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BICATEGORIES OF PARTIAL MAPS

by A. CARBONI

CAHIERS DE TOPOLOGIE
ET GÉOMtTRIE DIFFÉRENTIELLE

CATÉGORIQUES

Vol. XXVIII-2 (1987)

RÉSUMÉ. Différentes notions de bicatégories d’applications
partielles sont discut6es dans cet article. On caractérise les

bicatégories d’applications partielles dans une catégorie exacte
A gauche; cette théorie s’applique en particulier aux topos 616-
mentaires. Enfin la cat6gorie régulière libre sur une cat6gorie
exacte A gauche est d6crite explicitement.

0. INTRODUCT I N.

The notion of "cartesian bicategory" has been introduced in [C-

W], where it is shown that it is flexible enough to give simple and

meaningful characterizations of various bicategories of relations,

including the additive ones, as well as of the bicategories of

ordered objects and ideals defined in an exact category.
Recalling that a cartesian category (with a choice of products)

is a symmetric monoidal category in which every object has a unique
cocommutative comonoid structure for which every map is a homo-

morphism, the notion of a cartesian structure on a (locally ordered)
bicategory B is the following:

9) R is equipped with a tensor product 0: BxB ---&#x3E; B which is a

homomorphism of bicategories, coherently associative, commutative and
with an identity I (coherence conditions are the Mac Lane ones,

since we are considering locally ordered bicategories);

A) Every object is equipped with a unique cocommutative comon-
oid structure

and

for which every 1-cell r: X ---e Y is a lax homomorphism ( = "lax

natural transformation"): 
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*) Comultiplications and counits have right adjoints Ax* and tx*.

In [C-W] it is shown that the whole cartesian structure on a

bicategory Ii is in fact unique (up to natural isomorphisms), so just-
ifying the name of a "cartesian bicategory". In the same paper it has
been observed that bicategories of partial maps defined in a left

exact category have the same structure of a cartesian bicategory
except that counit does not have a right adjoint; a stronger con-

dition holds, because every 1-cell is in fact a strict comultiplica-
tion homomorphism. Such a remark clearly suggests the possibility to
give a characterization of bicategories of partial maps in terms of

the above modification of the notion of a cartesian bicategory.

Bicategories of partial maps have already been considered by
various authors (including the writer [CD. However we think that to
discuss partial maps in terms of the general language of relations

developed in [C-W] can clarify various aspects of the subject.

In this paper we carry out this project, first discussing in

Section 1 the weak notions of structures of bicategories of partial
maps which naturally arise in Topology and, as recently pointed out

[P-H], in recursion theory; in particular we investigate under which
conditions they are in fact unique (up to natural isomorphisms).
Observe that to investigate such a question, we really need to

consider as a primitive notion the local order on arrows, because it

does not seem to be definable in terms of the natural structure.

Moreover, even when the local order is definable, as in the case of

partial maps in left exact categories or in the case of relations, we
stress that the main calculus in such simple cases can be enlight-
ening when dealing with the general case of (enriched) categories and
(enriched) profunctors, where certainly the local structure is not

definable.

In Section 2 we discuss the full notion of bicategory of partial
maps, i.e., of bicategories of partial maps definable in a left exact

category, and we give a characterization of such bicategories. Since
an elementary topos is a cartesian closed category with a partial
map clasifier, clearly our theory of partial maps should apply to

elementary topos too and we show how it does. Finally we give an

explicit description of the free regular category on a left exact one.
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1 , BICATEGORIES OF PARTIAL MAPS.

1.1. DEFINITION. A structures of a bicategory of partial maps on a

locally ordered bicategory B is given by:
e) a tensor product 0: BxB ---e s which is a homomorphism of

bicategories, coherently associative, commutative and with an identity
I ;

D) a unique cocommutative comonoid structure

on each object X for which each 1-cell is a strict comultiplication
homomorphism and a lax counit homomorphism, i.e.,

and

Clearly, if E is a left exact category with a choice of products,
then defining a partial map to be an equivalence class of diagrams

where I is a mono, and defining composition by means of the pullback,
we get a bicategory B = Par (E) having a structure of a bicategory of
partial maps: the tensor in B is given by the product on E, diagonal
and terminal provide the coalgebra structure on each object and one
can easily check that all the stated axioms are true.

Other examples of the structure of a bicategory of partial maps
arise in Topology, considering partial maps with open domain or with
closed domain (see [A-B] and [B-B]), and in recursion theory (P-HL

Another class of examples arises from any ringed topos (E,R),

defining a Zariski-open subobject of an object X as an inverse image
along a map X ----4 R of the subobject of invertibles of R (see (B-

DD; then one can easily check that partial maps with Zariski-open
domain compose and constitute a bicategory having a structure of a

bicategory of partial maps.

In all these examples, the structure of a bicategory of partial
maps is essentially unique. We now discuss under which conditions it

is possible to prove that two structures of bicategories of partial
maps on a bicategory 2 are naturally isomorphic.

We fisrt begin with the following
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1.2. DEFINITION. Let B be a bicategory equipped with a structure of a
bicategory of partial maps. Define projections px: XOY --- -&#x3E; X as

p,(1@ty), where p is the isomorphism XOI ---e X given by coherence
conditions. Then call domain or support of a 1-cell r: X --- -&#x3E; Y the

1-cell Dr: X ----i X defined by 

Call total or entire a 1-cell r if Dr = 1.

1.3 . LEMMA. i) D r  1 ;
from which

vi) r is total iff ty, r = tx ;
vii) if r, s are total, then s.r is total; if s.r is total, the!1 r

is total; identities are total; thus total 1-cells determine a sub-

ca tegory Tot (B) of B ; 
viii) Tot (B) is cartesian.

PROOF. For the proof of ii)-v) we refer to [P-HL As for i), it fol-

lows easily from the fact that every 1-cell is a lax counit homo-

morphism .

vi) If ty,r = tx, then since Dty = 1, from ii) we have

conversely, if Dr = 1, then:

vii) The first statement is obvious from ii). As for the second, if

s.r is entire, i.e. if tz.s.r = tx, then

finally Dl = 1 can be easily checked.

viii) First observe that D(r9s) = Dr 0 Ds (a proof can be found in

[R]), and that coherence isomorphisms, comultiplications and counits
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are total. Thus the tensor in R restricts to a tensor in Tot (B), Hence

from vi) Tot (B) is a symmetric monoidal category in which every
object has a unique cocommutative comonoid structure for which every
map is a homomorphism; so Tot(B) is cartesian (see [FoD.

Clearly in all models, even the weak ones, the subbicategory
Tot(B) is merely a category, the order on total arrows is discrete.

More than this, the monoidal structure on the bicategory is essen-

tially unique. But this does not seem provable from our axioms, so

that we are forced to look for a missing axiom, true in all the

models mentioned above. The obvious axiom which is always true is

the following:

then

The defect of this axiom is that it is not an equation. However we
can prove that it fits the job and we will see in the next section

that in the case of partial maps defined in a left exact category it

can be replaced by stronger equational axioms, which also charac-

terize such bicategories.

1.4 . LEMMA. If B is a bicategory equipped with a structure of a bi-

category of partial maps in which axiom (D) holds, then:

i) a  1 iff a = Da ;
ii) the order on total arrows is discrete, i.e., Tot (B) is

merel y a category;
jii arly other structure of a bicategory of partial maps on B-

induces the same subcategory Tot (B),

PROOF. i) If a ; 1, then a = a. Da ;  Da ; but since Da = D (Da) , from

axiom (D) we get a = Da.
ii) is obvious.

iii) We need to show that if 0’, Ax’, tlx are the data for another

structure of a bicategory of partial maps on B. satisfying axiom (D),
then calling D’r the induced notion of domain of an arrow r, one has

that D’r = Dr :

and sirnilarly Dlr ( Dr.
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Observe that we can now prove the true property of domains: Dr
is the smallest coreflexive a such that r.a = r ; for r. Dr = r and,
if r.a - r, a  1, then

So, in presence of axiom (D) the tensor product on objects of S and
on total arrows is characterized (up to a natural isomorphism) as the
cartesian product on the subcategory Tot(B), which is the same, does

not matter of which structure of bicategory of partial maps on B. we
use to define it. It remains to show that the tensor on general
arrows of B is also unique up to natural isomorphism. This can be

done by the following construction which goes back to [F) (see also

[C-W] and [RD.

Let B be a locally ordered bicategory and let A. be a class of

idempotents of B. Then the free splitting L’ of idempotents of A.
still is a bicategory and if g contains identitites there is a

canonical embedding B, ---e A.". If a is equipped with a structure of a
bicategory of partial maps, then we can take A. to be the class

Dom (B) of idempotents of S given by domains of arrows; in particular,
if axiom (D) holds, then this class coincides with the class Cor(B)
of all coreflexives of B and we will denote Cor (R)^ simply as Il". If

the class A. of idempotents is closed under tensor product and

contains all the identities (Dom (B) is such), then A" is canonically
equipped with a structure of bicategory of partial maps and there

exists a strict monoidal homomorphism of bicategories B --- -&#x3E; AA : :

just define the tensor on A" 
^ 

by means of the tensor on B, the

comultiplication on an idempotent a: X --- -&#x3E; X of A. as Dx .a = (axa). Ax

and counit as tx.a ; then axioms for a structure of a bicategory of

partial maps on A" can be easily checked. So, Tot (A^) is cartesian

and the homomorphism B --- -&#x3E; A" restricts to a cartesian functor

When A. = Dom (11), the Tot (Dom (A^)) turns out to be the category whose
objects are domains (or all coref lexives, when axiom (D) holds) and

whose arrows a ---oi b are arrows r of B such that

and

When B is a bicategory equipped with a structure of a bicat-

egory of partial maps in which axiom (D) holds, then Tot (B^) enjoys
further properties (see also CHI and [RD: if a is a coreflexive on an

object X of 11, and if ,v (  a, then x can be considered as a mono x :
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x --- -&#x3E; a in Tot(R"), one can then prove that Tot(B’) has inverse

images of such a class of monos; thus we can define the bicategory
of partial maps Par (Tot (B^)) with respect to partial maps whose

domains are in this class of monos. Observe that the only reason why
Tot(B^) is not a left exact category is that we cannot prove the same
for all monos in Tot (B^). One easily can see that there exists a

canonical strictly monoidal embedding R" ----i Par (Tot (R")), which is

in fact a biequivalence. Composing with the embedding Ii ---.... 13."’. we

get that any bicategory equipped with a structure of a bicategory of

partial maps can be strictly monoidally embededed in a "true"

bicategory of - partial maps. In particular, if axiom (D) holds and if

coreflexives in R, considered as idempotents, split, then B. is biequi-
valent to a "true" bicategory of partial maps whose domains are com-
pletely determined by B. as the coreflexives.

As for the problem of uniqueness (up to natural isomorphisms)
of the structure of a bicategory of partial maps on B- for which

axiom (D) holds, we can now see that also the tensor of arrows on B-
is in fact determined as follows: if we identify an arrow r in B with
the arrow (Dr,r,I) of Tot(S’) (warning, this identification is not a

functor), then the tensor product r@s of two arrows of B- is

identified with the cartesian product

in Tot(IT).

From now on, we can call a bicategory equipped with a structure
of a bicategory of partial maps for which axiom (D) holds simply a

"bicategory of partial maps", since the structure is unique (up to

natural isomorphisms) and since it can always be represented as a

full subbicategory, closed under the tensor product, of a "true"

bicategory of partial maps.

2. PARTIAL MAPS IN LEFT EXACT

CATEGORIES.

When is a left exact category, the bicategory of all partial
maps definable in E enjoys a stronger property than axiom (D):

(f) Comultiplication 6x on each object X has a right adjoint Dx*
satisfying the following equations:



118

("discreteness")

("local projections")

(We forget the subscript on the 6 ’s and p’s to simplify notations.)

As we will see soon, axiom (.) forces axiom (D), so that we can
call a bicategory equipped with a structure of bicategory of partial
maps for which axiom (*) holds simply "a bicategory of partial maps";
to avoid confusion we will call a bicategory of partial maps in which
just axiom (D) holds a "weak" bicategory of partial maps.

2.1. LE1lJlA. Let B be a bicategory of partial maps. Then :

i ) B. has local intersections zíls, such that

iii) Axiom (D) holds.

PROOF. i) The operation

is an associative, commutative and idempotent operation on each hom-
poset such that

and

The stated preservation property holds because every arrow is a

strict comultiplication homomorphism.

Similarly, one can compute s. (D(rOs)) as rf1s.

iv) Clearly a.b  á1b ; moreover
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2.2. DEFINITION. A bicategory of partial maps is functionally complete
if coreflexives, considered as idempotents, split.

A splitting of a coreflexive a is in principle given by two

arrows it i* such that 1. 1* = a and !*. I = 1. Being a ; 1, we have that
I -- | P ; moreover, by Lemma 1.3 vii), i is total. Clearly, if E. is a

left exact category (with a choice of products), then B = Par(E) is

functionally complete.

2.3. TREDREW. Let B be a functionally complete bicategory of partial
maps. Then;

i) E. = Tot (B) is left exact;
ii) there exists a faithful, strictly monoidal homomorphism of

bicategories B. ----i Par (E), which is the identity on objects.

PROOF. i) We just need to prove that E. = Tot (B) has equalizers. Let f,

g be a pair of total arrows and consider D (f Og). Let i, 1’* be a

splitting of D (f ng). Then i is total and

(since, if i, i* is a splitting of a coreflexive a, then 1 = 8.i ). If x

is a total arrow such that f.x = g.x, then h - i*.x is total:

then, since l.b = i.i*.x  x, we get l.b = x, by Lemma 2.1 iii).

Uniqueness follows from i’*.i = 1.

ii) Given an arrow r: X --- -&#x3E; Y of B, let i, i* be a splitting of
Dr. Then i is total and monic (since it can be cancelled). The arrow

f = r.i is also total: 

Thus i,f&#x3E; is a partial map in E, Any other splitting of Dr gives
rise to another partial map which is in the same equivalence class of
i,r.i&#x3E;. So, the correspondence on arrows is well defined. We just
need to prove the functoriality of r |-- -&#x3E; i,f&#x3E;, which reduces to

prove that in the following diagram where
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a splitting k, 1r* of D(j*, r.i) is an inverse image of j along r. i

in E = Tot (B).

To prove that the homomorphism B ---e Par (Ii) is a biequi-
valence, we need to consider an extra structure that bicategory of

partial maps d’efined in left exact categories have, i.e., a quasi-
inverse defined on partial maps i,f&#x3E; such that f is mono. Such par-
tial maps can be equationally characterized in bicategory of partial
maps of the form Par (E) as follows:

2.4. DEFINITION, i) In a bicategory of partial maps an arrow r is a

monic if

One has that monics compose and identities are monics, so defining a

subbicategory X of monics of B.
ii) A quasi-inverse for a monic r is a 1-cell r° such that

" and

2.5. LENNA. In a bicategory of partial maps B with quasi-inverses for
monics: 

I) quasi-inverses are unique;
11) if Ii its functionally complete, then an arrow f in E = Tot (8)

is mono in £ iff it is a monic in B;
iii) if i, i* is a splitting of a coreflexive a, then i* = i°; in

particular A* = A*. 

PROOF. i) If r’ is an arrow such that Dr = r’,r and Dr’ = r.r’, then:

similarly
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ii) From Lemma 2.4, it follows that a pullback of f, g in Tot(B)
is given by p.i, p.i&#x3E;, where i, i* is a splitting of D(A*.(f@g)); so,

if f is a mono in E. = Tot(R), then ker(f) = A, thus D(A.i.(f@f)) =

A. e* ; hence:

conversely, if A*.(f@f) = f. A*, then

thus ker « is A and f is mono.

iii) Since i is a mono in E, then i is a monic in B; so, i 

exists; since

and

then from i) we get i* = 1°.

Clearly, if B. is a functionally complete bicategory of partial
maps such that every monic has a quasi-inverse and if i,f&#x3E; is a

partial map in E. = Tot(B), then r = f. i is an arrow such that

and

thus i,r.i&#x3E; = i,f&#x3E; and the homomorphism B. ---e Par (Tot (B» of Lemma
2.4 is a biequivalence. Summing up:

2.6. COROLLARY (characterizing bicategories of partial maps defined

in left exact categories). Functionally complete bicategories of

partial maps in which every monic has a quasi-inverse characterize
bicategories of partial nraps defined in left exact categories with a

choice of products.

2.7. DEFINITION. A bicategory of partial maps is total-closed if for

each pair of objects X and Y there exists an object (X,Y) and a

natural isomorphism



122

2.8. COROLLARY (characterizing bicategories of partial ma ps of elem-

entary topos). Total-closed and functionally complete bicategories of
partial maps having quasi-inverses of monics characterize bicat-

egories of partial maps of elementary topos.

PROOF. Recalling that an elementary topos is a left exact category E
which is cartesian closed and has partial maps classifiers, clearly B
= Par(E) satisfies the hypotheses of the corollary. Conversely, if B.
is such a bicategory, then E = Tot(B) is left exact and has partial
maps classifiers defined as X" - (I,X)"; we need to show that E is
cartesian closed. First observe that there exists a canonical total

arrow i: X ----a X" such that an arrow U ---e X is total iff the

classifying total U --- -&#x3E; X" factors (uniquely) through i. Now, to

define the hom-ob,jects (Y,Z) in Tot (n), let 0 and y be the two total
arrows (Y,Z)~ ---e (Y,Z)~ defined as follows:0 is the transpose of

i.val: Y0(Y,Z)" --- -&#x3E; Z --- -&#x3E; Z"

and is the transpose of the classifying total arrow Y@(Y,Z)~ ---

-&#x3E; Z~ of the evaluation arrow. A straightforward checking proves that
the equalizer of 0, y is the hom-object (Y,Z) in Tot(B),

2.9. REXARKS. i) If S and C. are bicategories of partial maps, then a

strictly monoidal homomorphism of bicategories F: B, ----4C restricts
to a cartesian functor Tot(2) --- -&#x3E; Tot(C) and, if 13.. and C. are func-

tionally complete, then it restricts to a left exact functor. So, if
and E are left exact categories, then there is an equivalence of

categories between the category of strictly monoidal homomorphisms
of bicategories Par(E) ---e Par(E) and the category of left exact

functors E. --- -&#x3E; F.

ii) There are functionally complete bicategories of partial maps
in which not every monic has a quasi-inverse. An example is given by
considering the bicategory of partial maps with closed domain bet-

ween Hausdorff spaces: certainly such a bicategory is a bicategory of
partial maps, since A has an adjoint which satisfies all stated equa-
tions ; however any proper dense subspace Q of a space R is a monic

Q ---e R which does not have a quasi-inverse. On the other hand,
Theorem 2.3 ensures that Par (Tot (B)) exists and has of course quasi-
inverses of monics, so that B. ---4 Par (Tot(B)) is the free function-

ally complete bicategory of partial maps with quasi-inverses of

monies.
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iii) According to the basic principle of categorical logic that
a theory is a small category with a specified kind of properties and
a model in a (possibly) large category having the same kind of pro-
perties is a functor which preserves these properties, we would

define a left exact theory simply as a small left exact category.
However, for the classical notions of (multisorted, intuitionistic)

theories such a principle of categorical logic is justified by the

fact that there is a precise correspondence between (multisorted,
intuitionistic) theories and a certain class of categories. The main

point in proving such a correspondence is that from a theory T we
can construct a bicategory of concepts (= equivalence classes of

formulas) B(T) which can be proved to be a bicategory of relations;
then using the theory of relations, we can prove that the category of

maps of the free functional completion of B(T) is a category Q(£)
(the "classifying category" of T) having the property that models of

T correspond to an appropriate class of functors out of C,(T-) (see [M-

R], IF], [C-WI). So, reversing the above process, we could define a

(multisorted, intuitionistic) theory as a syntactical presentation of
a bicategory of relations, In the same spirit, we could define a left

exact (higher order) theory as a syntactical presentation of a

(total-closed) bicategory B(T) of partial maps and a model of T in a
left exact category (in a topos) E as a monoidal homomorphism of

bicategories B. (1) ----i Par(E) (hom-objects preserving). Syntactical
presentations of bicategories of partial maps have been discussed by
various authors (e.g., [CO]). To prove the existence of the classifying
category of a left exact (higher order) theory in the same way as

for ordinary theories, we need to construct the free functional

completion of a (total-closed) bicategory of partial maps.

2.11. LEJOlA. Let S be a bicategory of partial maps and let B be the
splitting (as a category) of the class of idempotents given by core-
flexives. Then 11’" is again a bicategory of partial maps, which is the
free functional completion of 11. Moreover, if B is total-closed, then

" is also total-closed.

PROOF. As we noticed at the end of last section, 13. 
B^ 

is a "weak" bicat-

egory of partial maps. Recall that S° has as objects coreflexives a :

X ---e X of 2 and as arrows r: a ----i b the arrows r of B such that
r.a = r = r.b ; comultiplication on each object a is given by Aa =
(a9a) A and counit is t. = t.a. We just need to prove that axiom (*)

lifts to RB First observe that, if a: X ---e X is a coreflexive, then
A*.(a@a) = a. A*. For
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which is equal (since composition of coreflexives is commutative) to

the other inclusion follows from A --I A*. So, a. A* is an arrow

in B^ and one has that A. ---I A.*. Being Aa*.(r@s)  r, it just remains
to prove the discreteness axiom:

So, B^ is again a bicategory of partial maps and it is functionally
complete: if b: a --- -&#x3E; a is a coreflexive of B’, then it is also a co-

reflexive of B. and b: b --- -&#x3E; a, b: a --- -&#x3E; b provide a splitting of b

in B^. The universal property of BA is now immediate,

To prove that ET is total-closed if B. is, let b and c be core-

f lexives on Y and Z respectively; define the hom-object in R" as the

coreflexive (b,c)^: (Y,Z)~ ----i CY,Z) N given by intersecting the

identity with the total arrow defined as the transpose of

b.val.(1^C):

it is not hard to check that this object of R" has the appropriate
universal property, using the existence of a total arrow

(see Corollary 2.8 for notations) defined as the one corresponding to

Thus, for any bicategory of partial maps :6.. the category Tot(ET)
is a left exact category and, if B is total-closed, it is an element-

ary topos.

If 1 is a left exact (higher order) theory, then the construc-

tion of B(T)^ amounts to taking as new objects (equivalence classes
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of) formulas 0 (x) of I and as arrows r(x,y) : 0 (x) --- -&#x3E; y (y) the

(equivalence classes of) formulas r(x,y) such that

To finish, let us mention the connections between bicategories
of partial maps and bicategories of relations. Ve recall that these

last ones are defined as cartesian bicategories (see the Introduc-

tion) in which every object satisfies the "discreteness" axiom (see

[C-W]). Given such a bicategory R, we define the "Horn part" of R as

the subbicategory H(R) with the same objects and with arrows just
the comultiplication homomorphisms. Observe that Map(R) = Tot(H R)).
The definition of H(R) extends to a functor H from the category of

bicategories of relations to the category of bicategories of partial
maps. We can describe the left adjoint F to H, when H is restricted

to functionally complete bicategories, in the following way: if B. is a

functionally complete bicategory of partial maps, then E = Tot(B) is

a left exact category; thus we can form the bicategory Span (E) (see

[C-W-K1) and we can make it locally ordered; it is immediate to see

that the resulting bicategory R(B) is in fact a bicategory of rela-

tions ; clearly R(B) is not functionally complete; define F(B) to be

the free functional completion of R(2); then it is easy to check the

universal property of F(B). Starting with a left exact category E,
then maps of the free functional completion of the bicategory
Span (E) , made locally ordered, provides an explicit description of the
free regular category on E.
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