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CAHIERS DE TOPOLOGIE Vol. XXVII-3 (1986,
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS :
APPLICATION TO INVARIANCE UNDER A LIE GROUP. I
by Joseph JOHNSON

RESUME. La theorie du Calcul Différentiel sur les vari-
étés différentiables est généralisée (sans 1'affaiblir) en
utilisant des fonctions localement définies C* <(ou analytiques
réelles, ou analytiques complexes) de 1, 2, 3, ... variables comme
opérateurs, et en introduisant des relations de commutativiteé
appropriées. La théorie est de plus précisée par des axiomes qui
permettent de recoller les informations locales en une
information globale. Ce qu'on obtient posséde les principales
propriétés de l'algebre commutative, en particulier la
possibilité d'ajouter des indéterminées et de résoudre des
systémes d'équations. De plus, on peut prendre des limites et
colimites aussi générales (mais petites) que 1l'on veut. La
théorie est appliquée pour généraliser les théorémes de Lie aux
espaces de dimension arbitraire (méme infinie) et sans
restriction sur la nature des singularités qui peuvent
intervenir.

INTRODUCTION.

In synthetic differential geometry one can discern at least two
distinct trends. One of these is the "global approach" as represented
by the theory of C»-algebras [9]. At the other extreme is the "local
approach", where something concrete is hypothesized about the local
nature of what is being studied [10]. This paper, while hewing to the
global point of view, obtains very detailed information about local
structure (cf. discussion preceding (6.7)). Vhat we seem to learn from
the approach used here is that one can carry differential calculus
very far without knowing anything  whatever about the underlying
topological structure of the spaces involved. This approach has
therefore an obvious advantage for studying geometric structures so

25



2 J., JOHNSON

highly “fractal" that one cannot easily lay down a minimal set of
axioms for them. The theory pursued here somewhat resembles the
theory of C~-algebras, but our operators are certain functions of 1,
2, ... variables whose domains are arbitrary open subsets of euclidean
space (rather than the entire euclidean space itself> In +thic way uc
are able to handle the real-analytic and complex-analytic cases
together with the C=-case. Also we can look at functions like 1/z as
operators. Of course, requiring more operators than for C®-algebras
also gives our objects more structure.

The paper is in two parts. Part I constructs a tower of
categories U J C ) K such that each inclusion has a left adjoint. Ve
finally arrive at a category K in which a lot of the usual business
of differential geometry can be done. Each of these categories is
both complete and cocomplete. The potential usefulness of U and C,
except as approximations to K needed to derive the properties of &,

is only hinted at here <(cf. (3.2), (8.2), and the discussion that
precedes (3.2)).

Even though the theory of this paper makes no specific
hypotheses about the local nature of the spaces studied, it does
nonetheless provide a framework for ideas such as are found in (6].
Also it is possible that the dual of the category K is cartesian
closed, so that, since K°P contains manifolds as a full subcategory,
we would get an embedding of the manifold category into a cartesian
closed one. However, obtaining an embedding of the manifold category
with this property is in no wise the goal of this paper.

Rather the justification for the approach followed here is that
the categories we generate allow us to practice differential or
analytic geometry by imitating commutative algebra. This application
of the theory is shown in Part II of the paper, where the theory of
Part 1 is used to derive a treatment of invariant theory that is more
flexible and also much more general than the traditional one. The
proofs on occasion are hard to find, but once found (sometimes by
using geometric intuition and dualizing, sometimes from algebraic
intuition) are elegant and simple. The extra generality one gets and
the possibility of using algebraic as well as geometric intuition
Justify the added measure of difficulty. The fact that the present
approach rides roughsaod over singularities (like a large horse
galloping over little bits of cactus) makes it a very convenient tool.
In the case of complex-analytic geometry, the approach followed here

is more thoroughly algebraic (and more general) than for instance
that of [7].
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A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS ., 3

The notion that seems +to most fundamentally underlie the
mathematics of this paper is that of commutative inverse semigroup.
It was my understanding of the related concept of prering (cf. [8D
that caused me to realize the approach taken here could be viable.

The contents of this paper have been circulated in two (larger)
preprints since 1984, and I have received many constructive comments
about them. Conversations with Paul Cherenack, Anders Kock, Fred
Linton and David Yetter in particular have been helpful in crafting
the present version.

For more detail, the reader can consider the following outline
and the paper itself.

PART I. GENERAL THEORY OF UNIVERSES.

§1. Definitions and elementary properties of universes.
Defines the operators for the particular type of universal algebra
(weak universe) studied here and makes clear the type of
commutativity relations that are imposed on these to define the
notion of a universe (object of .

§2. Structure theory of universes. Studies the additive
inverse semigroup associated to a universe and gives information on
how universes are put together. It is shown how equalities and

inequalities can be solved within
one can adjoin indeterminates to a

§3. Fiecing together
Information. Takes up the question

the category of universes and how
universe.

global information from local
of how local data can be harvested

into global information. This is
category C of cohesive universes.
§4. Phantom decomposition of universes. A very spiritual
section that speaks for itself.
§5. Representability of certain functors C - sets. Shows us

how to construct the kinds of cohesive universes needed in the
sequel.

done through introduction of the

§6. Local theory of cohesive universes. Introduces points
for a cohesive universe and defines the local universe at a point. It
is shown that a local universe is essentially a special type of local
ring, and that dividing this local ring by an arbitrary proper ideal
produces a new local universe <(cf. (6.5). In (6.6) it is shown that
solving systems of equations in a local universe amounts to modding
out by ideals.

§7. Topological Defines the category K of
topological universes. These are the cohesive universes that have
enough points to allow one to distinguish between open sets.

universes.
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4 J, JOHNSON

88. Sober spaces and the spaces SC. Shows that the
category of sober spaces is exactly the category we get when we
consider the set of points for various cohesive universes. The spaces
SC, where C is a limit or colimit in KX, are shown to be easily
commutahle in princinle

§9. Derivations and tangent spaces. This essentially
introduces the tangent ©bundle and the notion of admissible
derivation.

§10. Infinitesimals and Taylor polynomials.

§11. Integration of one-parameter families and Taylor's
Theorem. Shows that every one-parameter family of elements of a
topological universe has an integral which is also a one-parameter
family of elements of that universe. This is used to show that, for

arbitrary topological universes, Taylor's Theorem with the integral
form of the remainder is valid.

PART II. IRVARIANCE UNDER A LIE GROUP.*

This part of the paper only uses universes that are in the
category K. In Part II we show how the theory of Part I can be used
to provide a vast generalization of a part of differential geometry
which, in its classical form, requires the use of a number of
different techniques.

§12. Actions of a group universe on a universe. It is shown
that an element that is locally invariant and has an invariant domain
is invariant. Right-invariant vector fields are introduced. A group
action is shown to have an orbit space which is itself the set of
points of a universe. There is no apparent general need for "slice
theorems" in this theory (cf. [11D).

§13. Action of a local group universe on a universe. It is
shown that local invariance of ¢ is equivalent to all Lie derivatives
of ¢ being equal to zero.

814. Low-order terms in the power series expansion of ¥.
Taylor's Theorem is used to show that the set of right-invariant

vector fields and the Lie alebra of the group are isomorphic as Lie
algebras.

*> This Part will be published in Volume XXVII-4 (1986),
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A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS , .., S,

O. NOTATION.
This paper has some very special conventions.
Categories. If A, B € Z, Z a category, (A,B) = (A,B)z is the
set of morphisms A - B. AtB is the canonical morphism from A to B
when the context makes clear what AtB would be (e.g., if A is an

initial object of Z ). The conventions of [1] are generally followed

here. Z-Z for Z in the category Z is the category of morphisms in Z
with domain Z,

L:Z 92 223 Zz-2z={fe @'ZY | fi = 3.

Ve define ZZ analogously. S HT means S is a left adjoint of T. If I

is a diagram scheme (cf. [1]), C: is the constant diagram of scheme I
associated to C.

Sets. Al denotes the underlying set of A when the context
makes its meaning clear. CIB means the image of C in B if C C A or
C € A, when the context specifies a map A » B. If S, T € sets,

f:8S ~--3 T means £ € (U,T)aata for some set U C S.

Vrite U = dom f. The category of weak sets denoted wsets has the
same objects as sets, but

(S,T)w-ot- ={f:8 -—-+T).

If 5, T, Ve wsets, fe ,T), ge (T,W), then gof € (5,T) is defined
by

(gof) () = g(f(s)),
dom (gof) = { s€ S| s¢ dom f, f(s) € dom g }.

Our abbreviation for closure, say in a topological space, is cl.
In what follows, K = R or K = €. If P is any finite set,
¥e = (P,KDuats
and is called a euclidean manifold. If X is any set, define
Kx = X,[KDusatsa.
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(3 J . JOHNSON

Define Br = Kmr if #P < ®, B, = Be1,00 if p € N, where
Ll =41, .., p) =01if p= 0.
Ve note that if a ¢ K, we have a. € B, defined by
ap : Mo K with Mo = Mo, o1, ap(x) = a for every x.
If £: P> Q P, Q finite, define M,: Mo » Me by M, (b) = b o 1.
The euclidean manifold M- has coordinate functions z.” € Bme defined
by

(z") (@) = al(p), pe P

If 1 { g £ p, we write z; for 2z,"'PJ, As usual, K ~ M., and x ¢ M,
can be identified with

(X1, vy Xp), where Xq = XqP(X).

Ve note that Mci,01 = Mz has exactly one element @ <(considered as

equal to the empty graph). We can identify Bo with Kl{@o)}, where @o
is a symbol, by

f @ if dom £=0, £ b f@ if dom f# 0.

If F € Bop and F1, ..., Fp € Kx, p > 0, we have an element denoted
F(F:, ..., Fp) of Kx defined by
(F(F1, ..., Fpl)x) = F(F.1 (x), ..., Fpx))
with dom F(F., ..., Fp,) defined as all x € X such that the right-hand

side of this equation makes sense. The paper that follows is
basically a particular way of generalizing this observation about Kx.
Ve note that Kx has a unique element @x such that dom Ox = O@.

The reader must now pick one of the following as a synonym for
admissible: C*, real-analytic, complex-analytic. One must then let
K = R if “admissible" means C* or real-analytic, K = € if it means
complex—-analytic. Let A~ C B, consist of all those functions with
open domain which are admissible functions of the points of that
domain. If the reader wishes to axiomatize the theory that follows
more fundamentally than is done here, he will note that initially we
use very few special properties of K and the sequence A., Az, ..., but

that by the end of the paper, the list of properties used grows quite
long.
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A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS ..

PART I: GENERAL THEORY OF UNIVERSES

1, DEFINITION AND ELEMENTARY PROPERTIES
OF UNIVERSES,

A set U is called a weak universe if for each h = 1, 2, ... (but
not for h = 0), and each element (F, w) of AnxU’, an element

F(w = Flur, ..., un)

of U is given. Put another way, U is a universal algebra with set of
operators A: U Az U As I..., the elements of A~ acting with arity b
If U, V are weak universes, f € (IUl, VD) is called a morphism if
whenever h > 0, F € An, u € U», we have

f (F(w) = F(fw, where fu = (fuy, ..., fun).

(It is tiresome to endlessly repeat the caveat h > 0, so we usually
will not do that, and shall consider that b > 0 is understood.)

We note that since the elements of A~ are not necessarily
globally defined functions, the definitions given' here do not f£fit
within the framework of "Lawvere theories" (cf. [1], p. 220). Ve let ¥
be the category of weak universes, and note that ¥ is a category of
sets with algebraic structure as defined in 11.1.9 of (1]. In time we
shall, in the spirit of (1], introduce commutativity relations to
define the subcategory of W that we shall be studying.

For the case where admissible means C®, we get examples of weak
universes by considering a C™manifold X and letting U C Kwy consist
of all C* functions (for a fixed s { ) whose domains are open
subsets of M. Such examples, however, do not even begin to suggest
the range of possibilities.

We fix a countable sequence of symbols z:, zz, ... . The set of
elementary expressions is defined inductively by arbitrary use and
reuse of the following two rules:

1> z; is an elementary expression, 1 = 1, 2, ... ;
2) If E., .., E» (h > 0) are elementary expressions and

F ¢ An, then F(E:, ..., En) is an elementary expression.
For instance

FG(z:, H(Zz2, 22)), zs, H(Z1, Zz32)) where F € As, G, H € Az
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8 J. JOHNZON

is an elementary expression. If we use a different sequence of

synbols, say w:, Wz, ..., we shall speak instead of elementary expres-
sions in wi, w2, ... . We can speak of an elementary expression in a
finite sequence of symbols w:, ...wo.. If E is an elementary expression
in w., ., wey, But oot in W, oy We-r, Wier, ..., Wp, W& Shall say that
E effectively involves w:, or that E is not free of w.. We write E =
E{w:, ..., wp) if E is an elementary expression in wi:, ..., We. The
example that was given is an elementary expression in zv, zz, Zs Zs,

zs free of =z hence also is an elementary expression in z;, zz, =z,

Zs. If an elementary expression has a nest of brackets ((.. () ..
with n pairs of brackets, but none with more than n pairs, we call

¢(E) = n the complexity of E. In the example, c(E(z/, ..., zs)) = 3. Ve
have
c(z,) = 0, cF(zy, ..., 2 =1 1if F € A,p.
An equation E, = Ez where E., E: are elementary expressions is
called an elementary equation. If uy, ..., up € U € V¥, and if

E(zy, ..., 2o) is an elementary expression, then E(us, ..., us) € U can
be defined by replacing z: by us: for every I and evaluating by using
the maps AnxU” -+ U that define the weak universe structure on IUl
Thus, in our example,

ECus, ..., us) = F(v, us, w
where v=G6,,t), t H (uz,uz), w = H{us,us).

Given any elementary equation

E1(zy, ., 200 = Ea (zZy, ..., Zo)
and a weak universe U, we say v ¢ U4 is a solution of E. = Ez if
E, () = Ez2(w. An elementary equation E. (z:, ..., Z) = Ez(z1, ..., 25)

which has every element of UP as a solution is called an elementary
identity for U. We shall then say that U satisfies E.« = E.. Ve ob-
serve that every Kx satisfies the identity @.(z) = 0, (=), where
B, € Ar is defined by dom 2. = 0.

An elementary equation E: (z:, ..., 2,0 = Ez(z:, ..., 20 is called
balanced if z: is effectively involved in E. and Ez for every
i=1, .., pp If an elementary equation is balanced and is an
elementary identity for each of the weak universes A., Az, 43, ..., we
shall say it is a fundamental identity. A weak universe for which
every fundamental identity is an identity will be called a universe.
Let U be the full subcategory of WV supported by the universes. We
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A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS e

shall see that there are interesting examples of universes for which
the identity @(zy) = @(zz) fails.

If we would show that the weak universe U is a universe, we
would need, according to our definition, to show that if E, = E: is
any fundamental identity, then U satisfies E: = Ez. The list of fund-
amental identities is uncountably infinite, however, and though for
example any Kx is a universe, that is not apparent at this point. Ve
shall proceed now to develop a “"constructible" list of fundamental
identities such that any weak universe which satisfies all of them
will be a universe.

Ve have first that

1.1 z'(zZ) =z
is a fundamental identity, since to say that U e W satisfies <1.1.1)

just means
zZ: "W = Ide W) = u if velU,

where Idc x) = x for all x e K.
A weak partition of 1, ..., p (p > 0) is given by writing
{1, .. p Y = anl"(ex,, viey exﬁg)

where p; > 0 for every 1. Given such a weak partition and any family
Ur, ..., Up, We set

UKJ'-'UCIJ" 1<1X£h ISJSP‘

and write u:» for the sequence u:r, ..., Uip,. If F € An and Fi € Ap
for 1 { 1 £ h, then

(1.1.2) E(z:P, ..., 2P))(2y, ..., 2p) = E(zy, ..., 2p)

where E = F(F:1(z12), ..., Fn(zax)) is a fundamental identity. To prove
this, note that if U e W and w e UP, then (1.1.2) means that

(Fd.., Fx(‘Z'prp), L2y, ., Up) = FG, Faluse), ).

This equation holds if U = Kx for any set X, hence for any As since
An C Bn = Kmy, as a weak subuniverse. Any fundamental identity of
type (1.1.1) or (1.1.2) will be called a seminal identity. We note that
any fundamental identity, in particular any seminal identity, is a
“commutativity relation" in the sense of 11.1.9 of (1].
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10 J. JOHNSON

PROPOSITION (1.2). Any weak universe that satisfies every seminal
identity is a universe.

For (1.2) we use a lemma that generalizes (1.1.2).
LENNA (1.2.1). Let U ¢ W satisfy every seminal identity,
and let E(z:, ..., o) be an elementary expression that is not free of
any z:. Then U satisfies

(E(ziP, iy ZoP)) (20, oy 20 = Elzv, v, 2Zp).

Ve use induction on r = c(@E). If r = 0, then p = 1 and
E(z:) = z;. Then

(Zi(z D)W =z W = u
by (1.1.1). Now let r > 0. We can write
E(zy, ..., 250 = FEr1(Zix), ..., En(Zm)),
using an appropriate weak partition of 1, ..., p, where each E.(z:u) is
elementary with complexity < r. Using induction on r and (1.1.2) with

F: = Eslzi®t, ..., 251”4 we get, if u € UP- that

E(z:7 ..., ZoP)) W = (F(.., Ei(Zue®), D)W =
(FCoy Egd(Zixrid(Zzx?), D)) = F(.., Filuw), ..) =
FG., Exua), ..0 = E @),

proving (1.2.1).
To prove (1.2), let U be as in (1.2.1) and let
E, (Zv, veey Zp) = Ea (21, cery Zp)

be any fundamental identity. If u € U~ then, since A, satisfies
E. = Ez, we have

Ei ) = By (7, ..., 2,700 (W) = (B2(z:7, ..., ZoP))(u) = Ez W),

proving (1.2).
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It is evident that if X is any set, Kx will satisfy every
seminal identity. If U is any universe and V - U a one-one morphism
in ¥, then V is also a universe. Also, any surjective morphism U - V
in W where U ¢ U implies V e U. Thus from Kx we get a whole host of
universes, and we see that every weak universe we have considered so
far is in fact a universe.

It follows from 11.5.1 of [1] that U is complete and from 11.5.3
that | | : U + sets preserves limits. In particular, if (U ic: is a
family of universes, then W.i.:lUi! has the universe structure defined
by

Flur, ooy Upl)y = F(uy, viey Upy)

if Us = sidier € MaexlUyl, 1 £ J < p and F € Ap,

and this is WiezU:. In the next pages we shall also see that U is
cocomplete.

To establish that U is cocomplete, we need to look at a cons-
truction which can be done in U that seems not to be expressible in
terms of standard notions of category theory. We shall consider any

ordered set I as a category where «1,/0 : 1 + jis 'unique if i £ j and
doesn't exist otherwise (so

a,j) = { d,D if 1< 7).
Let I be an upper semi-lattice (the sup i1¥J of i1 and j always exists),
T: I + U any functor. Ve define a universe U with (Ul = UsezIT1l. If
te Ti C U, let Ye = iI. Assume that F € An, t;, ..., tn € U, and set
1= Y1 V ... V ¥n where Y. = Ye‘.
Let t,ITi denote the image of t, under T(¥,) -+ Ti, and define

F(ty, ..., tn) = F(tsITd, ..., talTD) € TI C U,

using the fact that T/ is a universe to form the right-hand side of
the equation. This makes U into a weak universe IT that we shall call
the concatenation of T. It is easily seen that [T satisfies any given

balanced elementary equation iff every Ti satisfies this equation.
Thus UT is a universe.
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12 J. JOHNSON

It should be observed that any one-element set is a universe in
a unique way, a so-called one-element universe. Concatenations of
one-element universes can be used to disprove many naive conjectures.
Ve note that if I # j, t:i € Ti, t; € TJ, then @, (ty) € T1, so B, (ts) #

N A Sy N = A S Nt o N aa., £ o r v a
2,042, 200z 2.z 15 not an a.dcl’nt.n.\.y for uT if #1I > 1.

Let S be any set, and let I be the upper semi-lattice of all
finite non-empty subsets of S where if P, Q ¢ I, P £ Q means P C Q.
Ve have a functor T: I -» U defined by T(P) = Ar where Ar C Kme con-

sists of all admissible functions Me --- K with open domain. Define
Uz ¢ U to be UT. Ve let Tu= Au : Ap 3 Ag if u : P 2 Q is any map of

finite sets.
LENMA (1.3). 1 b Uy is a left adjoint for | |: U -+ sets.

Ve need to show that for any given I, U: represents the functor
U » sets defined by U b (I, IUD (cf. [1], 16.4.5). Define

*: I 4 10Ul by ib ty= z ¥t e A(:; € U..
Ve need to show that if f: I -+ IUl, there exists a unique morphism
ge: U 2 U with gel* = £,

LENMA (1.3.1). Suppose u : [1,q) 4 [1,p) is surjective and
F € Aq. Then

(AL F) (21, veey Zp) = F(Zul, ceey Zuq)

1s a fundamental identity.

Indeed, AL F = F(Zui, ..., Zug).

To show that #r is unique, note that if P = {x;, ..., x.2 C I,
then F(z,”, ...,2x,") for F ¢ A 1is a typical element of Aer. Neces-
sarily

FeFlze®y .y Zi,™)) = e FI%x1, ..., I*%)) = Ffxy, ..., Txp),

so gr is unique.

To show gr exists, let x;, ..., X € I be all distinct, and let
P={ x1, ..., Xxo }. Let w, = 2z, Then Flw:, ..., we) & U: can be
written thus for only one F € Ae-. Ve define
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A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS .,

geFlwr, ..., Wp)) = F Xy, ..., IXp).

Vhen g, is so defined, we note that the formula just given will

continue to hold even if the x; are not distinct or are chosen in
some other order. Indeed, let

Gy vy Yo = X0, o, X0
have cardinality p and let G € As Let us show that
$c(Gzy,", .\, Zyd)) = G Eyr, ..., fyq).
let y; = x%us, 1 £ f £ q where v : [1,q0— (1,pl. Then

Fe(GC(2Zy,P: v ZpP)) = g (AL G ((2Zx,”y oohy Zx5)) =

(Au GYEXy ), vy £(Hp)) = G(E(Y1), ooy F(yq))

using (1.3.1).

LENNA (1.3.2). g € U

Let us, ..., un € Uz, F € An. Vrite u, = Fy (w“p-‘, vy Wip P4
where
Pa = (P P, = C )
Wiy Zx;; "% 1 X1ty vy Xipg).
Set
P =P.U ... U Pp, X1, ooy X = X1ty ooy Xipy) oor ;7 Xnty, ooy Xnpgy
i.e.,, we have here a weak decomposition of 1, ..., p, and this is the

indexing associated to it. Then

ﬂ'(F(Uy, ey Uh)) = ﬂr(F(..., Fi(W1xp), L)) =
FG.o FawedP), .. )Efxy, ..., IX) = FG..y Fy(fxie), ...)) =
Fd..., ﬁf(F;(‘Wani)), WD = Flgeun, oo, Frun).

THEOREN (1.4). U is cocomplete.

Let D : I 5 U be a diagram in U, and let S = IL;erID(DI. Let

Ue U and T: D 4 Iy a morphism of D into the constant diagram

associated to U. Then define fr: Us 2 U by (fS")Ios = Ti for each

i1 ¢ I Define u ~ v for v, v e Us if fru = fv for every T: D 2 Iu.
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14 J. JOHNSON

Let V = Us/~. The natural maps Di + V constitute an element of (D,Iv)
that exhibits V as a colimit of D.

2. STRUCTURE THEORY OF UNIVERSES.
From now on, fundamental identities will be, in most cases,
treated as obvious and be used without any special explanation. We
use the addition function
z;2+ 222 : K* 2 K
to define an addition on a weak universe U as follows:

v+t v=(z2+ z22 (uwv if u, vel.

Similarly we let
uv = (z;2 zz2%) (u,v).

If U is a universe, fundamental identities give us
u+tv=v+ oy, uv = vu, u(viw) = uv + uw
and associativity laws for addition and multiplication. Our study of

an arbitrary universe U will first focus on the additive structure
of U.

The function nég: K - K defined by neg(a) = -a is in A., so we
can define -u = neg(w, v ¢ U. As usual we write v - v for v + (-v).
Then x = -u solves u+x+u = u (because of a formal identity), so U,+)

is a "regular" semigroup (21, p. 10). By v.4.5 of [2], p. 169, U is an
“inverse semigroup", a notion which has an abundant literature (cf.
[31). It is this discovery about U that led me to realize that the
present approach to differential calculus might be a viable one. It
lies at the heart of the entire theory.

We can use the fact that U is a universe to give quick proofs
of facts that hold as well for arbitrary commutative semigroups. If
u e U, define Ou = 0, (u) (where 0:: K -+ K is defined by 0.(a) = 0).
If U = Kx, X any set, Ou is just the zero function on the domain of wu.
Thus for an arbitrary universe U, we shall think of Ou as being

somehow the domain of u, an analogy that will be endlessly exploited
here.
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Define v { v (u, ve U) if v + Ov = v. (In our analogy,

ulv & VvV =Uldomv. )

Ve note that :

v{u since u+O0u=uyuiviuvauv=vufviw 32uw

(since w = v + Ow = u + 0Ov + Ow = u + OC(v + Ow) = u + Ow ),

v{v,w 3 v+0Ow=w+0v,uvvand Ou = 0v 3 u = v,
Also

vu,v<v 23 utv {u'+v', uv { u'v'’.
)

The set OU = { Ou | v e U ) plays a very special role in the
theory and acts like our family of "open sets". The elements n in 0U
are characterized by the equation n + n = n, i.e,

n+n=n & ne 0U.
Ve note that

0U + 0U C oUu, <ou»<ou> C oU.

In fact, if n, p € OU, then n+p = np. Note ne OU 2 n = On.

If ne OU, let Un= { ue Ul Ou=n). Then 'IUl = Unecou Un. We
shall see that this decomposition of U into the sets Un has very
agreeable properties.

LEMNA (2.1). Let n, p € OU, *
Un *# Up C Unep.

= plus or times (+ or x). Then
Let ve U, ve Up. Then

Ou#v) = (Qu)*(Ov) = (On)*(0p) = O(n*p) = n#p = n + p.
In particular, U, ¥ U, C U, If v e Ua then

u+n=u=10u = 1{mu,

sa U, is an assaciative ring with n = Ou,, 1(n) = identity of U,

LENMA (2.2). 0OU, with the order

induced from U, is an upper
semilattice.
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If n, pe OU, then n, p < n + p. Suppose n, p £ v € U. Then u =
n+OeOU,son+pxu+uvu=uThus n+ pis the sup nV pof n
and p in OU (and in U as well).

If a, be U, n, pe OU, # = + or x, then

2.3 a*b + n#p = (a+n)*(b+p)

since a*b + (On>*(0p) = (a+0n)*(b+0p).
If n, n'e OU, n < n', then U, + n'C Un. By 2.3),

ro™: U, 5 Us  defined by r.""@) =u + n'
respects + and x. Also
ra™(1(m)) = 1(0n) + n' = 1(0n + On') = 1",

so r."' is a unitary ring morphism. Thus we have Ul = llacou Un, where
{Un!l ne OU) is a family of rings directed by an upper semilattice.

Ve pause to observe that we can work in U in very much the
same way that we can work in the category of rings. Let U e U, u, v
in U. We shall write (u,v) as “"u = v” when we wish to think of (u,v)
as representing an equation. Let E = { uy = vy | 1€ I ) be a family
of equations on U (u;, vi € U all 1) where I is any indexing set. If
fe WUWWy, fis a solution of E if fu, = fvy for every i e L. Let

TV = { fe (UVW) | f is a solution of E } = (Sol E)(W.
If Sol E is represented by g : U 3 Z € (Sol EX(Z) (so that TV =
(Z,W)) we shall say that g is a generic solution of E.
PROPOSITION (2.4). Let E be a family of equations on U ¢ U. Then E

has a generic solution U - U/E.

If u, u' € U, define u ~ u' if for any solution f of E we have
fw = f@w". If vy ~u's, 1 £ 1 £ pand F € Ap, then

Fluy, ..., up) ~ FCul, ..., u'%), so U/~ € U

Obviously U - U/~ is a generic solution of E. Notation for this map
will be u b WE, ue U.
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The reader able to imagine many equations one might impose on
the elements of a universe might not observe that using equations, we
can state what it means for elements of a universe to satisfy what
is usually referred to as an "inequality". For instance, let a € X = R,
and let ga(x) = x, x > a, ga € Ar. Then the inequality v > 0 (in the
numerical sense, not in the sense we have been using) can be expres-

sed as go(u) = wu. Also u 2 0 (numerically) can be expressed by the
system { gaw) = ul a< 0 ).

Other ideas from algebra also have counterparts for U Let
Uel, Y € sets, and let S = I1UIl L Y. Let 1 : IUI » IUsl and
J:Y 3 |Usl be the compositions of S*: S 4 Us with Ul » Sand Y » S

respectively. Now let Us - V be the generic solution of the follow-
ing set of equations of E :

S*(F<Cury .ovy Up)) = F(S*u;, ...S%u, pe N, ue U,

where we consider that Ul C Us using i. Ve shall define U.Y = Us/E
and let Y b IUeYI be induced by j. The following is immediate.

PROPOSITION (2.5). Y b UeY is a left adjoint for | |: U-U 4 sets.

If 0 e Ue Uand 0 + v = u for every v e U, we call 0 an
identity element of U, and write 0 = Ou since it must be unique. Ve

shall denote by Ub the subcategory of U supported by those universes
that have an identity element, defining

WMo = fe WDy | O = 0L,

If Ue b, a b a,(0u) defines an element of (A,,Wu, giving us, in a
sense, a O-ary operator of Ao on U. In fact, Ao is an initial object
of Uo. Ve define Uo = Uov for U € U,, and we call Uo the set of

global elements of U. We have a functor ( )o : U-Us -+ sets defined by
V b V. .

PROPOSITION (2.6). Let U € Uo. Then ( Jo has a left adjoint U( ):
sets -+ U-Us.

Evidently U b UesY for any set Y is an injection as is Y » {UWY!
(since U-U possesses objects with more than one element), so we can
consider that U,Y C UsY. Let U(Y) = (UeY)/E, where E is the set of all
equations v + O0u for v € UeY together with all equations Oy = Oy,
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18 J. JOHNSON

y € Y. Since UsY 4 (UsY)/E is surjective, Ou/E is an identity for U(Y).
Then

(U(Y),V)u-uo = { fe We¥,Vy-vo | £OY) = {00} } = (¥,Vo).

We can use (2.6) for a new look at the universes As. We have
An = Ao([l,h]).

3. PIECING TOGETHER GLOBAL INFOR—
MATION FROM LOCAL INFORMATION.

If uy ve Ue U we shall say that v and v match if v + Ov =
v + Ou. A subset M of U is matching if every two elements of M
match. Ve write M(U)> for the set of all matching subsets of U, and
note that any subset of U which has a lower bound is necessarily in

¥@U). Also OU € M(U). We note the following axiom that is satisfied
by every universe Kx.

(3.1.1) Every matching subset of U bhas a greatest lower
bound (glb).

The reader will note that (3.1.1) resembles the axiom that
distinguishes a presheaf from a sheaf. This statement can be made
exact using the theory of inverse semigroups.

Let U satisfy (38.1.1). Let F, G € An , u, v e U» . Define
u+t Ove UPby (W + Ov)y = u; + Ov,, and assume u + Ov = v + Ou and
also F + 0G = G + OF. Then , using some fundamental identities, we

get

Fw) + 0G(wv) = F@u + 0v) + 0G(v + Ow =
(F + 0G)(w + Ovo) = G(v) + OF (w.

It follows that if F e M(An), M1, ..., Mn € M), then
FM+, ..., Mp> = { F(u,, ..., un) | F e F, ue U”) e M.
Ve consider the following axiom:

(3.1.2)  glb(FQ:, ..., K = (glb P (glb M1, ..., glb M.
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Ve note that if F, G € An, u, ve Un F £ G, uy £ vy for all i,
then F) ( G(v), so 2 holds automatically in (3.1.2). Thus in fact
(3.1.2) abbreviated X = Y is equivalent to X { Y and also to 0X = OY.
If U € U satisfies (3.1.1) and <3.1.2), we shall call U cohesive. 1If U
is cohesive, glb OU is an identity element for U since

uu+glbOU L u+Ou=u

If U and V are cohesive, any f € (U,V)y, is called a morphism

provided f@lb M) = glb (M) for every M ¢ M(U). We let C denote the
category of cohesive universes.

Let U € C, ¥, N e MU, * =+ or x . Then, (glb M)*(glb N) =
glb (MsN) by (3.1.2). In particular, if n ¢ O0U and M C OU, then
glb (ntM) = n + glb M. The elements of OU under + and x behave like
the family of all subsets of a given set under N and U. Comparison
with a type of algebra commonly considered in quantum mechanics
suggests that the algebra of OU under these operations for the case
when U is an entirely arbitrary universe is analogous to the "logic"
of a quantum mechanical system. Since 0U is "Boolean" when U e C, i.e.
glb (n + M) = n + glb M, and the logic of quantum mechanical systems
is non-Boolean, this suggests that the universes which are not
cohesive, or satisfy (3.1.1> but not (3.1.2), can possibly be of
interest. Nonetheless the main thrust of what follows will be the
study of universes which are cohesive. The following is an example of
a non-cohesive universe where the theory which follows gives no
information whatever.

EXANPLE (3.2). Take K = R. If f, g € A, define

f~g |if f + Oca,=» = g + Oca,=» for some a € K.

Then U = A./~ has a unique structure of universe such that A, - U
(written f b f/~) is a morphism of universes. Let g : U » C be any
morphism of U into a cohesive universe C, and let w = g(z/~), where
z = Idk. Since any element of A can be written f(z) with f e A., any
element of g(U)> can similarly be written f(w). If a € K, then

I ca-t,av12(2/~) = B (2/~)
since Idca-7,a415 + Ocavr,er = B + Ocavi, e
Therefare
w = glb { Idca-1,a+15(W) | @€ K} = @ (w).
If t = fw) e gU), then t = £ @Bw)) = B(w), 1.e., g = {w.
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20 J ., JOHNSON

If M is an admissible manifold, M with all its structure can be
recovered from Am. The reader will be able, after reading some more
of this paper, to fashion a proof of this as well as of the fact that

(N, M)admt-utbl. manifolds - (AM, Al\l)c
given by fhWw-ouo.hbh

is a bijection.

THEOREM (3.3). C is complete.
We use repeatedly the following (cf. [4], p. 11).

LEHNA (3.3.1). Let (SiJi«x be a family of ordered sets, and
let S = Tie1S: have the "product order"

st if s, £ t. for every 1€ I.
Let my: S » S, be the i-th projection. If T C S, we have
g‘lbs T = (Slbsj(ﬂzT))zxz )

and either side of this equation 1s defined whenever the other side
1s.

Let Cx e C, 1 € I, and let U be the universe Mic:C:. The order
uv (& v=u+ 0w

on U is the product order derived from the order structures that
exist on the C;. If M ¢ MU, n.M € M., for every i, so glb M
exists and is (glbg,(m:M))iex by (8.3.1). Let Fe MWUAn, M,

Mne M@W). Then with M = glb M, and J a typical element of {1,..,Ak ),

ey

(F(Ml, veny M,h))x = F((M'l)y,, ey (Kn)i) = F(..., KxM_v, W) =
glb(FC.., miMy .)) = glbl(F(M1, ..., Ma)) ] = [GID(FM1, ..., Mad) ],

so U e C. Calculations like the above <(but easier) show that if
fe AWy, A € C then fe (AUc iff wif € ((AC))c for every ie I
Thus U is a product in C of the C,. It is easy to show that if f, g :

C+C in G { ce C | fc = gc) is the difference kernel in C of f
and g, so (3.3) follows.
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4. PHANTOM DECOMPOSITION OF UNI-—
VERSES.

The most general cohesive universe C can be strung together in

a very complicated way. However, there is a crude decomposition of C
into simpler pieces.

LENMA (4.1). Let p ¢ U € U. The following conditions on p are
equivalent:

1) pe OU and U, 1Is the zero ring;
2> pe OU and 1(p) = p ;
3) p = & (p).

Assume 1. Then
1) = 1lup = Oup = p,

so 1 3 2.
Assume 2, and let W = K\{1}. Let 0u: VW 2 K be Ou(z) =0, z # 1.
Then
p=0p@ = 0L@Op) = 01 = @),
so 2 3 3.

Assume 3. Then
0(p) = 0@(p)) = d{) = p = 1@ = 1(p).
Therefore Uy = {p} is the zero ring and 3 3 1.
Lemma (4.1) characterizes in several ways the elements of
W) = {pelUlp=2a@p),

elements which will be called phantoms of U. If h € N, B(An) = {Bn),
and there exist cohesive universes C with #2C > 1 <(e.g., concatena‘e
{0} »+ {1} to get C = { 0,1 }). In any case, #0C 2 1 since @(0c) € .
If pe @, Ue U, let R(p) = {uelU |l B@w = p? define the realm
of the phantom p. Then U = Ugcpcus R(p) and this union is a disjoint
one. This decomposition is especially nice when U € C.

LENNA (4.2). Let U € U. Then:
1) 8(U) is a subuniverse of U;
2) If pe @), then R(p) is a subuniverse of U.
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PROPOSITION (4.3). Let C ¢ C. Then @(C) and all the R(p) are cohesive.
Moreover { R(p)> | p e B(C) )} is directed and C Is its concatenation.

The first two assertions hold since
glb (M) = B(glb M) 3 glb OM ¢ BC, B(glb M) = p if M C R(p).

Since B(C) = 08(), B(C) is an upper semilattice. Let u:, ..., un € C,
F € An. Then if p: = O(u,,,

@BFCuy, ..., un)) = FW@), ..., BCun)) = ps + ... + pn.

We need to show C is the concatenation of the K(p). First we
make p B R(p) into a functor @C - C. Let

ne = Orcpr = glDOR(I) 1if p e B,

Then @(n,) = p. Also
p£Lq = 0@ {n,ngl))=p
so (by the definition of n),

np £ glb { npyng } £ ng ie, p£Lq 3 n £ nag

If vue R(), Bu + nyd = ng, so R(p) + nq C R(G@) {Uf n, { ny. For
p £ q, define rp9: R(p) + R(@Q) by ro9w) = u + nge One sees that
rp? € (R(p),R(g))c so that R( ) is now a functor @C + C. Ve have
already seen that C = lUpac R(p), so (4.3) will be proved once we
show that when wue C”, Fe An and p = BCu;) + ... + @(@n, then
F(w = F(ur+ne, ..., untng). Now Our + ... + Ous 2 Dnp, since p is its
phantom. It follows that

OF(w = OF(w + Our + ... + Ousn 2 Dnp.

Then as
Ou2 n=n+tn 3 utn = u,
Fdw = F(w + np = Flur+tne, ..., ustng).
5. REPRESENTARBILITY OF CERTAIN

FUNCTORS (- sets.
We shall write C Cc C' to mean that C C C' and that the
inclusion map is a morphism in C. We shall use this same convention

for U and other categories of universes as appropriate.
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THEOREN (5.1). Let T be a subfunctor of (U, du: C + sets where U e U.
Assume T satisfies the following conditions:
1) CCecC' a TC = (TCHNW,C ;
2) If C = TNie1C,, the natural bijection (U,C)u = Miez(U,Colu
identifies TC with W.:exTC..
Then T 1s representable.

The conditions 1 and 2 of (6.1) mean simply that T preserves
limits. By 10.3.9 of [1], to show that T is representable, we need to
show there exists a set D of objects of C such that if C € C and
f e TC, it is possible to write f = hg where g: U 5 D € D and b :
D+C. If Ce C and S is a subset of C, there exists a smallest C'
such that § C C' Cc C. This smallest C' will be written cleS, or
clcec S. Let £: U 5 D be a morphism in U. Ve shall call f minimal if
cle(f@U)) = D. If also f' : U 4 D' is minimal, we shall call f, f'
equivalent if there exists an isomorphism g: D + D' in C (or equi-
valently, in D such that gf = f' The proof of (5.1) will be complete
once we show the following

LENNA (5.1.1). Let U ¢ U be fixed, C € C variable. The
equivalence classes of minimal elements of (U,C)u form a set.

Let £: U + C be minimal, and let
Q={QC U I £ WQ € ¥O 1.

If Qv, ..., Qo € Q and F € A,, then
£ EFEQ1, ooy Qo)) = FUFQu, ..., £Qp) € M),

so @ is a weak universe. Define g: @ + C by g(Q) = glb(f (Q)). Since f
is minimal, (5.1.2) below implies that g is surjective. Also

8FWQi, .., Qu)) = IBF(LQr, ..y £Qp)) = F(EQ1, .oy Q)

s0 g is a morphism of weak universes.

If Q Q' € @ define Q ~ Q' to mean gQ = gQ'. Clearly we have an
induced isomorphism of wuniverses @/~ -+ C, and it defines an
equivalence of f with the map U -+ @/~ given by u b (¥/~. Now,
Q € P(PAD) and ~ € P(PUHxP)). The structure of Q~ as an object of
C is entirely determined by (U,Q~). Therefore the equivalence classes

of minimal morphisms form a set, since they can be indexed by a
subset of P(PWUY) x P(PU)IxFPWU)).
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LENNA (5.1.2). Let C ¢ C and let V be a subuniverse of C
such that Oc = glbc OV. Then cleV = { glbcK | M e M(V) ).

Let V' = { glbcM | M ¢ M(V) } C clcV. If glb Ma, ..., glb My e V!
and F € As-. then

F(glb M1, ..., glb ) = glb(FMy, ..., K2 € V',

so V' is a subuniverse of V. We have Oc € V'. Now suppose (glbcM:)..:
is some indexed element of M(V'). Let M = U,«:M.. Then M e M(V) and

glbc ¥ = glbe <. glbec My | 1€ 1) € V',
soV'e G, V' Ce C, s0 V' = V.

As the main benefit of the following theorem may only be an
esthetic one, its proof will just be indicated. It works for many
categories other than U and C.

THEOREN (5.2). Any representable functor C - sets or U + sets bhas a
canonical representative.

If T is representable, let Ar = (T,I 1), where | It C - sets is
the underlying set functor. If C € C and t € TC, let t*: A+ - ICI be
given by tf = fct, f € Ar. If Ar is a set, in particular, if T is
representable, than Ar has a unique structure of universe such that
every t° is a morphism of universes Ar - C, and it is cohesive. If
T = (B, )¢, this representation being given by t € TB, then t~ gives
an isomorphism of Ar with B.

Our first application of (5.1) <(and (5.2)) is to the functor
U, du itself. Let UIC € C be the canonical representative of (U, ).
ie.,, WICC) = @W,CID where CIU is the image of C in U under the
forgetful functor CiU: C » U. Ve shall let UIC be the left adjoint of
CIU that we get in this way, UIC H CIU.

We now have corollaries to (5.1) that are analogues of results

previously proven for U.

COROLLARY (5.3). C is cocomplete.
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Let T: I » C be any diagram in C. Ve need to show that b4 :
C I (T, C1) 1is representable («[1}, 8.1.3). By (1.4), h': U -+ sets,
h' (V) = (TIU,Vy), where TIU = (CIDeT, is represented by some
e e (TIUUp), where U € U. Then if C € C,

(TCx) = { we (TIL,CCIW:) | Vie I, wie (T4,C) )} =
{fe WCI oV 1€ I, fes e C).

This last expression T'C defines a subfunctor T' of (U, )u. Verifi-

cation of the conditions of (5.1) using (3.3.1) is routine, so (5.3)
follows.

COROLLARY (5.3.1). The forgetful functor | lec: C + sets has
a left adjoint setsiC.

This follows since (1.3) gives us an adjoint pair
U H il

COROLLARY (3.3.2). Let C € C and let E be a set of
equations on C. Then the functor Sol E : C 4 sets defined by

(8ol EX(C*') = { fe (C,CY | f solves E }

has a representative C/E.

Indeed, Sol E C (C, >u and satisfies the conditions of
(5.1>. Ve note that C/E and (CIID/E can be different.

As we now have the same machinery in place for C that was

established previously for U, we can prove as before the following
facts.

PROPOSITION (5.4). Let C € C. Then | lc-

¢ : C-C 4 sets has a left ad-
joint ¥ b CoY.

PROPOSITION (6.5). Let C € C. Then ( )o

: C-C » sets defined by
U b Uo has a left adjoint Y b C(Y).

0Of course we must distinguish CeY from (€I eY and C(Y) from
Cll) (V).
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6. LOCAIL THEORY OF COHESIVE UNI-—
VERSES.

Any Kx € C, X a set. If C Cc Kx,
{dom ¢l ce C) = {dom n!| ne OC )

is the set of open subsets for a taopology on X. We shall call this
the topology defined by C. If x € X, define

“

X" =xc : ICl 5 lAol by x"(@ = c&),

defining cx) = B if x4 dom o

The following is trivial.

LENNA (6.1). Vith C as above, x" € (C,Ao0)c.

If U € U, we define

SU = { P e (UAo) | P preserves glbs, glb POU> = 0 }.

In particular, if C € C, then 8C = S(CID is just (C,Ao)c. Ve call
elements of SU points of U. If £ : U » V in C, then Sf : SV » SU is
defined by Q b Qof.

Let C € C, P € 8C, and introduce a symbol B. Let

Re = colim { C, | ne OC, Pn = 0 1},

observing that { ne€ 0C | Pn = 0 )} is an upper semilattice, hence di-
rected. If ¢ € C and P(0c) = 0, we have a ring homomorphism Coc -+ Re,

since Re is the colimit of all such C,. Let Le = Re Il {@r)} and define
a map P_: C » Le by

{ clRe if PO =0

De if P00 = Bo.

LENNA (6.2). Let C € C, P € SC. Then Ler bhas a unique structure of
universe such that P € (C,Ledu. We have
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Le € U, (Le,Ao)u, # O, #0Le = 2.
If f, ge C and Br= 13-3', then Pf = Pg. Also P is surjective. Thus
we can write P = QP for a unique set morphism Q : ILel 2 lAol. To

establish the first claim of (6.2), let F € A, f, g € C” and suppose
Pf. = Pgy for 1 £ 1 < h. Ve need to show P(F(N) = F(F(g). Now

PG =2 & PEE) = 0-
since PG =8 & PEFEW) =0 & PEFE) = Oo.

Suppose P(F(H) # Be. Then we do not have Pfi = @ or Pg. = O for
any i. We have n ¢ 0C with Pn = 0 and with f, + n = g« + n for every
1 (by getting fi + n: = gx + n, and taking n = my+ ... + ns). Then

BFH) = F(OIRe = (F(H + mMIRe = F(£i#n, ..., fatn)Re = PF ().

We have @ = F@(0s)) € OLe. As the ring R~ contains only one
solution of n + n = n, ie.,, n = O0e, OLr = { 0r,B= ). It is obvious
that O is an identity for Le and that Q € (Le,Ao)wo.

Any L € Uo such that (L,Ao)y,f # @ and such that #0L = 2 will
be called a local universe.

PROPOSITIOF (6.3). Let L be a local universe. Then L € C, (L,Aod>wo = SL
and has exactly one element. Also #8(C) = 1.

Let Q¢ (LA, @ = @(0.). As Q(O.) = 0 is not a phantom,
O # @, s0 0L = {0.,0_ ) Let Rc = {uel | Ou= 0., and note that
L. = {@) by (4.1). The standard decomposition lrcouU. of a universe
U becomes L = R. Il {@.} when U = L.

Any element of M(L) must be a subset of a set {a@.), a € R, for
no element of R. can match with any other element of R.. Thus L sat-
isfies axiom (3.1.1) of a cohesive universe since a ¢ @.. Axiom
(3.1.2) simplifies in this instance to the following:

(6.3.1) If F ¢ M(An) and a € (R.)", then
(glb F)ay,, ..., an) # O 2 F(ar, ey an? 2 0L,

Ve use (6.3.1) to show L € C. Ve have evidently that ¢6.3.1) holds for
Ao. If a € (RL)” then
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(glb F)(a,, very @n) # [ ] (8lb F)(Q&1, ey Qan) # {Do) =
FQays, ..., Qam) # {Bo) 3 F(ai, ..., an) # ©@).
It is evident that (L,A0)u, = SL. Suppose Q' € SL but Q' # Q, say
QUF ¢ QF, fe L, Let QFf - 3, Q'f = a', and chocse F, F' € CA. with Tla)
=0 = F'(a"” but F + F' = 0, i.e., (dom F)N(dom F* = @. Then

B = B (H = F+FHOH = 0 + O,
a contradiction. This proves (6.3).

We define P. by SL = {P.} if L is local.

FPROPOSITION (6.4). If L 1is a local universe, R. 1s a local ring.

Evidently { v e L | P.u = 0 } is a proper ideal J of R.. Suppose
u e Re\J. Then Pu(w) # 0, Bo sO

Puul/u» = Po(uw)(1/P. (w)) # Bo.
Since 1. £ z,’(1/z;?) in A,,
1. = 1 L vell/w) < @, so 1. = uell/w,

u is invertible in R.. Thus the ideal J consists of exactly the non-
invertible elements of R., so R. is local.

It may come as a surprise that one does not need any special

hypothesis on I in the following result.*> By ideal of L we mean any
ideal of R..

THEOREN (6.5). Let L € U be local, 1 # R. an ideal of L. Define L/I =
(Ru/D) Ul {B«), where B« 1is a formal symbol. Then L/1I has a unique
structure of universe such that q = gr: L -+ L/I, given by

qx) = x + 1 if x € R, g = Bx,

is a morphism of universes. Furthermore, L/1 is local and q ¢ C.

(%) Note however [91, §1, reference to Hadamard's Lemma,
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To prove the first statement of (6.5), let v, v e L F € An, and
assume that qu; = qv, for every J. Ve need to show that q(F (w)) =
g(F(v)). Let P = P. and assume F(w) = @_. Since I C R, I # R, P(D) =
{0} and Pu:s = Pvy for every i since either both sides equal @o or

uy -vy € I. Then also @ = P(F(w)), so

F(wv) = @, qF W) = Bs = qEFE(V)

in this case. Thus we can assume all u;, v; € R. and PF @) =
P(F(v)) € K. Ve shall need the following

LENNA (6.5.1). Let G(z1, ..., Zo, Wi, ..., Wq) € Apsq have domain
UxV where U C K* is a convex open neighborhood of 0 and V C K9 is
open. Assume G(0;w> 1s Identically zero on V. Then G may be written
G = L1 #Ga1(z;w)z,y
where each G (z;w) € Ap+q and has domain UxV.
Ve have
1
Giz;w) = [G(tz;w)liao?™! = fo (d/dt) G (tz;w)) dt

and the integrand is dt times

Liar? (3G/AZy) (tz;w)Z.
Let

Gelzow) = [' @C/azo (tzjw) dt.

o

Then G = L,=;” G:(zyw)z, proving (6.5.1).

Let
H(z,w) = F((w/2) + (2/2)) - F((w/2) - (2/2)),
Z = Z1, .y Zn W= Wi, .., Wa
Then
Hu-v; utv) = Hui-wvi, ooy, Us~Va} U1 #+V1, ., Ustva) = F(uw) - F(w.

Define as € K by Puy

a; = Pv,, Then F(a) = P(F(w) € K, so

0; 2a) = <0, ..., 0; 2a1, ..., 2an) € dom H,
and H<0;2a) = PHy-v; u+v)) = 0.
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Let G € Azn, G(0;28) = 0, and suppose G 2 H. Then

PG u-v; utv) = G(0;2a) # Bo.
Thus
B # G(u-v; ut+v) 2 Hu-v; utw,

so Fw - F(wv) = Glu-v; u+wv).
Choose such a G with domain UxV as in (6.5.1). Ve get
Fw - F(v) = L Gulu-v; utv) (ui-vy),

and w;-v: € I for every index 1. Also G:(u-v; wtv) € R. (since
F(u>XF(v) € R), so FW-F(v) € I, gqF W) = gFm).

Evidently #0(L/I) = 2. Also QCc + I) = P(&), ¢ € R, Q@x) = Bo
defines an element Q of (L/I, Aodu,, so L/I is local. Obviously Q ¢ C.

Let U be a universe, E a set of equations on U and let f ¢
U,V>)u where V ¢ U. Ve shall then let fE denote the set of equations

{ fu; = fuz | 1 = vz is an equation in E ).

PROPOSITION (6.6). Let L. be a local universe, E a set of equations on
L such that the set of equations PLE holds. Let Ie. be the ideal of R.
generated by all u-v € R. such that the equation u = v is Iin E. Then
L/Ie = L/E. In particular, L/E is local.

Let ¢ : L 5 L be the canonical morphism where L' = L/Ie. Then if
CeC,

Lo ={fe LC | u vel, qu=gqv 3 fu="1v).

Let f e (L,C)e. The following will complete the proof of (6.6).

LENNA (6.6.1). (u, v e L, qu = qv 3 fu = fv) & fE holds.

Assume u,v e L, qu = qv @ fu = fv and let u = v be an
equation in E. If v = 0. or v = @, as P.u = PLv, we have u = 0. = v,
so fu = fv. Assume u, v # @ . Then u-v € Ie, so qu = gv, fu = fv. Thus
fE holds. Assume conversely that fE holds, u, ve L and qu = gv. If
u =0 or v =0, then v = @. = v by definition of gq. Suppose
u,v # B.. Then qu = qv 9 u-v e I.. Write
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u-v=2% wilug - vy

where for each 1, wy, v, wy € R. and wu, = v, i an equation in E.
Then

fu-v) = L £(wy) (fuy) - £vo)
and for all i,

Ofu = 0fv = Ofuy = Ofvy = 0fw, = Oc.

Then f@) - f(v) = 0c, f(u) = f(v). This proves (6.6.1) and (6.6).

Let L be any local universe and consider a map of sets h
Y » R. where PLhy = 0 for every y € Y. We can choose h so that the
induced morphism p : Ac(Y) + L in C, considering that Ao € C, is sur-
Jective. The composition P.p is the element Ov of SA~(Y) that sends
every element of Y to 0. Let Ao<Y> = Loy. From the lemma that
follows, we shall have that p has a unique factorization bk0v where
h: Ao(Y) + L. Let I = h-'0.. Then I is a proper ideal of Ra,<v> and h
induces an isomorphism h: Ao<Y>/I 4 L. Ve call (Y,I,B) a presentation

of L. Ve see thus that every local inverse has a presentation, i.e., is
of the form Ao<Y>/I.

It will help to understand P b Le as a functor. Let L, the
categaory of local universes, be the full subcategory of C whose
objects are the local universes. We note that L b (L,P.) gives us a
natural inclusion L« C-Ac.

LENMA (6.7). Let U € C, P € SU. Then

P, : Le,Lde— «U,P), L)c-a,
1s a bijection.

This lemma Dbasically says the following. Any solid arrow
diagram in C
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whose upper part 1s commutative, can be completed with a unique
dotted arrow g that makes the lower triangle commute. The uniqueness
is clear since P is surjective. If Pu = @, then Pu = @o so fu = 0.
If Pue Re and Pu=Pv, u, ve U, then u + n = v + n for some n € OU
with Pn = 0 Then

2 aen

fu = fu + fn = fv,
hence the existence of g.

It follows from (6.7) that if h € ((U,P), (V,Q))c-no, there exists
a unique Ln: Le 4 La such that Qb = L.P. Since P is determined by h

and Q, i.e.,, P = Qh, it is often convenient to denote L~ as hqg: Le -
La.

PROPOSITION (6.8). Ao > H m_ where m_ : L -+ sets is given by

m_(L) = M. = the maximal ideal of R..

7. TOPOLOGICAIL UNIVERSES.

There exist cohesive universes C that are of interest but with
SC = @, as for instance Example (8.3) below. Nevertheless our efforts
for the rest of this paper will focus on those C € C with the some-
what opposite property that given distinct n, n' e 0C, there exists P
€ SC such that Pn # Pn' . Most of the universes we have looked at so
far have this property.

If C € C, let Lec = Teesc Le and let Xc: C 9 Le (in ©O) be defined
by Acc = (POresc. If £: C 2 C' in C, we define

Le : Lc - Lc- by (Lft)?‘ = tP'f if te Lc and P' € SC.
Then X_: lc 4 L_ is a natural transformation.
THEOREN (7.1). For C € C, the following conditions are equivalent:

1) & : C 4 Le is injective;
2) If n, n'e 0C, n # n', there 1s a P ¢ SC with Pn # Fn'
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If 1 holds, there exists P ¢ SC with Pn # Pn’ Then Pn # Pn'
Assume 2 holds. Let u, v e C, u # v. If Ou # Ov, take P ¢ SC with
P(Ou) # P(Ov). Then 0Pu # 0Pv, so Pu # Pv. Thus we can let n = Ou =

Ov. Assume lcu = Acv. For each P ¢ SC such that Pn = 0, Pu = Pv so
there exists np € 0C such that

Plny = 0 and u+tng=v+n.
By using np + n instead, we can assume ng 2 n. Let

w=glb { np/ Fn=201
If P € SC, then
Pn=03Pnp=0 2 Pw=0 23 Pn=20

since n { w, so w = n. Then

u=u+n=glb{u+nplPn=0)>)r=w

If C e C and At C 9 Lc is injective, we shall say that C is a
topological universe. The full subcategory of C supported by the
topological universes will be denoted X. In what follows, K will be
our category of preference. However, as many interesting cohesive
universes do not lie in K, we shall be considering C occasionally.

Let Ce C. If ne 0C, let Un. = { P€e SC | Pn= 0 }. Then
Un+n'=UnnUn‘, Uglhn=U{Un’n€M)

if n, n' e 0OC, M C 0C. Ve see that { Un | n € OC } is the family of
open sets for a topology on SC (Uo = SC, Uso = @). We shall hence-
forth consider that SC is a topological space (which is in fact a
"sober space", cf. [51). To say that C € K is to say that n b U, is
an order-reversing isomorphism of 0C with the family of open sets of
SC. It is a fact (that will not be shown here) that if C ¢ C and
there exists an order-reversing isomorphism of 0C with the family of

all open sets of a topological space X (which need not be assumed to
be SC), then C € K.

It will be helpful to describe directly im X ( Lc when C € K,
since that provides a useful alternative description of C. Call f e Le
continuous (C e C) if whenever P € SC and fi # O, there exists ce C
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and an open neighborhood U of P in SC such that Q e U 3 fo = Q¢
i.e., there exists n € 0C with Pn = 0 such that

Qe S, Qn=0 23 f3=Qc

The set of all continuous elements of Lc is seen to be a cohesive
subuniverse of Lc that is topological. Ve denote it by TC, and note
that we in fact have a functor T: C » K. The proof of the following
is similar to the proof of its analogue in sheaf theory.

LENNA (7.2). Let C € K. Then i gives an isomorphism of C with TC.

Thus if C ¢ K and CIC is its image in C, we have an isomor-
phism: C » TCIO.

Let Ce K, X = SC. If
ne OCand Up= { xe X | xn) =0 ),

define R(U,) = C, This gives us a sheaf of rings K on X such that
R< is a local ring with residue class field K for each x ¢ X. However
X,/ is not merely a local ringed space, for it has a great deal
more structure than that. We can apply theorems from sheaf theory to
objects of K, but trying to reduce the study of K to a topic with
sheaf theory is a 1little bit unnatural. For one thing, plugging
elements of C” into elements of A, changes domains. Also, if x € X,
R. is the local ring of a local universe L, = Rx Il {@.)}. Thus to talk
about the additional structure on X, B) we would at least need the
theory of local universes.

From the observations of the preceding paragraph and sheaf
theory, we can immediately conclude the following.

PROPOSITION (7.3). Let F: U » V in K. Assume that Sf : SV 4+ SU is a

homeomorphism and that f, ; U,r » V, 15 an isomorphism for each
y € SV. Then f is an isomorphism.

The following corollaries of (7.1) are immediate:

FROPOSITION (7.4). Suppose C Cc U € K. Then C € K.
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PROPOSITION (7.5). Let C, € K, 1 ¢ 1. Then Nyet Cy € K.
These two results imply K is complete.

Let G: ¥ + C be the canonical inclusion KIC. Since TG = 1. by
(7.2), the following will imply that K is cocomplete.

PROPOSITION (7.6). T |+ G.

let C € C. Then xe: C 4 Le induces ac: C + GTC (by restricting
the range), and a : C |5 ac is a natural transformation 1lc -» GT. If
U € K, then asu : GU =+ GIGU is a bijection by (7.2). Also

G: (TGU,U> -+ (GTGU,G)
bijectively. Thus we can define
Bu: TGU » U by GBU = (ogu)~"'.

Then B: U I+ Bu is a natural transformation TG - 1.. Clearly, G{(Bu)dceu
= legu. Thus (7.6) will follow once we show that

BrcTote = 1lvc, ie.,, GBrc)GTac = larec,

or, since Gfrc = (asrc)~', that GToc = derc. Now GToc,
(GTC, GTGTC) and we have clc(im ac) = GIC, so (GTac)aec =

= Oevclc,
which holds since a is a natural transformation, will do. This proves
(7.6).

detc are in

COROLLARY (7.6.1). L is cocomplete.

Let 7: L » K be LIK and let D: I 5 L be a diagram in L. Then
#S(colim 7D)> = 1, so colim 7D is local. Then

r-'(colim D) = colim D.

PROPOSITION (7.7). Let 1 be a directed set, {L. | 1 € I} a family of

local universes directed by 1. Assume L: » L, is an injection whenever
1,je I, 1 < J Let

L =colim., {L:t 1€ 1)}
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and let p, : Ly » L be the canonical morphism. Then each p: 1s an
injection and L = User im pu.

Let S = colim { 1Lyt | Z € I ). Then IL:t C S = Uaxllil It
follows that S has a unique structure of universe s

inclusion L; G S is a morphism in U. Let L be S with this structure
of universe. It is trivial that L = colimw { L. | 1 € I ). As each L.
is local and the morphisms L: - L, are all injective, #0L = 2, #0L =
1, and L has an identity. As (L,Ao) # @, L €L. It follows easily that
L=colim. {L, | 1€ 1)

uch that every

COROLLARY (7.7.1). Let S be any set. Then
Ao<S> = U {AoKT> I T C S is finite).
This follows using (6.8).
Let T: I 9 K be any K-valued diagram, and let C = colim T. To
determine what C is in a more concrete way, we may start with
X =8C = lim STi

and determine the local universes C., x € X, where C. denotes the
localization L. of C at x. (In the sequel we shall prefer this

notation to the previously used Lx.) We have C C Txex Cx. Thus, to
determine C, it will suffice to determine U and the compositions

Y Ty 57— C &——> U for every 1¢€ I.
Any x € X can be identified with {x;}.iex, where x: = xw;. Des-

cribing X: amounts to determining, for every x € X, the maps
(@1)se t+ (THuws 9 Cx defined by (adxX: = Xot:. Lemma (7.8) below will
allow this to be done in a routine manner. Given x € X, define Tii =
(Ti)»e. Then Tw is a functor Tx : I » L.

LENNA (7.8). With the above notation, (colim T). = colim (T,) for any
x € X. For any 1 € 1, (a).« is the canonical morphism T.i - colim(T.),

Let 'L € L, r: L 3+ K. Then
Cul) = { fe (CAL> | Puf = x) =

{ fe (TyrLy) | Pufy = x4y 1€ 1) = (TyL1).
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If h e (C.L), then under these identifications we have

hils hx 15 { hxay = héadex | 1€ 13 b { hapd. | 1€ 1),

FROPOSITION (¢7.9). If X, Y are manifolds, then Ax Il Av = Axuv.

Let UC X, VCY be open with Au (resp. Av) isomorphic to Au-
(resp. Av.) for some U' (resp. V') open in K~ (resp. K#, r, s ¢ H. Ve
have a commutative diagram

Ax U Ay — T Ay

| l

Au I Ay ——— 3 Auwy

I I

Al" “. Ai _— Ar-‘:

where, for instance, IxY 3 X and XxY - Y induce f. Here the bottom
arrow is an isomorphism and the isomorphisms

XxY = SAxuv = (SAx)x(SAv) = S(Ax I Av)

are compatible with the isomorphism SAx.v -+ S(Ax I Av). By (7.3) it
will suffice to show that if x e X, y € Y, then

ferm,yrt (Ax L AVD cu,yrr 9 (Axxv)ex, y
is an isomorphism. Pick U and V so that x ¢ U, y € V, and localize

the diagram at (x, y’ and the corresponding point of K~*% Then all
arrows in the diagram become isomorphisms and (7.9) follows.

8. SOBER SPACES AND THE SPACES sC.

We have seen that to “understand" C ¢ K, we need to know Le for
each P € SC. In 86 a wealth of detail was obtained on the Le, so we
look now at the spaces SC to complete the picture. The reader can
refer to page 151 of [5] for the definitions that will be needed here.
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THEOREM (8.1). Let C ¢ C. Then every closed irreducible subset of SC

has a unique generic point.
C, P, Q € SC. Then the following are

LENNA (8.1.1). Let C

= @Bo 2 Qc = Bo;

equivalent:
# Do 2 Pc = Q¢

1) If c € C, then Pc
2) If ce C, then Qc
3) Q € cl{P}.

Obviously 2 2 1, so assume 1. If F € A: and ¢ € C, then
Qcedom F & FQ@Qc) = QF) # Bo.

Now assume 2 is false, so we have Pc # Qc # @o. By taking F = z;/, we

see that
Qc e dom z;’ 2 Pc # Bo.

Therefare we can now let F = Oxwcrcer>. Then Qc € dom F, but

PFE () = FP)) = Bo,

contradicting what we proved above. The contrapositive of 1 means

that any neighborhood of Q contains P, so clearly 1 & 3.
If the equivalent properties of ®.1.1 hold, let us write P > Q
(since 1 suggests "domain" P is larger than "domain" Q). This gives

an order on ISC! for which, because of 2 in (8.1.1), we have

P<Q¢P 3 P=Q
we see therefore that SC is a To-space, i.e., a

From 3 of (.1.1)
closed irreducible subset of SC can have at most one generic point.

We shall always assume that Y # @ is part of the definition of
"Y is irreducible". The following will establish (8.1).
LENMA 8.1.2). Y C SC closed and Irreducible 3 Y has a

generic point.
{Pc I PeY ) Ve first show Yc € M(Ay), i.e.,
= Pc # Qc = b, a, be K.

Let ¢ € C, Yc
#(K0Ye> £ 1. Let P, Q ¢ Y and assume a

Choose f, g € 0OA: such that

fa)=0=gm), f+g=0.
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Then PeUrccer O Y, Q € Ug(c) ny
(cf. definitions of 87), so there exists R € Usee, N Li,(c, N Y. Then

Bo # R(f(c)) + R(g(c)) = R (¢)) = Bo,

a contradiction. This proves (8.1.2).

We can now define Pvc = glb Yc to define Pv e (ICllAol). Ve
shall see that Pv € SC and is a generic point of Y. Let c € C”,
F € An. Then Pv(F (c)) = glb (YF (¢)), and we clain

glb (YF (©)) = glb (F(Yey, ..., Yem).

Vrite this claim as v = v. Since YF () C F{¢i, ..., Yon), we must at
least have v 2 v. Having u ) v can only come from having YF (c) ={@o),
yet bhaving P+, ..., Po € Y with F(®P.c¢:,, ..., Pon) # @o. In this case

there will exist P € Uor0 ... 0O UogyD Y since Uoc0 Y # Oo for every
1. Then

PF(c) = F(Pr¢ry ..y Prow) # Bo

since P, P; € Y 3 Pcy, = Pyc: (as these are both in K) and we see that
in fact YF(©) # {@) in this case. Thus

Py (F (c)) = F(glb Yer, o, g‘lb Yecn) = F(Pvci, ..., Pven).

As Y # Bo, Pv(Oc) = 0. Let M € M(C). Then
Py(glb M) = glb Y(glb M) = glb YM = glb {glb Ym | m € M} = glb(Pv}¥D.
Therefore Py € SC.

Ve finish (8.1) by showing that cl{Pv} = Y. First Y ¢ Py, ie,
PeY=2?P ¢Pyv. Indeed, if ¢ € C and Pc # Bo, then

Pvc { Pc K @ =2 Pvc # Bo.

Fow we only need Pv € Y. If not, as Y is closed, there exists n e 0C

such that Pvn = 0, Yn = {@o). But then Pvn # glb Yn, a contradiction
to the definition of Pv.

In the terminology of [5], Theorem (8.1) says precisely that
every SC is a sober space. Ve shall let sob denote the full
subcategory of top that is supported by the sober spaces.
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Let the topology of X be defined by C Cc Kx. If P e SC, define
Yo = { xe X | X¢ ¢ P} (where xcf = f(x), fe C). Let X be the set
of all closed irreducible subsets of X with its topology as defined
on page 151 of [5] (but called X" there).

THEOREM (8.2). With the above definitions, P b Ye defines a homeo-
morphism Y_: SC - X.
LENNA (8.2.1.).
X\NYe = U {dom £ | fe C, PFf= 0o ) =
U{dom n | ne OC | Pn=0@o ) = dom ne
where ne = glb {n € 0C | Pn =Bo}.

The second and third sets agree since dom f = dom 0f, and
the last equality comes from

dom(glb M) = U{ dom m | me ¥ } if M e MK,

Finally, if x € X,
x¢¥ o x P & xeUd{dom £f| fe C, Pf=0 ).

LENNA (8.2.2). If P € SC, Ye is closed, irreducible and non-
empty.

If Yo = @, n» = 0, Bo = Pnp = 0, a contradiction. Also
X\Y= = dom n ~» is open. Let f, g € C,

Ye Ndom £ #@ # Ye 0O dom g
Then Pf, Pg # @, so

P(f+ g = Pf + Pg # 0o,
so Ye N dom £ 0N dom g = Ye N dom (£ + g # Bo.

Since dom f, dom g are arbitrary open subsets of X, Ye is irred-
ucible.

Thus in fact Y_: SC » X. Let u=Y_ . If Y ¢ X, let

Y"={x | xeY)C SC,
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and define v(Y) = P where P is chosen so that cl{P} = cl(Y") (cf.
(8.1)). Ve shall show that v is a homeomorphism and v = u"'. For
uv = 1x, let Y € X, cl{P} = cl(Y¥"). Ve need to show Y= = Y. If x ¢ Y,
then %" € cl{P}, so Y C Ye. For Y- C Y, let x € X\Y. Choose n € OC so
that n(x) = 0, Y N dom n = @. Ve shall have x ¢ Y if we show Pn =
@o (as then x* ¢ P). If Pn # @o, i.e. Pn = 0, then P € U,, s0 Un N Y™ #
@ (as cl{P} = cl(¥")). Then there exists x' e Y with x'" € U, i.e.
x'"(m = 0 = n{x"), contradicting Y N dom n = @ . To show vu = lsc,
we let P € 8C and show v(¥r) = P, i.e., cl{P}) = cl(¥e"). Now

Yo = { ¥ | x> ¢ P ) C cl{P),

so we only need to show P € cl(¥e™). If P ¢ cl(¥e"), there exists
n e 0C such that Pn = 0, Un N Ye" = B, ie.,, Yo N dom n = @. But then
Pn = Bo by (8.2.1).

To show u is a homeomorphism, take a typical open subset Un of
SC, n € 0C. Then

uUea) = { uP) 1 PeS8SC,Pn=0)= (Y | Pn=01}=
{YeX 1 YNdom n# @),

because Pn = 0 & Yr N dom n # @ by (8.2.1). But since dom n is a

typical open set of X, { Y € X¥1YNdom n# @) is a typical open
set of ¥.

From (8.2) we see that if M is an admissible manifold, x b Xan"
is a homeomorphism of M with SAm. We can now give our non-trivial
example of a cohesive universe C with SC = 8.

EXANPLE (8.3). Let 1 be the set of all open dense subsets of the
manifold M and let i { jmean I C j. Then I is an upper semilattice,
and I b A; is a functor A_: I » C. Let C = colim A_. Then SC =

lim SA = 0 since if U C M is open dense and x e€ U, then also U\{x)
is open dense. )

If X € sob, let
Kx = { fe€ Kixi | dom £ is open } Ce Kixu.
Let kr Cc Kx consist of all those elements of Kx that are locally

constant.

65



42 J ., JOHNSON

LENNA (8.4). X b kx defines a functor (sob)°® 4+ K.

We note that kx defines the topology of X. Since that topology
is sober, when n, p € Okx, n # p, there is an x € X such that p(x) =#
nix), le., x"(p) # x"(n), sc kx ¢ K. It is easy tc see that X b k, can
be made into a subfunctor k_of X b Kux.

THEOREN (8.5). k_ H S where § : K 4 (sab)er,

Ve note that (8.5) allows us to say that in sob we have

SAim T) = colim ST

if T is any K-valued diagram. Moreover X b X is a left adjoint of
the inclusion i : sob - top and so preserves colimits, so we shall
have colim ST = (colim i ST)~ . Thus computing S(lim T) is, at least

in principle, no problem whatever. Of course S(colim T) = lim ST
quite trivially.

Let X € sob, C € K. To prove (8.5), we need to show that (k,C) =
(SC)X)eob. First we define wx: Skx » X to be the composition

Skx —— I — X,

where the first arrow is the isomorphism given by ¢8.2) and the
second inverts X -+ X, ¥ = cl{x}, which is a homeomorphism because X
is sober. We also need to define wc : ksc 3 C. We do this by using the
fact that C C Teesc Lr = Lc as the set of continuous elements of Lc
(cf. remarks preceding (7.2)). Let ¢ ¢ ksc. Define vc = wcc by defin-
ing (vede € Le for each P € SC as follows. If ¢(P) = @, let (vcl =
Br. If cP) = a € K, let (ve)r = a:(0e), i.e.,, (vcl is the canonical
image of a under Ao » Lr . If U C SC is the open set of those Q € SC
such that ¢(Q) = a ; - remember c is locally constant - (vec)e =
Q@ (m)) for every Q ¢ U where n € 0C is defined by the equation
Rn = 0, R € SC. This shows vc is continuous, i.e., vc € C. Ve note for
pending use the easily proven fact that if ¢ € C, P e S8C, then
P(ve) = c(P). The necessary proofs (intricate but routine) that v and
v are natural transformations will be omitted. We need to show that

wcSv = 1ac if Ce K and v ke = 1 if X € sob.
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Let P € SC. We need to show usc(Pw) = P. Now observe that if
X € sob,, ix = gx~' where gx(x) = X, . Thus we only need Pvc = P-,

which is clear since
Pwe = c(P) = P (0.
Now let c € kx, £ = (vi ku) (©) = v, (cx). Ve need to show £ = ¢, ie,

Pf = Po if P € Sk . Since ¢x is a homeomorphism, P = x° for some
x € X. Observe that

cix ) (x™) = (e (x7)) = c(x).
If (cux)(P) = B, then Pc = Bo, s0 P(vi, (Cx)) = B = Pco. If (cr) P) =

a € K, P(ve, (cux)) = a, Or). Since ¢ is locally constant and Pc = c(x)
= a, ars) = Pec Thus f = c

9. DERIVATIONS AND TANGENT
SPACES.

let Ve U-U, Ue U If ue U and vq € V, define uv = (w Vv =

vu. An element D of (ULIVI) is called an admissible derivation of V
if the following axioms are satisfied:

1> ue U 23 OD@ = 0V,
2) If > 0, F € An, ue U” then

D W) = L;ar” <D, F) (w))Duy, where D; F = 3F/3z;"n

Ve can paraphrase this definition by saying that D ‘“preserves
domains" and "satisfies the chain rule". If f£f: U 23 V in U, we let

Ader £ =4{D e UULIVDID is an admissible derivation for f )

( = Ader(U,V) when we understand what f is).

LENNA (9.1). Let V ¢ U-U and D ¢ Ader<U,V). Then if f, g € U, we have

D(f+ g = Df + Dg and D(fg) = D(f)g + £ D(g.

First
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D (fg) = DKz, ?z,*) (f,g)) = zz2(f,g) Df + z,2(f,g) Dg =
(g +0ODf + (f +0g0Dg = g Df + £ Dg + ODHDf + (0Dg)Dg = gDf + 1Dg.
Also
D(f + g) = Dz ? + 2,2 (f.g)) = 12 (f,g) Df + 1z (f.g) Dg =
12 (AV, gIV)Df + Dg) = Df + Dg +0CAV) + 0(gIV) = Df + Dg.

Let U € U. Ve shall construct I,U - U and a canonical element D.,
of Ader(I,U,U) so that I,U is 1like a "“first order infinitesimal
neighborhood" of U. Let

1II:U0 = { u,v) e U2 | Ou = Ov )},

Ve shall always write @,v)> ¢ I+U as u + vt = v + tv (picking a
"symbol" t) and also any h-tuple (u:;+vit, ..., untvat) of (I.U)" as

u+ vt =u+ tv, u= (U, ..., Uun)y, v = Va1, ..., VA
If F € An, define
Fw + vt) = Fw + tii«;” Dy F) (W,
Since

0L, Dy Y (wv, = OF(w) + 0vy, + ... + Ova = OF (w),

Fw + vt) € I'U. To show I,U € U we need to show it satisfies all
seminal identities.

The identity (1.1.1) is trivial, so we look at those of type
(1.1.2). Using the notation of (1.1.2), we must show that

[F(..., Filzie)y DI + tv) = FCG..,, Falu + tv)ied), ..
where (u+tv),x = Usx + tv,». Write this equation as A = B. Let

Gz, ..., 220 = F(..,, Filz, ...°,
G:i(zi, v,y 200 = DI, Folzie), 0.
Calculation shows
B=Gw + tIiarh Gaw L,a:P Dy Fu) Windvsy
and A=Gw + tv) =G + L= Dy G W,

Now

Dy BY @7y oy 2oP) = 501" Ga (2R, oy ZoP) Laypmm; (DkFL) (ZixP),

so the second summand of A is t times

68



A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS ., a%n

EJ-,P L=t Gy (w (E;“.gj (D Fy1duixllvy.
A little effort shows this agrees with the coefficient of ¢t in B.

It is evident that p(u + tv) = v defines a canonical element p =
ps of (I,UU)y and D@ + tv) = v a canonical element D = Du of
Ader<I,U, 0. If fe (U, Uy, define I.f: LU + I,U' by

(I + tv) = fw + t fv),
Ve note the following, which shows that the functor I. supplies us
with all possible examples of admissible derivations.
FPROPOSITION (9.2). Let U, V € U, Then

U, I,V) = (£, D) | £:U 4V, D e Ader ).

If g2 U -» LV, let Hg = (pv, dvg). Evidently H is a one-one map
of (U,I.V) into

{(, DI £f:U->V,De Ader ).

If £: U3V, D e Ader f, gw) = fw + tDw is seen to define a
preimage under H of (f, D), so H is surjective.
LENNA (9.3). Let U e U, a, be 1,U. If a X b and pa = pb, then a = b.

Indeed, Opa = Opb = 0Oa = 0b, so a = b.
PROPOSITION (9.4). Let U e C (resp. K). Then I.C € C (resp. K). Also
ps e C

If u, ve U, then (in I,U) we have O(u + tv) = Qu + tOv. Also

(Ur+ tvy) + (U;:'/‘ tVz) = (’U!‘f uz) + tlv, + vz)

gives the addition in I.U, so (u;+ tv:), (u=+ tvz) match iff (u,, u=),
(vy,vz) are matching pairs of elements of U. Also

ut tve {uz + tve & uy {uzand vy < vo .
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Thus if U € C, I.U has glbs and pu preserves glbs. To finish showing

I.Ue C, let F ¢ MAw, M., ..., Mn € M(I:/U). Set F = glb F, m: =
glb M:. Then
Fam, ..., m) < glb (FMa, ..., Mad),
and
pFm:, ..., ma)) = F(pm:, ..., pmn) = glb (F(pM1, ...,pMn)))=
p®lb (FM., ..., Mad)),

so we get equality using (9.3). Thus I,U € C and clearly p, € C
Finally if U € K, let n, n'e 0I,U be distinct. Then pn # pn', so (Pp)n
# (Pp)n' for some P € SU. Therefore, as Pp ¢ SI.U, I.U € K.

Let U, V € C. Then
W,p): WLy 4 U,V

LENNA (9.5). (U,p)~' WU V)c = WU,IHV)C if U, Ve C

(One could say that (U,pv) "discovers" elements of (U,I[iV)c.) Let
fe WUy pof e (UV)e. Then fC0u) = Oo + tn, n € OV. As n = On
= Ov, £f(0u) = Oryv. Let ¥ ¢ M(U). Then

f@lb M < glb (M and p(f&lb M) = pglb £ 10,

so (9.5) follows from (9.3).

COROLLARY (9.5.1). (9.2) holds with U replaced by C.

COROLLARY (9.5.2). Let F: U 2 V in C, D € Ader f, M ¢ ().
Then D(glb M) = glb DM.

Let ¥ € M(I.V). Then Dv(glb N> < glb DuN. Also

ODv(glb N> = Opuglb N = 0 glb pvN = glb Op.N =
glb ODVN = 0 glb DuN,
so Dv(glb N) = glb DuN.

Now write D = Dyh, h : U » I,V in C. Then

D glb ¥ = Du(h glb M) = glb DuhM = glb DM.
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THEOREN (9.6). I,: U+ U or C - C has a left adjoint.

If C, C' € C
(C,I.C» = { (£D> | fe (C,CY, D € Ader £ ).

Ve need to show that the functor C - sets given by the latter ex-
pression has the form (C, ) for some C e C (cf. [1], 16.4.5). Ve shall

take U = (CsICD/E where E is a set of equations that we now
describe.

Since CeICl € C-C, we have a morphism o ¢ (C, CeiCh. We also
have a canonical map B: IClI » ICeICll. Let E consist of all equations
Oxc = Ofc, ¢ € C together with all equations

BGF(e) = L,=PalD, FY NPcy, h> 0, ceCr F e An

Then if C' e C, @W,.CY = (C,I:C". Basically the same construction
works for U in place of C.

Denote U € C (resp. I» that was just constructed by +C € C
(resp. 0. The functor r: C - C is entirely analogous to the functor
which sends an A-algebra B to Se(as,a) where Qe/n is the B-module of

Kahler differentials of B over A and Ss denotes symmetric algebra. Ve
note in particular the following.

PROPOSITION (9.7). Let S ¢ sets, C € C. Then

TCE) = rOE UL d S
where d S is the set of all formal symbols { ds | s € S }.

Let U € C. Then
OO @E L dS), ) =K 1)1 1€ (C, N, fe S UL dS, Ua) ) =
{ (i, g h) | ie (CLY, ge SUc), he (dSUa) ) =
(C®,I.U) = (rC@N,h.

From (9.7) we get a principle for extending admissible deri-
vations that is similar to one in algebra. Indeed assume we have

i f
C— CE6) — U
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in C, where i is cananical, and also D € Ader fi. Then any E € Ader f
such that Ei = D can be defined uniquely by assigning, any way one
pleases, the elements E (ds) € Uo, for s € S.
Let £f: U~ W, g8V V in C and consider the isomorphism
WLV, L = ULV x V,I,W.
By considering morphisms U Il V » I, W of the form

(f,g) + t H, H € Ader (f,g>
we get the following.
LENXA (9.8). Vith the above notation, let D € Ader f, E € Ader g.
Then there exists a unique H e Ader (f,g) such that Hlo = D, Hlv = E.
We shall denote H of (9.8) by (D,E). The following is proved as

usual using (9.8) with V = U*' IL V',

LENNA (9.10). Let-f : U > U', g¢¢t V » V' in C, D € Ader f, E € Ader g.
Then there exists a unique D Il E € Ader f I g that makes the
following diagram commute.

U D

+ U

l DUE

rLry —m— gty v

| I

v

The proof of the following result is analogous to that of (9.7).

LENMA (9.11). Let C € C and let E be a set of equations in C. The
canonical map

7C/(1cE) U (dcE) -+ 71 (C/E)

where ic € (C,»C) and dc ¢ Ader ic are canonical, is an isomorphism.

72



A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS | a3

10. INFINITESIMALS AND TAYLOR
POLYNOMIALS.

If { z:, .., zn ) is a set of symbols and we consider that
Ao & C, then An = Aoz, ..., zn). Ve shall let Ln = Lo,~ where 0. is
the origin of K~ Then Ls = Aolzi, ..., 2z»> (cf. (6.6.1)-(6.7)). Ve have

D: = 6/6z; € Ader An and for any C € C, 0 ¢ Ader C defined by
ch Oc If fe Anll C, we write D;f for (D, Il O)f <(cf. (9.10)). When
f £ An, we have
(D:NAAUC = Di(f 1AAUC,
whereas if c € C,
D; ClanliC) = 0CCIARUC) = Oc,

since we consider that C € A~ )l C. Ve use analogous conventions for
Ln and La Ul C.

Looking at L. instead of As, and working exclusively in K, we

note S, Ui C) = SC <(and similarly for any L € L) by using
C-oLnll Cor

(0,,C): Lo il C 9 Ao I C=C.
Thus OC = O(Ls ) C). Ve shall use these identifications repeatedly.
If felanll C, On1lCfeC =4 Il C will be denoted £ (0.
Sometimes we shall write fe Lo )l C or fe An L C as f(z, ), pretend-
ing there is some sort of "variable" for C, and then we shall write

£(0> and f (0, ). That will make our notation more agreeable and also
somewhat redolent of classical notation.

Let fe Ln 1l C where C ¢ K. Following these conventions, we have
0f = 0f®, > = 0f(z, ). Ve shall say that f and f(0) "have the same
domain", and we shall follow the notational conventions

dom f = dom (@) C X, where X =8C=8SLnl O,

If re N” is any "multi-index", we define D"f = D,"' ..D»""f as
usual by appropriate repetition of the operators D.. We note that

[Di,Dj] = D, Dy -~ Dy D: € AderL», I O
clearly equals OUO, i.e., is the zero derivation. Therefore
felLnlC 2 Di;D; H = Dy (Dzﬂ,

so D"f does not depend upon the order of the operators.
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Define r ! = ! ... ry! if r e N5 and let I = rnn + ... + rs.
Then f has its Taylor serles

PUf) = Zrent (D70 27/ 1D,

where z= = z .., z,"» In P(f), the coefficients of 2z all lie in
CCL- L C and have exactly the same domain as £
For n ¢ N, let

Pnlf) = Lociricn (DTH O (2/T

and let Ra(f) = f - P.(f). Then f, Pof and R,(f) all have the same
domain. We shall develop a theory of integration that will allow us
to write R.(f) as a familiar integral. In particular we shall see that
Ra(f) is a linear combination over L, il C of the z~, Il = n + 1.

The following lemma, of vital importance for what follows,
points out the naturalness of these definitions. Let n ¢ N, and let
(z:1, ..., 280 ™ = (z)" be the set of all linear combinations over L, 1L C
ofithe r for re N”, Irl = n. Set (2)' = (z). An element of (z)” will be
called an infinitesimal of order 2 n.

LENNA (10.1). Let fe Ln I C, C € K. Suppose
f = El‘tNh, iri<n CrZ" + R

where R € (z)” and Oc- = 0f for every r. Then ¢~ = (D"f)(0)/r ! when-
ever Il £ n.

Ve have D"f = crr ! + T., where T- € (2), as we see by dif-
ferentiating Irl times. Thus (D f)(0) = c.r ! + p, where p € 0C. Then
p £ 0f, so by adding Of to both sides, we get (Drf)(0) = c-r !.

Let C € K. Questions concerning L Il C can often be resolved by
considering the L, L L , x ¢ X = SC. Since we identify (0s,x) in
S(Ln IC> with x € SC, we have

Lo ll Cco,0 = (Lall Cx =Lsll C.
From (6.8),

A0S U T> = Ao<S> U Ao<T>
in L. Therefore

Lo =La-, L Ly =L+ L ... 1 Ly (h summands).

74



A GENERALIZED GLOBAL DIFFERENTIAL CALCULUS ., 51

This allows us to use induction on bk to deduce properties of the
functor L. [l - from properties of L. I -.

PROPOSITIOR ¢10.2). Let C € K, f € Ln Il C. The following are equi-
valent:

1) fe C;
2) df/dz = Of.

Obviously 1 =2 2. Ve prove 2 3 1 by showing
23 £ =10 & fe O.
Ve treat first the case where C is local.

LENNA (10.2.1). Let S € sets and let 1 be an ideal of
Ao<S>, 1 ¢ I. Let J be the ideal of L:ll Ao<S> generated by 1. Assume

g€ Li lL Au<S>, gy = 0, dg/dz € J.
Then

8ezJ=A{zjl jeJ)

By (7.7.1) we can assume that n = #S < ®, Choose U C K a
neighborhood of ¢ ¢ K and V C K" a convex neighborhood of 0 such
that g = BlLiurn for some g € Ans; with dom F = UxV. By shrinking V,
we can assume that Z<0) = 0. Vorking with ZF instead of g, we can
carry out the calculation of (6.5.1) to get

1
§¢z, ) = zu(z, ) where u(z, ) = L (Dg) (sz, ) ds,

D denoting here differentiation with respect to the first variable. Ve
can write

Dg = ar(z, >x1 + ... + au(z, Jxu (we DD

1
where x;, ..., X» € I and the a; € L, Il Ln. Let u; = [; ay(sz, ) ds.
Then

ulz, ) = LY UsXy €17 and g = zu

proving (10.2.1).

To show 1 of <(10.2) holds (assuming 2 and C local) let
Ao<S> = C with kernel

75



52 J ., JOHNSON

I= (e hAoS> | flc =0

be a presentation I¢—— Ao<(S>-—+ C of C. By an easy deduction from
(6.6), we have the presentation

Je— Li Il AeS> — Ly I C

of L. Il C, where J is the ideal of L.: li Ao<S> generated by I. Take a
preimage p of fin L. Il Ao<S>, and let g = p - p(0, J. Then

g leeyue) = £ - £ €0, ), g®, > = 0.
As (dg/dz)l uc = df/dz = 0,

we have dg/dz e J. By (102.1), ge zJ C J, so £= f (0, ), proving
2 3 1 when C is local.

For C ¢ K arbitrary, let X = SC, x € X. Let fiu = f IL. = X(f).
Then df./dz = 0f.. Thus fi. = f. (0) = (£f@©)). by the local result. As
this is so for all x e X, £ = f(0) proving (10.2).

COROLLARY <(10.2.2). Let C ¢ K, h ¢ K, f ¢ Ln Il C. Suppose
D.f= Of for i = 1, ..., h. Then f e C.

11. INTEGRATION OF ONE PARAMETER
FAMILIES AND TAYLOR'*'S THEOREM.

For the rest of this paper “universe" will mean "object of X “.
If Ce Kand fe Lo 1l C, we know how to write f as Pan(f) + Ra(f)
where P, denotes the "n-th degree Taylor polynomial" and R. denotes
"remainder" (cf. §10). The purpose of this section is to develop a
theory of integration that will allow us to express R. in one of the
standard forms (cf. (11.3)).

PROPOSITION (11.1). Let ce C, C e L, fe L. Il C. Then there exists a
unique g € L1 1L C such that dgs/dz = f, g®) = ¢

Uniqueness is clear since from (10.2), if g (00 = 0 and dg/dz =
0, then g = 0. Pick a surjection Ao<S> —+ C, S a set. Then

Li Il Ae<S> — Ly LI C
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is surjective by an easy deduction from (6.6). Choose fe Li IL Ap<S>
a preimage of f, ¢ € Ao<S> a preimage of c¢. As in the proof of
(10.2.1), we can define 1 = [ F(s) ds. Then g = (5 + Dl uc satis-
fies the conclusion of (11.1).

A connected subset I of R will be called an interval if its in-
terior I° # . Even if K = C, we shall consider that I C K and let

M: = colime { A, 1 J D I, J open in K ).

Ve have therefore A: - M: canonically, and we let t = z lny = tr
(writing A: = Ac (z) as usual). Our immediate goal is to develop a
theory of integration with respect to the variable t for any universe
M. lL C, C e K.
Because
7T M; = colim { vr A 1 J D 1, J open in K}

(from * H I.) one sees easily that there is a unique dr/dt in
Ader M: such that

d/dt) (f ) = (dfsdz) for every f e A:.
If fe M: Il C, we shall denote [ (d/dt) L 0 ]1(f) by dfsdt. We have
SM; = 1dm {J 1 J 3 I, J open in K) = I

as topological spaces. The homeomorphism I =~ SM:; sends a € I to
a’ e SM:, where a“(f i) = fla) for every f ¢ A.. Ve shall treat

a kb a” as an identification. From (7.8) it follows routinely that if
acel, (My)a = La.

The next theorem will allow us to formulate a definition of

/. f(s) ds, and to prove that it exists, when f is a global element
of M; I C, C € K.

THEOREN (11.2). Let 1 be an interval, C ¢ K. Let
global element of C, f a global element of M: I
a unique g in M: Il C such that dg/dt = f, ga

€ I, and let c be a
. Then there exists

(o

O

LENNA (11.2.1). Let C ¢ L, f e M: L C and assume dom f = U
where U 1s an interval relatively open in 1, a € U. Then there exists
a unique g in M: Wl C such that dg/dt = f, g(a) = c.

77



Sa J, JOHNSON

To show uniqueness, let
8 he M: U C, dgrsdt = £ = dh/dt, gla) = c = ha.
Ve have
I = 8SM:) = 8SM: U C and M: 4 Cs = M) W C if be I.
Thus by (11.1), since
g (@ = c = ha@) and dga/dt = fa = dha/dt,

we have g = h on a neighborhood of a. Let V the union of all
intervals ¥V C U relatively open in I with a € V, glu = bhlw. Then V #

@ is a relatively open interval of I and glv = hs,. Ve need to show
that V = U,

Suppose V # U. Then, by writing V = (c,d) 0 I and looking at
sketches of the possible cases, one sees that an endpoint b of V lies
in U\V. Now g» and hs + g(b) — h(b) both solve

du/dt = f», u(b) = g(b),
Thus there exists VW, an interval relatively open in U, such that
beV and h + g) - h(b) + 0w = g+ Ou.

Pick an element b’ of V N V. Then

h(b" + gth) — h(b) = g(b" = h(b")
(since glv = hlv), so

g() = h(b) and h+ 0w =g+ Ou.
Then

h + Ovuw = g + Ovuw ,
a contradiction since clearly V is the largest interval relatively
open in U with a ¢ V, glv = hly. Thus V = U. Ve shall re-use (several
times) the argument that was just made.
We need to show that g exists. By (11.1) we can solve

dga/dt = fa; Ba @) = c.

Therefore we have an interval U' open in I and gu: in M: I C such
that

aeU' =dom g , dguw/dt =flv, gu @ =c
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Let U be the family of all intervals U' open in U for which such a
8u+ exists, and let H = { gu- | U' € II }. By the already demonstrated
uniqueness property, H € MM: Il C). Let g = glb H and let U' = dom g,
so that U' = U { V| V e I }. Then U' is the largest element of L.

Ve only need to show U' = U. If U' # U, pick an endpoint
be U\U* of U'. Let h e M; Il C with hs(b) = 0, dhs/dt = f». By taking
the domain V of k small enough, we can assume V C U, dh/dt = £ lv.
Let b'e VN U', and consider u = h — h(b") + g(b'). Ve have

u(dp> = gtb" and du/dt + Owav = f lunv = dg/dt + Ouinv,
S0

u+ Ounyv = g + 0unv

by the already proven uniqueness statement. Then { gu ) ¢ H¥M: I O).
Let g’ = g A u. By (9.5.2),

dg'/dt = £ lurmny, g'@) =c,

contradicting the maximality of U'.

To show uniqueness in (11.2) (so now C € K is not assumed to be
localy, let g, h be two solutions. Dencte, for instance, £ I(M: U C.
by fic if x € X = SC. Then g, h. solve dusdt = fi, 'uf@) = Cx, SO £x =
by by (11.2.1). Then, using (7.8), if be I,

geb, x> = (@xro = (Medo = heb,x2.

Since b e I, x € X are arbitrary and 8(M: Il C) = I x X, this shows
& = h. If f is not global, but dom £ =J x X, J C I an interval, this
same argument will also show uniqueness.

To show g exists in (11.2), let x ¢ X and apply (11.2.1) to C.
to solve

dg./dt = fi. , gx(@) = Cu
with g« € Mx L C. . For be I, x € X, let geo,x> = (§i)s. NOW
8= {gtb,x) | be I, xe X)) eﬂpu;x (HzlLC)pJM;J.LC
Ve can complete the proof of (11.2) by showing g e M: U C.
Let x € X. We can establish g ¢ M: Il C by showing that if b e I,
there is an interval J open in I and an 2 € 0C with the following

properties:
1) a, be J and n(x) = 0;
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2) The equations dh/dt = flyxdomn, h@) = ¢ + n have a
solution A,

Indeed, assume this aoccurs. Then if be J and n&x" = 0 (x'e XD,
hi = (gx:2ls by (11.2.1). Then Ahcs:,x» = g¢b6',x2, and so the condition
nf "eontinpity" about an arbitrary b,x) in 1 x X needed tn show
& € M: 4 C will hold.

Let U C I be the set of all b in I for which J and n exist as
stated above. Then U is open in I and a € U. If U # I, let b be an
endpoint of U with b e I\U. There exists n'e 0C, V C I an interval
relatively open in I such that b e V, n'x) = 0, and such that we
have h' with dh'/dt = fluydom n. Take b' € UNV. Then, because b' ¢ U,
there exists a relatively open J" containing a, b’ and there exists
h" e M: Il C, n" e 0C, such that

n"(x) = 0, dh"/dt = flyexdem n~», h"(@8) = c + n"

By replacing n', n" by n = n' + n", h" by A" + n, we can assume n' = n
= n" Then h" + h'(b") - h"(b') and h' match by uniqueness, since
they have the same value at b'. Replacing A" by h" - h'(b') + h"(b"),
we can assume that Ah'h” match. Let J = J*" U V. Then h = h'A h" solves

.dh/7dt = flyvdom n, h) = c + n.

But b € J contradicts the definition of U since b ¢ U. Therefore U =
I, and so every b e I has the desired property. This proves (11.2).

Let I be an interval, a ¢ I, f a global element of M:; Il C. Ve
shall let ./t f(s) ds denote the unique g in M: il C such that
gla) = 0, dg/dt = f. However, we shall sometimes use a ‘“dummy
variable" other than s in L' f(s) ds. The element g of (11.2) would
now be written ¢ + J/ f(s) ds. The formula for integration by parts,

122 L'rdg=1gnt - L' gadf,  f,g € O 1O
where

dg = (dg/ds)ds and [hld = h - ha,

can now be verified immediately.

With only a slight additional complexity of notation in the
proof of (11.2), we can establish its conclusion if dom f=J x U,
dom ¢ = U, where a ¢ J, J an interval open in I, Such a set J x U
will be called rectangular about a. Thus if f e¢ M; il C with domain
J x U rectangular about a, we can define

T
g =/ fs)ds by g = 0., dg/dt = f.
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Ve note that (11.2.2) remains valid (even if dom f # dom g as
long as dom f and dom g are rectangular about a . (Of course fg
could then be a phantom.)

To write the remainder term for our Taylor's Theorem, we shall
need to make sense of expressions f(tz) for f e Ln 11 C, C € K. Let U
be any open neighborhood of 0 in K” and choose an open neighborhood
J of [0,11 in K and an open neighborhood V of 0 in K” such that JV C
U. Ve then have a commutative diagram

Ay —— A Il Ay

PR

Lpn ———— M: Ul La

where the vertical arrows are the usual ones, and the top one comes
from the multiplication map J x V - U. The bottom arrow (t-) is in-

dependent of U, J, V since the composite 3 is independent of J, V)
and since

Ln=colim ( A | 0 e U, U open in K" }.

Let f = f(z) € Ln. Ve shall denote (t-)f as f(tz) = f(tz:, ..., tzn). If
feLlnll C, we let f(tz) = f(tz, ) denote ((t-) UL C) (L.
On Lzn written as

A°<tr, vy TR Z1, vy ZRd = Aot 2

we can define
ZoVe = Ly=1" z; 0/0t; € Ader Loan.

Ve let zsVt act on Ao<t;2> Il C as (ZeVed) )L Oc. If 1 € [1,R)”, define

z! = Zi, . Zi, € Aot; 2 and Dy,ef = O3ty ... 3ti )01,
fe Aoty UL C. If re X» Irl = n, define

zr =2z, - za"" and D, ef = @"/dtes,’ - 3ts, ML,

Ve shall always let (z.Vt)" denote the appropriate identity operator
(e.g., on  Ae{t;z> or on Ao{t;z> Il C). If f is  in Ao<t;z> I C, the
reader can verify that

ZVI"F = Sicch na” 23Dy, ef = Lrent,trimn MY/ z" D, f.
If £ = £f(2) € AoK2> C Ao<lt;2>, define

drf) (t;z) = (zeVe)"f(t) for ne N (so (d°f)(t;z) = f(t) ).
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It is easy to see that

@d/dt) (drf) (tz;z)) = @»*'f) (tz;z)
and that the n-tk Taylor polynomial P, (f) of f at 0 can be written

Pa(f))(z) = Lm0 [ @) O;2)/5 ! 1.

Let fe Lnl C.

1
. Ve define ﬁ f(tz) dt in La
tfo f(sz) dslql).

I C to be

THEOREN 11.3. Let f e Lo L C, C € K, n € §. Then £ = Po(f) + Ra(£)
where

Po(f) = L,=0" (d?f/] 1 0;2)
and

Ra(f) =4 C-t)n/n 1) @r*1£) (tzyz) dt.

For n = 0, we have
7
f - £Q@) = [f(t2)] w0t = .5 dsdt) (f(tz)) dt =

1
4 ECy=i? zy Dy H(2)) dt f: df) (tz;z) dt = Ro (£).

n

Assume n > 0 and use induction. Then

1
Rocr () = S (1-t)n=1/(n-1)1 (d"f) (tz;z) dt =
4" dn) ctziz> de-a-t)nm v =

[ (1-t)n/n DA ftzizle' + Jo' ((l-t)/n! Ide (d™f (t2;2))
(1/n DA f@;z) + Ra(f).

Thus

£= Pat (£) + Rpet (£) = Pa(f) + Ra()
proving (11.3). '

The reader can verify, by examining our formulas for (z.Ve)"f,
that Rn(f) is an infinitesimal of order > n.
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