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MODELS OF SKETCHES

by Michael BARR

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CAT#GORIQUES

Vol. XXVII-2 (1986)

RESUME. Le but de cet aticle est d’6tudier les categories qui sont
des categories de modbles d’une esquisse. Les r6sultats principaux
répondent à la question de la caract6risation du type de 1’esquisse
par rapport aux propri6t6s de sa categorie de modLIes. Les es-

quisses qu’on emploie sont un peu differentes de celles de A. et C.

Ehresmann, mais la notion d6coule de la leur.

INTRODUCTION.

Ever since the dissertation of Lawvere [1963 ], categorists have
been interested in the question of presenting categories as categories
of functors and natural transformations between them. One of the
earliest attempts to go beyond product preserving functors (and
thus equational theories) was Ehresmann’s categories of sketched struc-
tures. The concept of sketch was laid out at least as early as [Ehres-
mann, 1966 ], but the most complete exposition seems to be [Bastiani &#x26;

Ehresmann, 1972 ]. Meantime, Isbell [1972 ] was exploring a similar idea,
again motivated by the idea of describing interesting categories as
categories of functors and natural transformations.

In [Barr &#x26; Wells, 1985 ], a variation of Ehresmann’s sketches was

the main conceptual tool used to present abstract theories. The sketches
used there were not even categories. This has been criticized as a retro-

grade step and it seems appropriate to say a few words about our rea-
sons. The principal reason is that our sketches are the closest thing
we could find to a naive presentation and thus seemed to reflect actual
mathematical usage better than any substitute. In retrospect, there is
an even more important reason for sketches being useful ; in many of
the most interesting and commonplace cases they are finite, realized
on a computer. In view of the growing use of theories in theoretical

computer science (see [Ehrig &#x26; Mahr, 1985 J and the many references
found there), this can be a very great advantage.

Some open questions were raised in [Barr &#x26; Wells, 1985] as to

identifying types of sketches from properties of their categories of
models. An example of the type of question is this : what property
of the category of commutative von Neumann regular rings would allow
one to predict from the categorical structure, that it has a presentation
as the category of models of an equational theory, even though it is

normally presented with an existential quantifier and thus one would
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expect it to be presented using a regular theory. The fact is that there
is both a regular presentation and a purely equational one means that
we must also consider the question of knowing if two sketches have the
same models. The question we are really addressing is when a sketch is

equivalent in that sense to one with such and such property.

The equivalence relation used is the least equivalence relation
such that Sl -&#x3E; S2 is an equivalence if it induces an equivalence between
the categories of set-valued models. This relation is too crude in general.
However, we will mostly be considering coherent sketches here and if

they are at most countable, the conceptual completeness theorem
of [Barr &#x26; Makkai, to appear] can be readily shown to imply that if
a morphism induces an equivalence between the categories of set-valued
models, then it induces an equivalence between their classifying toposes
and hence between their categories of models valued in any topos.
More generally, sketches need have no models at all, and this equival-
ence relation is clearly much too crude.

In the past few years, the study of initial objects in categories
of models has entered theoretical computer science in a substantial

way. The arguments in this paper are partly inspired by the study
of initial objects, even though the end results are independent of that.
A forthcom ing paper of Wells and this author will explore the relevance
of these results in computer science.

1 would like to thank Charles Wells with whom I have had many
fruitful discussions on this subject. I am grateful for the support I

have received from the National Science and Engineering Research
Council and from the Ministbre de 1’Education de la Province du Qu6bec

through grants from the Fonds pour la Formation de Chercheurs et
l’Aide à la Recherche, especially to the Groupe Interuniversitaire en
Etudes C2t6goriques.

SKETCHES.

By a sketch, we mean something a little more general that that
considered in [Barr &#x26; Wells, 19851 but also a little different in that
we do not suppose identity arrows chosen. See the discussion following
the definition of commutative diagram below for an explanation of
how we deal with identity arrows.

A sketch S = (G, D, L , C) consists of a graph G, a set D of

diagrams in G, a set L of cones in G and a set C of cocones in G.
A morphism of sketches is a morphism of the graphs which preserves
the diagrams, cones and cocones. The sketch underlying a category has
as graph the one gotten by forgetting the composition, and has for

diagrams all the commutative diagrams, for cones all limit cones and
for cocones all colimit cocones. Thus a morphism of a sketch in
a category (also called a model of the sketch in that category) must
take all the diagrams to commutative diagrams, all the cones to
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limits and all the cocones to colimits. A morphism of models is, as
usual, a natural tranformation. Note that the notion of natural transfor-
mation between two morphisms from graph G to a category E makes

perfectly good sense. If F, G : G &#x3E; E are two morphisms, a natural
transformation oc : F -&#x3E; G consists of a family a(s) of morphisms indexed
by the nodes of G such that a ( s) : F(s) - G(s) and if f: s - t is an arrow
of G, then the diagram ,

commutes.

There is a certain notation, shown to me originally by John Gray,
that makes the describing of sketches much easier. If S is a sketch,
a node in the graph G is called a sort of S . If s and t are sorts, it

makes no sense to speak of a sort that is a product of s and t . Just
for that reason, we are free to use the notation s x t to mean what we
want. We may and do use such a notation as a shorthand for a node,
having, in the first instance, no connection with s or t, but also as

implying, by its very name, the existence of a cone

in L . Let us say that such a cone is defined implicitly by this notation.
In a similar vein, a node named 1 is understood to be the vertex of

an empty cone. There is a similar convention for arrows. If f : r -&#x3E; s

and g : r - t are arrows in the graph, then an arrow named (f, g) : r - s x t
implies that there is a diagram

in D. Analogous remarks apply to

An arrow written f : s F t is understood to imply the existence of
a cone .
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Of course the duals of these conventions give implicit cocones.

There is one more convention giving diagrams. If we have two paths
in G between the same pair of objects,

then we will indicate that the diagram

is in D by writing

In the definition of free monoid, we always have an empty string.
When monoids are generalized to categories, we also allow empty
strings, but only between a node and itself. Thus in the diagram
above, we will allow the case that m = 0, say, but only when s = t.

The statement that such a diagram commutes in a category means

simply that the composite

Some care must be exercised in translating naive diagrams into
formal diagrams. For example, if one wants to say of the diagram

that d o d°= d o d 1, it is not sufficient to put in a diagram based on a
graph of that shape, for our definition would force d ° = d1, which is
not intended. Instead, we must use a diagram based on the graph Q
with the shape



97

and a morphism

Similar remarks apply in the case that one wants to force a morphism
to be idempotent without forcing it to be the identity.

Using this notation, it is often not necessary to write down many
diagrams, cones or cocones at all.

If S is a sketch and s is a sort of S , then we define a new sketch
Ss as follows. If S does not contain an object 1, we add it. In addition,
we add an arrow 1 -&#x3E; S . We think of this sketch as having a new

constant of type s.

Many of our results below are phrased in terms of initial objects
in the category of models. An initial object in a category is, as

usual, an object that has exactly one map to every other object. Clearly
a category that has an initial object is connected. Now if a categ-
ory is not connected, it is still possible that each component has an
initial object. If that is so, the initial objects of the components will
be called an initial family. Such a family has the property that each

object in the category has a unique morphism from a unique one

of the objects. An example of an initial family is the set of prime
fields in the category of fields. lf there is no danger of confusion,
we will continue to call an object of an initial family an initial object.

A generalization in another direction is given by an object that
has a morphism to every other object, without it necessarily being
unique. The category whose objects are monoids, but with morphisms
that are multiplicative maps, does not have an initial object, but the

one element monoid has a morphism to every other monoid. The iden-

tity element can go to any idempotent element. Let us call such an

object quasi-initial.

A sketch is called an FP sketch (for finite product) if there are

no cocones and all the cones are discrete and finite. The category of
models of such a sketch is evidently the algebras for a multi-sorted

equational theory.

A sketch is called an LE sketch (for left exact) if there are no

cocones and all the cones are finite. In both of these cases, we will

generally omit mention of the cocones entirely, writing, "Let ( G, D, L )
be an FP (or LE) sketch".

A sketch is called a regular sketch if its cones are finite and the
cocones are of the form implicit in the notation s-&#x3E;-&#x3E; t.

A sketch is called an FS sketch (for finite sum) if the cones are
finite and all the cocones are finite and discrete.

A sketch is called a coherent sketch if the cones are finite and



98

the cocones are either finite discrete or of the form s zit .

A sketch is called a geometric sketch if the cones are finite and
the cocones are either discrete or of the form s -&#x3E;-&#x3E;t .

More general sketches are indeed possible. We could, for instance,
add operators that are to be interpreted in models as universal quanti-
fiers or types that are to be instantiated as power objects. These
constructions are certainly possible but we will not explore them here.
Our sketches represent the most that can be done with generalized
exactness conditions.

THE MAIN RESULTS.

Theorem 1. Let 5 be a coherent sketch and let Mod(S) be the category
of models of S. Then of the following, we have (i) _&#x3E; (ii) =&#x3E; (iii).

(i) We can find morphisms of sketches 5 -&#x3E;- 5 #- S’ that
are equivalences with 5’ an FS sketch and such that the nodes in -0160
can be built inductively out of nodes of 5 using cones and 5’ has

the same nodes as S #;
(ii) Every connected diagram in Mod(S) has a pointwise limit ;

(jij)For any sort s of S, the sketch Ss has an initial family of models.

Remark. It is an open question whether (iii) &#x3E; (i). Later results sug-
gest it might, but I have not been able to find a proof. I note that iii
is really the statement that for each sort s, the functor

ev(s) : Mod( 5) -+ Set

given by ev(s )(M) = M(s ) is multi-representable which means that the
functor is a disjoint union of representable functors. Although he doesn’t
appear to use the word, this notion is essentially due to Diers. See, for ex-
ample, [ Diers, 1980],

Proof. (i) =&#x3E; (ii). Since the nodes of 5" and hence of S’ are built in
the way described and limits commute with limits, we can prove
this under the assumption that S is an FS sketch.

Let D : Jazz Mod( S) be a diagram witch 3 connected. A point-
wise limit of models is a left exact functor since limits commute with
limits.

As for commuting with finite sums, it is sufficient to show
that if J is connected and

are functors with limit sets Si 1 and S2’ respectively, then S 1 + S2 is the
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limit of E 1 + E2. This is applied as follows. Whenever there is a cocone

s = S 1 +s 2 in the sketch, let Ek denote the diagram D(sK) in Set and Sk
denote the set lim Ek, for k _ 1, 2. Then it follows that Si 1 +S2 is the
limit of

as it should be. To verify the assertion, let (x1) be an element of
the limit. Then for each i, either x iE E 1(i ) or xi E E2(i ). This determines
a partition of J into two pieces, the indices i for which x1 E E1 (i ) and
those for which x1 E E2(i). It is clear that if there is an arrow 1 - j
in J , then i and j are in the same half of the partition. Thus if J
is connected, then either xi e Ei(il for all i or Xi E E2(i) for all
2. Thus either (xj) E Si 1 or (xi) E S2.

(ii) =&#x3E; (iii). The category Mod( 55) has all limits if Mod(5) does.
In fact, the evident underlying functor Mod(S,)- Mod(5) creates limits.
Since the category Mod( SS ) has pullbacks, it is easy to see that if
two algebras are in the same component, there is an algebra that maps
to each of them. By a straightforward cardinality argument, we see

that every algebra contains a subalgebra bounded in cardinality by the
larger of the size of the sketch and No. Thus there is a set of algebras
with the property that each algebra admits a morphism from at

least one algebra in the set. Since intersections are connected limits,
we may suppose the algebras in this set contain no proper subalgebras.
(It is quite common in model theory to suppose that the models are

non-empty ; we do not make such an assumption here. See Appendix
A for a discussion.) There may well be morphisms between these min-
imal algebras, but we can deal with that as follows. Let A = A.
be a minimal algebra. Suppose there is a non-isomorphism Ai 1 -&#x3E; Ao
where A 1 is also minimal. Continue this way until we either find an

algebra An with no non-isomorphic morphisms from a minimal algebra or
we have constructed an infinite sequence. In the latter case, let

Aw be a minimal subalgebra of the inverse limit (which is over a

connected diagram). Continuing in this way, we build a sequence indexed

by all ordinals. In that case, there being only a set of non-isomorphic
minimal ordinals a &#x3E; j3 with Aa, - A B. In that case, we have both the
arrow Aa -&#x3E;AB that comes from the diagram and the isomorphism. But
the equalizer of those two arrows is a subalgebra of Aa which must

be all of Aa . This implies that the arrow in the diagram A A3
is an isomorphism. From the sequence

we see that there is a map AB AS +1 that splits AB+1 -&#x3E; AS. This means
that either the latter map is an isomorphism or AB +1 has a proper sub-

algebra, both of which contradict our construction. 0

Theorem 2. Let S be a coherent sketch and let Mod(S) be the category
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of models of S. Then the following are equivalent :

(i) There is a sketch morphism S’ C 5 which is an equivalence
with 5’ a regular sketch and 5’ has the same objects as S ;

(ii) The category Mod(S) has pointwise products ;

(iii) The category Mod(S) has pointwise finite products ;

(iv) For every sort s, the category Mod (S;) is connected ;

(v) For any sort s of 5y the sketch Ss has a quasi-initial model.

Proof. We will show that 0) =&#x3E; (ii) =&#x3E; (iii) =&#x3E; (iv) =&#x3E; (i) and that

(ii) =&#x3E; (v) =&#x3E; (iv).

(i) =&#x3E; (ii). We may suppose that 5 is a regular sketch. Products
commute with arbitrary limits and with regular epis. Thus the point-
wise product of models is a model and is, of course, the product in
the category of models.

(ii) =&#x3E; (iii). Trivial.

(iii) =&#x3E; (iv). As above, the fact that the products are computed
pointwise allows us to show that the category of models of 5s still

has finite products and hence is connected.

(iv) =&#x3E; (i). it is clear that if we have a discrete cocone

and equations that force all but one si to be empty in every model, then
we can replace the discrete cocone by the requirement that si -&#x3E; s

be an isomorphism. This can be done either by making the inclusion of

si -&#x3E; s a cone or by adding an inverse arrow. Thus it is sufficient to
show that if there is a decomposition s = r + t, then either M(r)
is empty in every model M or M(t) is empty in every model M or the

category of models of Ss is not connected.

So suppose we have a model Mr with Mr(r) # 0 and a nother model
Mt with Mt(t) / &#x26;5. Choose elements p E Mr(r ) and T C Mt(t ). A model
of S S is a pair (M, 0) where 0 E M(s). Since M(s) = M(r)+ M(t), the mod-
els come in two varieties according as 0 E M(r) or 0 e M(t). Let Mod,
and Modt denote the full subcategories consisting of the two varieties of
models. Then (Mr, p) is an object of Modr and (Mt, T) is an object of
Mod t ; thus neither subcategory is empty. If we show that there are

no morphisms between objects in the subcategories, it will follow that

the category of models of 5 s is not connected. But if (M, 0) is an

object of Modr and (M’, a’) an object of Modt and f : (M, 0) -&#x3E;(M’, o-’) a
morphism between them, we see from the commutative diagram
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that

a contradiction.

(ii) ==&#x3E;(v). Since the forgetful functor Mod(Ss)-&#x3E; Mode(S) creates

products (the pointwise nature of the products is crucial here), the
former category continues to have products,. Now let S’ be the sketch

derived by splitting each regular epi in S . That is, whenever g : t ++s

is a cocone in S , add a new arrow g : s -&#x3E; t and an equation f o g = id.
The arrow 5 -&#x3E; S’ induces a functor Mode (S’ ) -&#x3E; Mod (S) and this
functor is readily seen to be surjective on objects, since any model M
of S can be made into a model of S’ , generally in many different

ways by splitting arbitrarily each M( t) -&#x3E;-&#x3E;M(s). Of course, morphisms
will not remain morphisms of the new theory, so the induced functor
is not full. It is clear that the epis can now be dropped from the sketch
S’ without changing the category of models, so that that category
has, by Theorem 1, an initial family {Mi}. Since every object of Mod(S’ )
allows just one arrow from just one Mi, it is clear that each model of
5 allows at least one arrow from at least one Mi. Since now the cat-

egory Mod( S) has products, the product of the Mi is obviously a

quasi-initial model.

(v) =&#x3E; (iv). Trivial. 0

The category of fields of a fixed finite characteristic p has an
initial object Zp (and is thus connected) but if one adjoins a new cons-

tant of type non-zero the resultant category of models is no longer
connected. There is one component for each prime ideal in Zp[ x]
Thus it is necessary that in parts (iii) and (iv) above the conditions
be satisfied not merely in S , but also in Ss .

Theorem 3. Let 5 be a coherent sketch and let Mod (S) be the category
of models of S. Then the following are equivalent :

(i) We can find morphisms of sketches S-&#x3E;S#- S’ that are qui-
valences with S’ an LE sketch and such that the nodes in S" can

be built inductively out of the nodes of S using cones and S’ has the

same nodes as S ;

(ii) Every diagram in Mod (S) has a pointwise limit ;

(iii) For any sort s of S, the sketch Ss has an initial model.

Proof. (i) =&#x3E; (ii). Because of the fact that the nodes of S’ are built
with limit cones from the nodes of S and limits commute with limits,
it is sufficient to show that models of an LE sketch have limits, which
is well (in fact, an application of the fact that limits commute with

limits).

(ii) =&#x3E; (iii). From Theorem 1, each component has an initial model
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and if there are products, there is just one component.

(in) =&#x3E; (i). Condition (iii) is equivalent to the supposition that
for each sort s c S , the functor ev(s) : Mod( 5 ) -&#x3E; Set is represented by
a model we will denote Ms. By Theorem 2, we can suppose that
S is a regular sketch. let t -&#x3E;-&#x3E;-S be an epi cocone in S . Then for each

model M, M(t) -&#x3E;-&#x3E; M(s). In particular, Ms (t ) -&#x3E;-&#x3E; MS( s). We have,

The equivalences above are either the Yoneda Lemma or come from
the fact that Ms represents ev(s).

There is an obvious representation of S into the functor category

Set 
Mod(s) 

, that sends the sort s to ev( s). There is a least regular sub-

category 5 11 of Set (S) that contains the image of S . Although S #
can easily be obtained as an intersection, I prefer to build it up from
below. So let So = S and construct S 1 by adding to So all the follow-

ing (to simplify notation, we will refer to the object ev(s ) in Set Mod (S)

simply as s and similarly for arrows) :

(a) When f : r -&#x3E; s and g : s + t are composable arrows in S o,
put g o f into Sl .

(b) When s and t are sorts in S o, put s x t and the projection arrows
into Si.

(c) If f : r -&#x3E; s and g : r + t are in So, put f, g&#x3E;: r +sxt into Si . 

(d) When f, g : s -t are a parallel pair in So, put their equalizer
into 5i . 

(e) When f : r -&#x3E; s in So equalizes f and g , put the induced
arrow from r to the equalizer into Si.

(f) When f : s -. t is a cocone in S. and g : s - r coequalizers the
kernel pair of f, then put into S 1 the unique arrow h : t -&#x3E; r for
which h o f = g.

Make S 1 into a sketch by taking for diagrams all diagrams that

commute in Set , for cones all the finite cones that are limits in

Set and for cocones all the arrows that are pointwise surjective in

Set . I should note that the nature of Set is such that a

diagram commutes or a cone or cocone is a limit or colimit if and only
if it is in every model. Thus every model M : S-&#x3E; Set has a unique
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extension to a model of 51 and every morphism of models has a similar
extension. The morphism 50-+ Si induces an equivalence

This process can be carried out with 51 to produce a sketch S,,
that also has the same category of models as So. We can thus build a
chain of sketches 

all with the same property. Their union 511 evidently has the same pro-
perty and is a regular category. Moreover, the evaluation

is full and faithful. Although this fact can be ferreted out from the

proof of the main theorem of [Barr, 1971], it is made explicit in
[Makkai, 1980] and [Barr, to appear]. From (*), it follows that

which means that there is in 5" a splitting for the given epi cocone.
This means that,, if S’ is the LE sketch with the same graph, diagrams
and cones of S , it will have the same category of models as 5 ,
hence as 5. 0

The reader will note that the full embedding theorem for regular
categories was crucial in making this argument work. I am indebted
to M. Makkai for suggesting that I try this. It is notable in being the
first example I have come on in which the full power of the full embed-

ding theorem has been used. In previous applications, mainly, if not

exclusively, limited to diagram chasing, the existence of a regular
embedding into a functor category that reflects isomorphisms would
have readily sufficed. The fact that there is not a similar full embedding
theorem for coherent categories explains why I cannot prove that the
three statements of Theorem 1 are not equivalent. In fact, as is observ-
ed in [Barr, to appear], the existence of a full embedding into a

functor category would force the lattices of complemented subobjects
to be atomic. It is easy to find an example of a coherent Grothendieck

topos in which this fails. For example, the category of sheaves on
a non-discrete Stone space will do.

In order to explain our final result, we have to explain what we
mean by saying that a category is closed under ultraproducts. Unlike
limits and colimits, an ultraproduct is not defined by any universal

mapping property. Of course, if the category has products and (filtered)
colimits, then it has ultraproducts constructed as colimits of products
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(see the Appendix for more details). But usually the category of
models of a coherent theory (such as the theory of fields) lacks pro-
ducts and hence does not have categorical ultraproducts.

Let S be a geometric sketch. Let Reg(5) denote the sketch deriv-
ed from S by om itting all the discrete cocones. Then Reg( S) is a

regular sketch and hence its category of models has products. The

category of models of any geometric sketch has filtered colimits (they
commute with finite limits and all colimits), hence the category of
models of Reg( S) has categorical ultraproducts. It is clear that there

is a full inclusion Mod( S )-&#x3E; Mod(Reg( S)). We will say that Mod( S )
is closed under ultraproducts if any ultraproduct in Mod(Reg( S)) of
objects of Mod( S ) is an object of Mod ( S ).

This definition defines a property of a particular presentation of
a theory. It is not true that a theory that is closed under ultrafilters
in one presentation will be closed in all presentations. Robert Par6 has
suggested the following example. Consider the sketch S with countably
many sorts S1, s2, ... and no other structure. This has the same models
in Set (and in any topos with countable sums) as the theory to which a
sort s and a cocone s = s 1 + S2 + ... has been added. Yet the first

theory is closed under ultraproducts and the second one isn’t. Thus
the following theorem is a theorem about a particular presentation
of a theory, rather than the theory itself. It is not known whether it
is necessary to suppose the hypotheses for extensions by a single
constant, but that is what this proof requires.

Theorem 4. Let S be a geometric sketch. Then S is equivalent to a

coherent sketch if and only of for all sorts s of S, the models of Ss
are closed under ultraproducts.

The sense of "equivalent" is simply this : that if there are any
infinite discrete cocones in the sketch, it should be the case that all
but finitely many of them are empty in every model and they can simply
be deleted from the sketch. The resultant sketch has the same category
of models as the original. There is no a priori guarantee that this will
be the case for every possible codomain topos.
Proof. Suppose there is an infinite discrete cocone s = Sl + s 2 + ... in

S . We can remove from the sketch and from the above sum any
sort which is actually empty in every model. If the resultant sum is
still infinite, then we must have for each i a model Mi for which

Mi(i) # 0. Choose an element cy E Mi(i). Then (Mi, 6i) is a model of

S S. Let u be a non-principal ultrafilter on the index set and (M, a)
be the ultraproduct over u. If M is a model of Ss , then Q E M(s) = EM(si)
so that o- E M(si ) for a unique i. Now a non-principal ultraproduct does
not depend on any one coordinate. Thus (M, a) is also the ultraproduct
of all the (M - CJ)’ j i l. For any J e u with i i J, we have a commuta-
tive diagram in the category of Reg(S, ) models
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But the map on the left actually lands in TTj Sk#Mj (Sk) which is taken by
the lower map to Sk# M(Sk), a contradiction. 0

Of course all these theorems are proved under the hypothesis
that the category in question is the category of all models of some kind
of theory. They are relative results giving conditions on the category
of models of some theory being actually the category of models of

a less rich theory. There are absolute results at one end of the scale.
For example, the Gabriel-Ulmer Theorem [1971] can easily be seen

to imply that a category is the category of models of a left exact

theory if and only if it is complete, has filtered colimits and the

latter commute with finite limits. (See also Kelly, [19821) And of

course, we have the well-known characterization of a category of
models of a finite product sketch as regular with effective equivalence
relations and sufficiently many projectives. Beyond that, we have no
answers to the question of absolute characterizations. This appears
to be an interesting and difficult question. The only property that I
know of that is possessed by the category of models of any geometric
theory is filtered colimits.

APPENDIX.

The purpose of this Appendix is a short discussion of the reasons for

allowing the empty set to be a model (or, in the case of a multi-sorted

theory, one of the sets in a model) of a theory.

It is an arbitrary requirement that results in the category of models
being less complete that it naturally is. For example, there is a theorem
in universal algebra that says, in effect, that every collection of sub-
models of a left exact theory is either empty or is a submodel. In cer-
tain parts of abstract computer science, a data type is defined to be
an initial 1 algebra for a theory. But a theorey will have a non-empty
initial algebra only if there are constants in the theory. It may be un-
realistic to imagine empty data types, but the point is that the theory
takes a very unnatural aspect if that is built in to the core. Some para-
metrizing types have no constant until they are introducedvia the para-
meters.

The only argument for banning the empty model that has any force
comes from the observation that if (Mi) is a collection of models and
M is a non-principal ultraproduct of the Mi, then one wants and expects
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that M(s) will be empty if and only if the set of i for which Mi(s) is
null belongs to the ultrafilter. if one takes the traditional definition of
an ultraproduct as a quotient of the product, the ultraproductwiIl be
empty as soon as one factor is. There is a simple way around this dif-

ficulty which is to take a slightly different definition of ultraproducts.

This definition of the ultraproduct is as the colimit of the products
taken over the subsets in the ultrafilter. If we let u denote an ultrafil-
ter of subsets of the index set I, then for any J E u we can form the

product TT [Mi(S) |i E J} . For K E u, K C J, there is an obvious map

gotten by restricting coordinates. This gives a directed system of these

products and the colimit can be defined to be the ultraproduct.
Not only does this give the correct definition in case there is a

small set of indices i for which Mi(s) = 0, but it also gives an easy

proof of the left exactness of the ultraproduct construction as well
as showing that it exists if (as often happens) products and filtered
colimits do. Of course, this definition is easily seen to agree with the
older one in case all the factors are non-empty.
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