
CAHIERS DE
TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

MARTA BUNGE
On a synthetic proof of the Ambrose-Palais-Singer
theorem for infinitesimally linear spaces
Cahiers de topologie et géométrie différentielle catégoriques, tome
28, no 2 (1987), p. 127-142
<http://www.numdam.org/item?id=CTGDC_1987__28_2_127_0>

© Andrée C. Ehresmann et les auteurs, 1987, tous droits réservés.

L’accès aux archives de la revue « Cahiers de topologie et géométrie
différentielle catégoriques » implique l’accord avec les conditions
générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CTGDC_1987__28_2_127_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


127

ON A SYNTHETIC PROOF OF THE AMBROSE-PALAIS-SINGER
THEOREM FOR INFINITESIMALL Y LINEAR SPACES

by Marta BUNGE

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVIII-2 (1987)

RÉSUMÉ. Dans cet article, on examine la preuve synth6tique
(c’est-à-dire dans le cadre de la Geometric Diff6rentielle

Synthetique) du théorème d’Ambrose, Palais et Singer (Anais da

Acad. Bras. de Ciencias 32, 1960, 163-178) donn6e par Bunge et

Sawyer (Cahiers Top. et Géom. Diff. XXV-3, 1984, 221-257), à la

lumi6re des resultats plus récents sur le memo sujet. En parti-
culier, dans un travail de Moerdijk et Reyes (Rapport des

recherches, DMS 85-3 , Univ. de Xontréal. 1985), on donne une

version synthetique du m6me théorème, valable pour tout objet
infinitesimalement lin6aire au sens de Bergeron (Rapport des

recherches, DMS 80-12, Univ, de Montrél, 1980) et, par la suite,
avec des conséquences classiques nouvelles. Ici, en utilisant des

diagrammes d’algebres de Weil du type de ceux trouv6s par Kock
et Lavendhomme (Cahiers Top. et G6om. Diff. XXV-3, 1984t 311-

324), on démontre qu’avec tr6s peu de modifications, la preuve

synth6tique que nous avions donnL6e au debut (avec Sawyer) est

aussi générale que celle de Moerdijk et Reyes et qu’en plus, elle
garde un rapport plus 6troit avec la preuve classique. Pour

justifier cette derni6re affirmation, on rend explicite ici le

processus de passage "du local A 1’infinitesimal" qui nous a

permis d’obtenir le r6sultat plus général à partir du cas

classique, et qui pourrait bien servir d’inspiration pour des

situations analogues.

INTRODUCTION.

A theorem of W. Ambrose, R.S. Palais and I.M. Singer [1] J

establishes a bijective correspondence between torsion free affine

connections on a finite dimensional smooth manifold M, and sprays on
M. Exploiting the infinitesimal aspects of the main notions involved

in that theorem, a proof was given in [5] in the context of Synthetic
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Differential Geometry (cf. [10]). In this proof, the assumptions made
on an object M of a model of SDG (i.e., of a "space" M) - although of
an infinitesimal nature - were all suggested directly by analogous
properties of the manifold M employed in the classical proof in [1]

(or in [19]). Several of those properties of M were known con-

sequences of "infinitesimal linearity", a property which holds for the
ring R of line type and has good closure properties (finite limits,

exponentiation by arbitrary exponents, etale descent) (cf [2, 6]).

Other properties assumed of M ("iterated tangent bundle property",
"property of existence of the exponential map") were introduced in

[5] J for the specific purposes of the proof.

In an attempt to deduce the classical theorem from [5], A. Kock

[11] J replaced the exponential map property by a "ray property" on M,
while adding the more restrictive assumption that, for some n &#x3E; 0

and every p e M, the fiber TPM at p of the tangent bundle of M, be

isomorphic to Rn. In that paper [11] it was remarked that the

iterated tangent bundle property was a consequence of infinitesimal

linearity. This was followed up by a paper of A. Kock and R.

Lavendhomme [12] in which, among other things, the ray property is

deduced from infinitesimal lineraity.

Motivated by the above results, I. Moerdijk and G.E. Reyes [16]

produced a synthetic proof of the Ambrose-Palais-Singer Theorem

under the sole assumption of infinitesimal linearity, while exploiting
its generality to exhibit versions of the theorem for objects other

than those covered by the original theorem, e.g., manifolds with

singularities and spaces C.(M, N) of smooth maps between manifolds.

This was achieved by interpreting the synthetic theorem in fully well

adapted models of SDG constructed via C*-rings, such as the toposes F
or G (cf [10]). However, in the process, the link with the classical

proof had been severed to the extent of provoking the remark (cf.

[17], Introduction) that "the original proof proceeds by locally
integrating the spray (...) and cannot be simply generalized to the

case of spaces C°°(M,N) ".

It is the purpose of this note to show that there is a simple
generalization of the classical proof of the Ambrose-Palais-Singer
Theorem to infinitesimally linear objects, and that is already
implicit in [5], Specifically, from the exponential map property in

its infinitesimal form we extract a similar property which is then

shown to follow from infinitesimal linearity. The diagram of Weil

algebras that we employ for this purpose is basically that found by
Kock and Lavendhomme [12] for the ray property and which was later
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employed in the proof by Moerdi jk and Reyes [16]. Thus, by proceeding
from the local to the infinitesimal - an approach taken in [5] and

carried here a step further - it is possible to extract a simple
proof of the Ambrose-Palais-Singer Theorem from the classical proof,
but which is valid in a far greater generality. (A similar phenomenon
of the passage "from the local to the infinitesimal" was exhibited in

[4]; infinitesimal versus local integration of vector fields on an

infinitesimally linear object is discussed further in [3].)

The contents are as follows. In Section 1 we review briefly the
basic assumptions of Synthetic Differential Geometry [10] including
the notion of infinitesimal linearity in the (strong) sense of

Bergeron 121, centring our attention in its role in the passage from

connections to sprays performed in [5] in the synthetic context.

Although we shall ultimately reduce all of our assumptions to that of
infinitesimal linearity, this portion of the proof of the Ambrose-

Palais-Singer Theorem -- including the injectivity of the corresp-
ondence for torsion-free connections - only requires basic infinit-

esimal linearity and the Euclideaness of the tangent bundle. In

Section 2, we begin by reviewing the passage from sprays to

connections as done in [5] both under local and infinitesimal

assumptions. The local context, being only of a motivational nature

needs only be described in very general terms: its consideration is

needed to justify our assumption of the existence of an exponential
map associated to a spray, where the latter is cast in an

infinitesimal, rather than usual, local, form. This brings us to the

main purpose here, which is to show that the infinitesimal context of
[5], with just a minor modification which is thoroughly natural in

view of the proof, follows from infinitesimal linearity and therefore
yields the Ambrose-Palais-Singer Theorem in the generality first

encountered in [16]. However, unlike the proof of [16] J the proof given
in 151 closely parallels the classical proof. The "method" we employ,
which is to proceed from the local to the infinitesimal as dictated

by the proof itself, could well be imitated in similar circumstances

in order to obtain theorems of greater generality and conceptual
simplicity than their classical analogues.

1 , FROM CONNECTIONS TO SPRAYS.

The basic framework employed here is that of SDG (Synthetic
Differential Geometry) given by an elementary topos E with a

commutative ring R in E, satisfying (cf. [10]):



130

1.1. AXIOM (Kock-Lawvere). For each Weil algebra W, the morphism

defined, for any given presentation

by evaluating any representative h E R[x1,...,xn] of an element of R[W]

at the elements (X7,...,Xn) E SpecR(W) C R", is (well defined and) an

isomorphism.

We recall (cf. [2]): 

1.2. DEFINITION. An object M of E is said to be infinitesimally linear
if given any finite limit {W -&#x3E; Wi} i of Weil algebras, the cor-

responding diagram in E, obtained by applying the functor

SpecR (-) oM-&#x3E;, i.e., the d iagram

is a finite limit in E.

It is well known (cf. [10]) that R is infinitesimally linear by
virtue of the Kock-Lawvere Axiom, and that the class of such objects
in E is closed under finite limits and exponentiation by arbitrary
objects. Among the consequences of infinitesimal linearity are the

basic (or original) assumption called by the same name, as well as

Euclideaness of the tangent bundle of M. These properties are the

sole ones needed in establishing the results contained in this

section.

We now recall the following (cf. [9]):

1.3. DEFINITION. A connection on M is a morphism

satisfying:
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where (v1, vg) E Xllxm MO, d E D and À E R.

A connection V is called torsion free if it satisfies:

for all (v, , v2) E MDxm M°, d1, di, E D.

In order to define covariant differentiation and geodesics
relative to a connection, the notion of a "connection map", introduced

by Patterson [18], is more suggestive. Consider the "horizontal map"
H: M° xM MD -&#x3E; (MD)D, given by the rule

H can be shown (cf. 19, 5]) to be the kernel of the morphism

Notice that, by definition, a connection V on M is a splitting
of K, i .e . , that KoV = id(MDxM X°) and therefore that

It follows that there exists a unique morphism C: (MD)D -&#x3E; MD,
such that

commutes. The commutativity says, for t E (MD)D, that

It implies the equation

as follows (H is mono):

1.4. DEFINITION. A connection map on M is a morphism C: (MD)D -&#x3E; M’

satisfying the commutativity of the diagrams
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and such that C is linear for both structures of modules on the

iterated tangent bundle of M.

A connection map C is said to be torsion free if it satisfies

cor.. = C where En is the symmetry map.

1.5. PROPOSITIOH. Let M be infinitesimally linear. Then, the data for

a connection on M is equivalent to the data for a connection map on

M, a correspondence which is given by the commutati ve diagram (*).

Further, if V and C correspond to each other- in this way, Tl is

torsion free jff C is torsion free.

A proof of the above is routine (and can be found in [5D. Using
covariant differentiation (cf. [5]), the notion of a geodesic may be
defined. For a "curve" a: R 4 M, a is a geodesic for C iff Coa" = 0

and in terms of the data for a connection given by V, a is a

geodesic for V iff V(a’,a’) = all.

We now recall (cf. [5]):

1.6. DEFINITION. A spray on M is a morphism S: MD -&#x3E; (MD)D satisfying:

(i) p(MD)oS = id and (pM)DoS = id ; 
(ii) S(x0v) = Ào(À0S (’v» for any v E MD, À c R.

If V is any connection on M, a spray S is said to be geodesic
spray for V whenever it is the case that for every curve a: R 4 M, a’

is an integral curve for S (i.e., a is a solution of the second-order

differential equation by S) iff a is a geodesic (relative to V).

1.7. THEORElrt. Let M be infinitesimally linear,. Given a connection V on
M, there is associated a geodesic spray Sv for V, by the rule V [-&#x3E; Sr,
with 8v (v) = V(v,v). In addition, if V and V" are torsion free

connections on M, and Sv = 8’1 A, then V = V^.
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PROOF. We refer the reader to [5] except for the injectivity of the

correspondence for torsion-free connections, not included in [5]. This

is now given below under the weak assumptions indicated at the

beginning of this section, in spite of the blank assumption made of

infinitesimal linearity from which those follow.
If V and V^ are torsion free connections and Sv = Sv- , then V =

VB To prove it, we work instead with the associated connection maps
C and C", which are torsion free (Proposition 1.5). In turn, to prove
that C = C" it is enough to prove that

for every t E (MD)D - as H is mono. For any t E (MD)D such that

(7r,,)" (t) = p[(MD) c’t), the above is immediate, as then:

similarly

so that the result would follow from the assumption that Sv = SV.

The rest of the proof consists in reducing the general case to this
special case, i.e., to find, given now an arbitrary t E (MD)D, some t E

(MD)D such that (pM)D(t) = p(MD)(t), and for which

and

Letting
where

it is clear that C (t) = C (1’ ), by linearity of C and (**). Indeed,

Also, T satisfies the required conditions, for

and

It remains to prove that C^(t) = C^(T). Clearly, this would follow

readily from a condition such as
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which happens to be true simply because Sv = So-, and because both V
and C’ are torsion free. To prove it, we first observe that one may

regard G"o0; M°xn MD -&#x3E; M° as a bilinear form, and that it vanishes on

the diagonal, i.e., for 0(v,w) = (C^, V) (’v, w), we have 0 (v,v) = 0.

Indeed:

It follows that 0 (V,W) = 0 for all v,w. Indeed:

so

Hence

hence 0 (v,w) = 0, for all v, w (since 2 E Q is invertible and R is a

Q-algebra). This finishes the proof.

2. FROM SPRAYS TO CONNECTIONS.

In the classical proof of the Ambrose-Palais-Singer Theorem (cf.

[1, 19]), the passage from a spray to a torsion free connection of

which the spray is a geodesic spray, is guaranteed by the local

integrability of sprays, in turn a consequence of the corresponding
theorem on the local existence of solutions to second order differ-

ential equations (cf. [14]).

As a motivational device only, we begin by assuming the "local"
integrability of sprays, expressible by means of any given
topological structure on E in the sense of [3], i .e. , of the data

consisting of a subobject O(X) C Qx, for each object X, closed under
finite infima (including the empty one) and under arbitrary suprema
in 01, satisfying, in addition, the condition of continuity for every f
6 YX : i.e., if U E O(Y) then f-1 (U) E O(X). A further assumption (true,
e.g., of the Penon or intrinsic topological structure, cf. [10]) will

be that any open of X contain the monad of each of its points, i .e. ,
that for every U E O (X ) and x E X, if x E U then TT{X} C U. As is

usual in SDG, R will be assumed to be a field of fractions (cf. (10,
8]), from which it follows that D C TT{O}

We now give the following, for 0 any topological structure on E
as above:
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2.1. DEFINITION. Let S be a spray on M. An 0-local flow for S is a

morphism 0: U0 -&#x3E; M°, ([1],OM) e U4 E O(RxM), such that

(i) DxMD 0 U,, and

commutes;
("flow equation");
("homogeneity"),

the last two for every x, l’ E R, v E M°, such that (say) the left

hand--side of each equation is defined (so is the other and it holds).

Since 0 is a topological structure on the topos E, taking the

pullback:

gives an object Vo E O(MD) such that, for all p E M, Op E v. Then, for

d7,...dn E D and v1, ... , vn E M° such that pM(V1) - ...= pM(Vn) = p, it

follows that

2.2. PROPOSITION. ("Local exponential map"). Let (E,R) be a model of

SDG with R a field of fractions. Let O be a topological structure on
E, such that every 0-open contains the monad of any one of its

points. Let us assume given an 0- local flow 0 of S, for a spray S on
M. Then, there exists a "local exponential map" for S, i.e., a morphism
exp 0 : V4 -&#x3E; M with 0m E V4 E 0(M"), such that

The above is easily shown (cf. [5]). So is the next Proposition,
whose proof we recall in detail since it will be by examining it that
the "exponential map property" - to be shown a consequence of

infinitesimal linearity - will be extracted.
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2.3. PROPOSITION. Under the same assumptions as in Proposition 2.2,
for S a spray on M , th e formula

defines a torsion free connection Vs on M such that the geodesic
spray associated uniquely to V5 by Theorem 1.7 is S itself.

PROOF. Vs is a connections. - We verify (i) and (ii) in the definition

of a connection (Definition 2.1). By (*) in Proposition 1.4, we get
(i) :

and

As for the homogeneity conditions on Vs, expressed in (ii), they just
follow from the definitions:

A closer look at the above proof indicates immediately that all
we need of the map exp, : V, e M is its restriction to the subobject
D2(MD) of Vo given by the image of the morphism

whose rule is given by:
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notice that D2(MO) = Im (y) C Vo, by Lemma 3.3. I.e., we could do with a

map e s : D2 (MD) -&#x3E; M such that

commutes.

This observation was made already in 151. Here we go one step
further in the same direction by assuming that the desired

exponential map be defined directly on the object DxDx(MDxM MD) rather
than on the quotient given by the image of 1, but restoring the

properties of need in the proof of the above Proposition as in the

following definition, directly suggested by the above considerations.

2.4 DEFINITION. An object M is said to have the exponential map pro-
perty if for any spray S on M there exists a morphism

satisfying the conditions (for all v e M°, (v1, v2) E MDXM MO, d, d1,
d2 E D, and X e R): 

EXP(i)

and

EXP(2)

The following proposition is obvious, but it will be seen later

to contain a superfluous hypothesis: indeed, it will be shown that the

exponential map property is, in fact, a consequence of infinitesimal

linearity.

2.5. PROPOSITION. Let M be an infinitesimally linear object satisfying
the exponential map property (as in Definition 2.4). Let S be a spray
on M, and let es: DxDx(MDxM MD) -&#x3E; M be as in Definition 2.4. Then the

formula
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defines a torsion free connection Vs on M, wi th S as its unique
associated geodesic spray.

Before stating and proving our last theorem linking our treat-
ment in [5] to the general result obtained in 1161 with the help also
of results established in [11] J and [12], we recall the following
theorem proven in 151 giving an alternative characterization of

sprays on infinitesimally linear objects. We refer to [5] for the

proof, where infinitesimal linearity is used in an essential way.

2.6. THEOREX. Let M be an infini tesjJnally linear object. A spray on M

is given, equivalently, by the data consisting of a "spray map" 0’:

M° -) MD2, where D2 = Ty c R 1 x3 = OD , satisfying:

is the inclusion, i.e., for

for any

We now prove our main result in this section

2.7. PROPOSITION. ("Exponential map property"). Let M be infinit-

esi11Jally linear. Then, M satisfies the exponential map property (in

th e sense of Definition 2.4).

PROOF. The diagram of Weil algebras given by:

where

is an equalizer, as it is easily checked. It follows that the diagram

where
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for d i, d2 E D and d1, d2 e Dz, is an equalizer in E. In fact, since
the class of infinitesimally linear objects is closed under exponen-
tials by arbitrary exponents, also the more complicated diagram

where L = M°xMM°, is an equalizer in E. Consider the morphism

given by

where o is the spray map associated to a given spray S on M, and for
which we wish to define an "exponential map" S, as in Definition 2.4.

It is easily verified that Or E (ML)DxDxD2 is equalized by the two

morph isms of the equalizer diagram. This follows from:

Therefore, there exists a unique (global section) a; e (XL )010 satis-

fying, when regarded as a morphism

the condition: for

We now verify the conditions EXP (1) and EXP(2). We begin by
EXP(2). Consider, for v E M",

given by:
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To show they are equal, on account of (*), it is enough to verify
that they are equalized by Mf^; if 0, y are regarded as global
elements of MDrD. Now

This establishes EXP(2). We now turn to EXP(l). To show (i) ((ii) is

similar), consider, for a given (v1, v2) 6 MDxM M° , the two morphisms
0, y: DXD e M given by

and

Now

where we have used the fact that, for d e D and d E Dz, 6.d e D. This

shows (i), and similarly, (ii) holds.

To show (iii) and (iv) we need to consider the equalizer (**) 

again, at least, the fact that the equalizer map is mono. Consider the

following morphisms 0, ?: R -&#x3E; (ML)OxD defined as follows:

while

Now

This shows that and ? are equal, hence (iv) holds, and (iii) is

similarly proved.

It remains to establish (v). In this case, let and y be global
sections of (M L )DxD be defined by:

whereas
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and the fact that they are equal follows, just as in the previous
cases, by observing that for 6 c D;,

This completes the proof.

2.8. THEOREX [16] (Ambrose-Palais-Singer Theorem for infinitesimally
linear spaces"). Let (E,R) be any model of SDG and let :M: be any

infinitesimally linear object in E. There is a bijective cor-

respondence between torsion free connections V on M and sprays S on

)1, gi ven by th e rure V -&#x3E; Sv, with Sv (v) = V (v, v).

PROOF. By Theorem 1.7, there is such a correspondence, and it is

injective on torsion free connections. By Proposition 2.7, M satisfies
the exponential map property, therefore, by Proposition 2.5, the cor-

respondence is also surjective, hence a bijection.
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