and, of course, the solution set

condition.
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We mention how the definition of Cauchy completion in terms

of distributors can be easily generalized to the context of category
theory based on a closed category. In the case of a ring viewed as a

category enriched over its category of modules, the Cauchy completion
is the important category of finitely generated projective modules.
In the case of a metric space viewed as a category enriched over R+,
the Cauchy completion is just the classical completion as a metric

space, using Cauchy sequences. This explains the terminology, intro-
duced by F.W. Lawvere (cf. [9]).

1. SPLITTING OF IDEMPOTENTS.

We fix a category C. A morphism e: C -+ C is idempotent when
e = e o e. Given a retraction

it follows immediately that e = i o r is idempotent. A split idempotent
e is one which can be presented as e = i o r for some retraction r o i = id.

Proposition 1. The following conditions are equivalent for an idempotent
e : C-+C:

(1) e splits as e - i o r ;
(2) the equalizer i = ker(e, id ) exist
(3) the coequalizer r = coker(e, id ) exists.

Moreover, the equalizer in (2) and the coequalizer in (3) are absolute.

The equivalences are obvious. We recall that a limit or a colimit
is called absolute when it is preserved by every functor. Clearly the
property of being a retraction is absolute. v

Given a small category C, we use the classical notation C for
the category Funct (C°p, Sets) of presheaves on C. We identify C, via
the Yoneda embedding Y : C -+ C, with the full subcategory of repre-
sentable functors. We denote by C the full subcategory of C spanned
by all the retracts of the representable functors.

Theorem 1. Let C be a small category and C the full subcategory of
C spanned by the retracts of the representable functors.

(1) C contains C as a full_ subcategoru ;
(2) every idempotent of _C splits ;
(3) the inclusion C c-&#x3E; C is an equivalence if and only if every

idempotent of C splits ;
(4) the category C of presheaves on C is equivalent to the categ-

ory C of presheaves on C.

This small category C will be called the Cauchy completion of C .
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C is small since 6 is well-powered. C contains C as a full subcat-

eogry because the Yoneda embedding is full and faithful. Every idem-

potent of C splits in C (Proposition 1), thus also in C since the composite
of two retractions is again a retraction.

If every idempotent of C splits, every retract of a representable
functor C(-, C) induces an idempotent on C(-, C), thus an idempotent
e on C. e splits in C, which produces a retraction of C and thus a re-
traction of C(-, C), which is necessarily isomorphic to the original re-
traction (Proposition 1). Thus every retraction of C(-, C) is itself re-

presentable, which proves (3).

To prove (4), it suffices to show that every presheaf F on C can
be uniquely (up to an isomorphism) extended in a presheaf F on C.
From th e uniqueness of the splitting in C of an idempotent e E C
and the Cauchy completeness of the category of sets (Proposition 1),
F has to map the splitting of e on the splitting of F e. Now if

are retractions, every morphism f : R -+ S can be written as

and F(s), F(i ) are already defined, while F( j o fo r ) has to be equal
to F( j o f o r). 0

The Cauchy completion C of C has also an interesting description
in terms of colimits. We recall that an object F e C is absolutely pre-
sentable when the representable functor C(F, -) : C -+ Sets preserves
all small colimits. Extending the terminology of [5], this is just the no-
tion of an a-presentable object, where 0.= 2 is the only finite regular
cardinal.

Proposition 2. Given_ a small category C, a presheaf F E C lies in the

Cauchy completion C iff it is absolutely presentable.

A representable functor is absolutely presentable since C(C(-,.C)l -)
is just the evaluation at C. Now if R is a retract of C(-, C), C(R, -)
is obtained from C(C(-, C), -) by a coequalizer diagram; by associativity
of colimits, R is absolutely presentable.

Conversely choose F E C absolutely presentable. F can be presented
as the colimit F = lim C(-, C) indexed by all the pairs (y, C) , with

y : C(-, C) =&#x3E; F. As a consequence

Now id F corresponds to some element in the last colimit and this ele-
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ment is represented by some [3: F =. C(-, C) in the term of index (y, C) ;
in other words, cx o P = id F and F is a retract of C(-, C). 0

A colimit is called absolute when it is preserved by every functor.
Given a small category C, the topos C of presheaves is cocomplete
thus, in particular, has all absolute small colimits. We shall say that

C has all absolute small colimits when it is stable in C under all abso-

lute small colimits. The Cauchy completion can also be seen as the

completion for absolute small colimits, as noticed by R. Street (cf. [ 11 J).

Proposition 3. The following conditions are equivalent on a small cat-

egory C :

(1) C is Cauchy complete.
(2) C has all absolute small colimits.

Suppose C is Cauchy complete and consider an absolute colimit

L = lim C(-, Ci ) in C. Since the colimit is absolute

So to idL corresponds the equivalence class of some S : L+ C(-, Ci)
and if Si : C(-, Ci) -+ L is the canonical morphism of the colimit,
si o B = id L. . Thus L is a retract of C(-, Ci) and lies therefore in C.

The converse is immediate since Cauchy completeness reduces to

the existence of some absolute coequalizers (Proposition 1). 0

2. CAUCHY COMPLETION IN TERMS OF DISTRIBUTORS.

A distributor (also called profunctor, bimodule, module, ...) from a
small category A to a small category B is a functor F : B opx A -+ Sets;
we shall use the notation F : A--n- B. If G : B-u+ C is another distributor,
the composite G o F : Ar- C is defined by a colimit

indexed by all the morphisms b : B -+ B’ in B, in fact (x, F(b, A)(y)) is
identified to (G(C,b)(x), y) in the colimit. Morphisms between distribu-

tors are just natural transformations ; they are easily equipped with
a vertical and an horizontal composition and this yields a corresponding
notion of adjoint distributors. Every functor F : A -+ B induces a dis-
tributor F* : A o+ B given by

F* has a right adjoint F * : B -+ A which is just



137

(cf. [1, 5J).

We shall denote by 1 the category with one single object and one
single morphism (= the identity on the object). The topos C of presheaves
on a small category C can be viewed as the category Dist(l, C) of
distributors from 1 to C. On the other hand the category C itself can
be identified with the category Funct(l, C) of functors from 1 to C.

The Yoneda embedding is then just the inclusion

and the Cauchy completion C appears as a subcategory of Dist(l, C).

Proposition 4. Given a small category C, a distributor F : 1-o+C

belongs to the Cauchy completion of C iff it has a right adjoint.

Fix a pair F : 1 -o&#x3E; C, G : C-+- 1 of adjoint distributors, with
F 2013| G. We have thus :

The two composites are just

the functor F o G : COP x C -+ Sets : (B, A) |-&#x3E; FB x GA,

where f : A -+ B is an arbitrary morphism of C. The two natural trans-
formations of the adjunction are

an element

a natural transformation

where C is now a fixed object in C.

The two axioms for the adjointness reduce to :

If such an adjoint pair is given, we produce immediately two nat-
ural transformations
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and the second axiom for adjoin’ !less is precisely the relation 6 oy = idF’
Thus F is a retract of C(-, c).

Conversely if F is a retract of C(-, c), with 6 o y = idF as above,
the idempotent transformation y o 6 on C(-, c) has the form C(-, e)
with e on idempotent morphism on C. The splitting of the idempotent
transformation C(e, -) on C(C, -) in Funct(C, Sets) produces a retract

It is now sufficient to consider

in order to prove the required adjunction. 0

The great interest of Cauchy completion in the theory of distri-
butors is described in our next theorem.

Theorem 2. The following conditions are equivalent on a small category C.

(1) C is Cauchy complete.
(2) A distributor 1 -o&#x3E; C has a right adjoint iff it is a functor.
(3) For every small category A a distributor A -o&#x3E; C has a

right adjoint iff it is a functor.

(1) =&#x3E; (2) is a consequence of Theorem 2 and (3) =&#x3E; (2) is obvious.
Let us prove (2) =&#x3E; (3). Consider two distributors F, G with F -| G
and an object A E A.

We obtain the adjunction

which proves the existence of some object H(A) e C such that

(Assumption 2). Now one computes easily the identity
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which implies finally

The proof extends to the morphisms of A and therefore F is the distri-
butor associated to the functor H. 0

The proof of (2) =&#x3E; (3) in the previous theorem uses some choice
principle to define H(A). In fact the full strength of the axiom of choice
is necessary. This is proved by the following elegant remark, due to
A. Carboni and R. Street (cf. [3J). A poset, viewed as small category,
is obviously Cauchy complete since the only idempotent morphisms are
the identities. If Condition 3 in the previous theorem is now taken as
a definition for the Cauchy completeness, it turns out that the Cauchy
completeness of posets is equivalent to the axiom of choice.

Proposition 5. The following conditions are equivalent :

(1) The axiom of choice.
(2) Every distributor F : A -o&#x3E; C between posets A, C is a func-

tor when it has a right adjoint.

By Theorem 2, it suffices to prove (2) ==&#x3E; (1). Consider a surjection
g : X -|-&#x3E; Y in Sets and R &#x3E;-&#x3E; XxX the equivalence relation defined by f .
We define

where Ay denotes the diagonal of Y ; A and C are posets. We define
also two distributors

The two possible composites are given by

It follows immediately that
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or in other words, G is right adjoint to F. By assumption 2, F is represent-
ed by a functor f : C -&#x3E; A, which provides a section f: Y -|-&#x3E; X to g,
since G o F = id A . 0

3. THE MORE GENERAL ADJOINT FUNCTOR THEOREM.

This "more general Adjoint Functor Theorem" is an unpublished
result of P. Freyd; it refers to Cauchy completeness instead of usual

completeness (cf [8]).

When a is a regular cardinal, an a-limit is the limit of a diagram
of cardinality strictly less than a. When A is a category with a-limits,
the a-continuity of a functor F : A -&#x3E; B means just the preservation of
a-limits; this fact is equivalent to any one of the following conditions :

(1) For every B E B, the functor B(B, F-) : A -&#x3E; Sets is an a-filtered
colimit of representable functors.

(2) For every B E B, the comma category (B, F) is a-cofiltered,
where B stands for the functor 1 -&#x3E; B choosing the object B E B.

When A is not necessarily a-complete, the a -continuity of a functor
F : A -&#x3E; B is clearly an uninteresting notion. But conditions (1) and (2)
are still equivalent in that case and describe what is called the " a-flat-
ness" of F. Flatness is the correct generalization of the notion of

continuity in a context where limits do not necessarily exist (cf. [5],
a-Stetigheit). The functor F : A +B will be called absolutely flat when
it is a -flat for every regular cardinal a. When A is complete, the
absolute flatness of F is thus equivalent to the preservation of small
limits.

Theorem 3. Consider an absolutely flat functor F : A -&#x3E; B defined on
a Cauchy complete category A. F has a left adjoint iff the solution
set conddtion holds.

Fix an object B E B and let SB C | A | be a solution set for B.
The Cauchy completeness of A implies immediately that of the comma

category (B, F).
Consider in (B, F) the following set of objects :

and choose, by absolute flatness of F, an object Z E (B, F)| and for

every X E SB , a morphism oc x: Z -+ X in (B, F). Again by absolute flat-
ness of F-, choose an object Y E ) (B, F)| and a morphism u : Y + Z in

(B, F) which identifies all the endomorphisms of Z. The solution set
condition implies the existence of X E SB and v : X - Y. The endomor-

phism UoVoO x of Z is idempotent since u identifies idz and u o v o ax .

By Cauchy completeness of (B, F), u o v o ctx splits and produces a
retract
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of Z. But then W is a pair (A, b) with b : B -+ FA and we shall prove it

is the universal reflection of B along F, i.e. the initial object of (B, F).

By the solution set condition, for every object V E (By F)! there
exists an object U E SB and a morphism w : U -+ V. So we obtain
a composite

which proves the existence of at least one morphism from W to V.

Next, let us prove that every endomorphism g of W is necessarily
the identity. Indeed

and thus g = id W since i is mono and r is epi.

Finally come back to an arbitrary object V E l(B, F)| and, by ab-
solute flatness of F, choose T E I (B, F) I and t : T - W which identifies

all the morphisms from W to V. By the solution set condition, choose

S e SB and s: S - T. The composite

is necessarily the identity and so by definition of t , all the morphisms
from W to V are equal. 0

4. THE CAUCHY COMPLETION OF AN ENRICHED CATEGORY.

Let us fix a complete and cocomplete symmetric monoidal
closed category V. If I is the unit of V, we denote by I the V-category
with a single object * and I(*, A) = I. Every small V-category C is

equivalent to the category V-Funct(I, C) of V-functors from I to C ;
that last category is itself embedded in the category V-Dist(I, C) of
V-distributors from I to C (cf. [11).

Definition 1. The V -Cauchy completion of a small V -category C
is the full V -subcategory of V-Dist(I, C) , whose objects are those
V -distributors with a right V -adjoint.

It is possible to generalize with respect to V most of the results
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of our §§ 1-2-3, but this is not our purpose here. We just want to

develop some relevant examples of enriched Cauchy completions. We
shall start with an example which underlines a striking difference bet-
ween the classical case and the enriched case. But first of all, a

general remark.

A V-distributor F : I-r- I is a V-functor F : lOP 1m I -+ V, i.e.

just an object F E V. If G : I -o-&#x3E; I is another V-distributor the com-

posite Go F is just the object G 9 F E V. The adjunction F -I G reduces
to the existence of morphisms

which satisfy the equalities

Example 1. When V is the category of V-complete lattices, the Cauchy
completion of I is no longer small.

The objects of V are thus the complete lattices and the morphisms
are the V-preserving mappings; the unit I E V is just {0, 1} . V is
a complete and cocomplete symmetric monoidal closed category
in which the product II Ai of an arbitrary family of objects Ai coincides
with its coproduct iI Ai ; we use therefore the classical notation
O Ai (cf. [71).

Given an arbitrary set K, the object F = k®K I can be viewed as
E K

a distributor F : I -J- I adjoint to itself. Indeed the tensor product
commutes with the direct product e since if has a right adjoint;
therefore :

and the required canonical morphisms a and a are just the diagonal and
the codiagonal. So each object k E K I is in the Cauchy completion I
of I, which prove that I is not small. 0

Example 2. When V is the category of modules on a commutative ring
R with a unit, the Cauchy completion of I is the category of finitely
generated projective R -modules.

It is well-known that V = Mod R is an abelian complete and

cocomplete symmetric monoidal closed category; the unit I E V is

just the ring R itself.
Let us start with an adjunction (F -1 G, a, S) as described above;

we must prove that F is a finitely generated projective module.
We can write
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Consider the following morphisms u and v :

The second axiom of adjointness implies, for every x E F :
k

So F is a retract of a finitely generated free module, thus a finitely
generated projective module.

Conversely start with a finitely generated projective module F ;
F can be presented as a retract of a finitely generated free module :

- 7-

If e1, ..., ek is the canonical basis of k R and F is identified with a

a submodule of k m R , consider 
i=1

i=1

F is the submodule of k R generated by f , ..., fk and we define Gi=1 k

as the submodule of k R generated by g1, ..., 9k. The two required
i=1

"natural transformations" a , B are then

where 6 jj is the Krnoecker symbol. It is now a straightforward comput-
ation to verify the two axioms for adjointness. 0

Our last example will, in particular, justify the terminology, due
to F.W. Lawvere, that we have adopted here.

Example 3. When V is the category R+ defined by F.W. Lawvere (cf.
[9]) the Cauchy completion of a metric space is its usual completion
using Cauchy sequences.

Let us recall the categorical structure of
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R+ is a poset; we view_it as a category, putting a morphism r -&#x3E; s

when r &#x3E; s . The poset R+ is complete, thus viewed as a category it
is both complete and cocomplete. It becomes a symmetric monoidal
closed category when we define

as a matter of convention, 00 - 00 = 0.

A metric space (E, d) can be seen as a category enriched in R :
E is the set of objects and the distance function d is the enriched hom-
functor. If (E, d) and (E’, d’) are metric spaces, an enriched functor
f : (E, d) -+(E’, d’) is just a contracting mapping f : E - E’; in particular,
f is continuous. The set of contracting mappings from (E, d) to (E’,d’)
becomes itself an enriched category when we define the distance bet-

ween f, g: (E, d) --&#x3E; (E’, d’ ) by the formula

Notice that this new enriched category is generally not a metric space,
since ( f, g) can become infinite.

The enriched category I is just the singleton viewed as a metric

space. A distributor f : I -o-&#x3E;(E, d) with (E, d) a metric space, is then
a mapping f : E -+ R+ which satisfies the condition :

From the symmetry of d , we deduce immediately

which proves that f is just a contracting mapping. Now when (E, d )
is a metric space, the symmetry of d implies that a distributor g:
(E, d) - I is also just a contracting mapping g: E - R . The distributor
is right adjoint to f when 

which means

From the first condition we deduce that for some x E E, f(x)  oo.
But as f is contracting, for every y E E
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which proves f(y)  co. An analogous argument holds for g . As a con-

cl usion, a pair

of adjoint distributors is a pair f, g : E --&#x3E; R+ of contracting mappings
which satisfy the axioms (1) and (2). 

Denote by (E, d the usual completion of the metric space (E, d );
we shall prove that (E, d) is just the R -category of those enriched dis-
tributors I o-&#x3E; (E, d) which possess a right adjoint. Choose an

element a e E and define

It follows immediately that for every x, y in E

Moreover choosing a sequence (an) in E converging to a,

These relations indicate that putting fa = ga we have defined two dis-
tributors

with fa-j ga · This correspondance a |-&#x3E; fa is injective since a t b in E

implies

To prove the surjectivity of our construction, start with an

adjoint pair f-| g of distributors, as described above. For every ne N
choose anE E such that

This implies, for k,l&#x3E;n:

Thus (aj is a Cauchy sequence in E and we define d as its limit in E.
For every x E E we deduce
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and thus, computing the various limits

Finally we have to prove that the distance d on E coincides with
that between the corresponding distributors. Choose a, b in E with

(an) a sequence in E converging to a .

When a = b, both distances are thus equal to zero. When a # b, the

difference d(b, a J - dOa, an) becomes positive for n sufficiently big and
moreover converges to Jfb, a); this proves the converse inequality. 0
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