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CAHIERS DE TOPOLOGIE Vol. XXVIII-2 (1987)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

ON A SYNTHETIC PROOF OF THE AMBROSE-PALAIS-SINGER
THEOREM FOR INFINITESIMALLY LINEAR SPACES
by Marta BUNGE

RESUME , Dans cet article, on examine la preuve synthétique
(c'est-a-dire dans le cadre de 1la Géométrie Différentielle
Synthetique) du théoréme d'Ambrose, Palais et Singer (Anais da
Acad. Bras. de Ciencias 32, 1960, 163-178) donnée par Bunge et
Sawyer (Cahiers Top. et Géom. Diff. XXV-3, 1984, 221-257), a la
lumiére des résultats plus récents sur le méme sujet. En parti-
culier, dans un travail de Moerdijk et Reyes (Rapport des
recherches, DMS 85-3, Univ. de Montréal, 1985), on donne une
version synthétique du méme théoréme, valable pour tout objet
infinitésimalement linéaire au sens de Bergeron (Rapport des
recherches, DMS 80-12, Univ. de Montréal, 1980) et, par la suite,
avec des conséquences classiques nouvelles. Ici, en utilisant des
diagrammes d'algébres de VWeil du type de ceux trouvés par Kock
et Lavendhomme <(Cahiers Top. et Géom. Diff. XXV-3, 1984, 311-
324>, on démontre qu'avec trés peu de modifications, la preuve
synthétique que nous avions donnée au début (avec Sawyer) est
aussi générale que celle de Moerdijk et Reyes et qu'en plus, elle
garde un rapport plus étroit avec la preuve classique. Pour
Justifier cette derniére affirmation, on rend explicite ici le
processus de passage "du local a 1'infinitésimal" qui nous a
permis d'obtenir le résultat plus général a partir du cas

classique, et qui pourrait bien servir d'inspiration pour des
situations analogues.

INTRODUCTION,

A theorem of V. Ambrose, R.S. Palais and I.M. Singer I[1]
establishes a bijective correspondence between torsion free affine
connections on a finite dimensional smooth manifold M, and sprays on
M. Exploiting the infinitesimal aspects of the main notions involved
in that theorem, a proof was given in [5] in the context of Synthetic
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2 H, BUNGE

Differential Geometry (cf. [101). In this proof, the assumptions made
on an object M of a model of SDG (i.e., of a "space" M) - although of
an infinitesimal nature - were all suggested directly by analogous
properties of the manifold M employed in the classical proof in (1]
(or in [19]). Several of those properties of M were known con-
sequences of “"infinitesimal linearity", a property which holds for the
ring R of line type and has good closure properties (finite limits,
exponentiation by arbitrary exponents, etale descent) <(cf [2, £D.
Other properties assumed of M ("iterated tangent bundle property",
"property of existence of the exponential map") were introduced in
(5] for the specific purposes of the proof.

In an attempt to deduce the classical theorem from (5], A. Kock
[11] replaced the exponential map property by a "ray property" on X,
while adding the more restrictive assumption that, for some n > 0
and every p € M, the fiber T,M at p of the tangent bundle of M, be
isomorphic to R”. In that paper [11] it was remarked that the
iterated tangent bundle property was a consequence of infinitesimal
linearity. This was followed up by a paper of A. Kock and R.
Lavendhomme (12] in which, among other things, the ray property is
deduced from infinitesimal lineraity.

Motivated by the above results, I. Moerdijk and G.E. Reyes [16]
produced a synthetic proof of the Ambrose-Palais-Singer Theorem
under the sole assumption of infinitesimal linearity, while exploiting
its generality to exhibit versions of the theorem for objects other
than those covered by the original theorem, e.g., manifolds with
singularities and spaces C*(M, N) of smooth maps between manifolds.
This was achieved by interpreting the synthetic theorem in fully well
adapted models of SDG constructed via C*-rings, such as the toposes F
or G (cf [10D. However, in the process, the link with the classical
proof had been severed to the extent of provoking the remark (cf.
[17], Introduction) that "the original proof proceeds by locally

integrating the spray (..) and cannot be simply generalized to the
case of spaces C°(M,N) “.

It is the purpose of this note to show that there is a simple
generalization of the classical proof of the Ambrose-Palais-Singer
Theorem to infinitesimally linear objects, and that is already
implicit in [5]. Specifically, from the exponential map property in
its infinitesimal form we extract a similar property which is then
shown to follow from infinitesimal linearity. The diagram of WVeil
algebras that we employ for this purpose is basically that found by
Kock and Lavendhomme [12] for the ray property and which was later
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ON A SYNTHETIC PROOF OF THE AMROSE-FALAIS-SINGER THEOREM 3

employed in the proof by Moerdijk and Reyes [16]. Thus, by proceeding
from the local to the infinitesimal - an approach taken in [5] and
carried here a step further - it is possible to extract a simple
proaf of the Ambrose-Palais-Singer Theorem from the classical proof,
but which is valid in a far greater generality. (A similar phenomenon
of the passage "from the local to the infinitesimal" was exhibited in
[4]; infinitesimal versus local integration of vector fields on an
infinitesimally linear object is discussed further in [3].)

The contents are as follows. In Section 1 we review briefly the
basic assumptions of Synthetic Differential Geometry (101 including
the notion of infinitesimal 1linearity in the (strong) sense of
Bergeron (2], centring our attention in its role in the passage from
connections to sprays performed in (5] in the synthetic context.
Although we shall ultimately reduce all of our assumptions to that of
infinitesimal linearity, this portion of the proof of the Ambrose-
Palais-Singer Theorem - including the injectivity of the corresp-
ondence for torsion-free connections - only requires basic infinit-
esimal linearity and the Euclideaness of the tangent bundle. In
Section 2, we begin by reviewing the passage from sprays to
connections as done in [5] both under local and infinitesimal
assunptions. The local context, being only of a motivational nature
needs only be described in very general terms: its consideration is
needed to justify our assumption of the existence of an exponential
map associated to a spray, where the latter is cast in an
infinitesimal, rather than usual, local, form. This brings us to the
main purpose here, which is to show that the infinitesimal context of
[5], with just a minor modification which is thoroughly natural in
view of the proof, follows from infinitesimal linearity and therefore
yields the Ambrose-Palais-Singer Theorem in the generality first
encountered in [16]. However, unlike the proof of [16] the proof given
in (5] closely parallels the classical proof. The "method" we employ,
which is to proceed from the local to the infinitesimal as dictated
by the proof itself, could well be imitated in similar circumstances
in order to obtain theorems of greater generality and conceptual
simplicity than their classical analogues.

1, FROM CONNECTIONS TO SFRAYS,
The basic framewark employed here is that of SDG (Synthetic

Differential Geometry) given by an elementary topos E with a
commutative ring R in E, satisfying (cf. [101):
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4 M. BUNQE

1.1. AXIOM (Kock-Lawvere). For each Veil algebra W, the morphism
a: RIW] -+ Rspecncw>
defined, for any given presentation
V = Qlxr,.,xa)/ vy kn)
by evaluating any representative h € Rlx:,...,x.] of an element of RIVI]
at the elements (x:,...,x») € Speck(W) C R~ is (well defined and) an

isomorphism.

Ve recall (cf. [2D:

1.2. DEFINITION. An object M of E is said to be Infinitesimally linear
if given any finite limit (W — V., of Veil algebras, the cor-
responding diagram in E, obtained by applying the functor
Specr (=) oM<, i.e., the diagram

{MSpecg(W) , MSpecp(w l))i

is a finite limit in E.

It is well known (cf. [101) that R is infinitesimally linear by
virtue of the Kock-Lawvere Axiom, and that the class of such objects
in E is closed under finite limits and exponentiation by arbitrary
objects. Among the consequences of infinitesimal linearity are the
basic (or original) assumption called by the same name, as well as
Euclideaness of the tangent bundle of M. These properties are the

sole ones needed in establishing the results contained in this
section.

We now recall the following (cf. [91]):

1.3. DEFINITION. A connection on M is a morphism

V: MPxn M° — (MP)°
satisfying:

(69 Vvy,vaddd, 00 = vy (d); Vvy, v22(00,d) = v2(d);
A1) VOowv:, vz) = ooV (vy, v2) ; Vv WOV = MoV (v., v2)
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ON A SYNTHETIC PROOF Of THE AMROLE-PALAIS-SINGER THEOREM 5

where (vi, v2) € M°xu M®, d € D and X € R.
A connection V is called torsion free if it satisfies:

Vv, yV2) (dz,dr) = Vv, ,V2) (dy,dz),
for all (Vvi, V2) € MPxn MD, d,, dz € D.

In order to define covariant differentiation and geodesics
relative to a connection, the notion of a "connection map", introduced
by Patterson [181, is more suggestive. Consider the “horizontal map"
H: M°xw M® 5 (MP)®, given by the rule

(vi,v2) B [d b v, & (doval.
H can be shown (cf. [9, 51) to be the kernel of the morphism

K = <(umw)®, Temord: (MP)® 5 MOxy MO,

Notice that, by definition, a connection V on M is a splitting
of K, i.e., that KoV = id(M°xs M®) and therefore that

Ko(id (M®)® & VoK) = 0.
It follows that there exists a unique morphism C: (M®)° -+ M°,

such that
(M@)o

< ,C> \1 o VoK )
H
MOy MP — ——————— (M°)°
comnmutes. The commutativity says, for t e (M°)°, that
Hct), Cct)) = t e TmmP (t),t(0)).
It implies the equation
CoV =0 (€2 D)
as follows (H is mono):
Hodmu®,C>oV = (id 6 VoK)oV = V 0 (VoKoV) = 0.

1.4. DEFINITION. A connection map on M is a morphism C: (MP)® -+ M°
satisfying the commutativity of the diagrams
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s M, BUNGL

(¥°)° -———) Me (M")“-——————) Me

ﬂno(ﬂnx / T[H-vr(ﬂ \ /

and such that C is linear for both structures of modules on the
iterated tangent bundle of M.

A connection map C is said to be torsion free if it satisfies
Coln = C where In is the symmetry map.

1.5. PROPOSITION. Let M be infinitesimally linear. Then, the data for
a connection on M Is equivalent to the data for a connection map on
¥, a correspondence which is given by the commutative diagram ¥).
Further, if V and C correspond to each other in this way, V 1Is
torsion free iff C 1s torsion free.

A proof of the above is routine (and can be found in [5)]). Using
covariant differentiation (cf. [51), the notion of a geodesic may be
defined. For a "curve" o: R + M, o is a geodesic for C iff Coex" = 0O
and in terms of the data for a connection given by V, a is a
geodesic for V iff Via',a") = o,

Ve now recall (cf. [5D:

1.6. DEFINITION. A spray on M is a morphism S: M° -+ (M°)° satisfying:

1) TeporeS = id and (mmdPeS = 1id;
(i1) SOoewv) = xe(X0S(v)) for any ve M°, X € R.

If V is any connection on M, a spray S is sald to be geodesic
spray for V whenever it is the case that for every curve o: R -+ N, o'
is an integral curve for S (i.e., a is a solution of the second-order
differential equation by S) iff a is a geodesic (relative to V).

1.7. THEOREM. Let M be infinitesimally linear. Given a connection V on
M, there 1s associated a geodesic spray Se for V, by the rule V |4 Sp,
with Se(v) = V<(v,v). In addition, if V and V° are torsion free
connections on M, and Sv = Sv-, then V = V°,
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ON A RYNTHETIC PRONF OF THE AMROLF-PALAIS-SINGER THEOREM 7

PROOF. We refer the reader to [5] except for the injectivity of the
carrespondence for torsion-free connections, not included in [5]. This
is now given below under the weak assumptions indicated at the
beginning of this section, in spite of the blank assumption made of
infinitesimal linearity from which those follow.

If V and V* are torsion free connections and Sv = So-, then V =
V*. To prove it, we work instead with the associated connection maps
C and C°, which are torsion free (Proposition 1.5). In turm, to prove
that C = C" it is enough to prove that

Ht0), Ct)) = H@t, C° )

for every t € (M”)° - as H is mono. For any t e (M°)° such that
() (t) = mewo> (), the above is immediate, as then:

Hct0), C(t)) = H(myo) (2, C(t)) = H((mw® (t), C(t)) =
t 0(VoK) (2D = t 6CCUmd® (), o> (B)) = t & Solmcpor (T))

similarly
Ht)\,C"(t)) = t 6 Se- (myoy (T)),

so that the result would follow from the assumption that S¢ = Se-.
The rest of the proof consists in reducing the general case to this
special case, i.e., to find, given now an arbitrary t ¢ (M°)°, some 7 €
(M®)P such that (mw)P{r) = myo» (*), and for which
C)=Cm and C" () = C (M.
Letting
T = t oV (iv,vot(0)), where v = (mw)® (t),
it is clear that C(t) = C(1), by linearity of C and (#%). Indeed,
C(t) = C(t oV (v,vot(0)) & CoV (v,mt(0)) = C(1).

Also, v satisfies the required conditions, for

(mw)® (BBV (v,v0t (0)) = (mdP (B @ (mm)°(V (v,0t(0))) = vov = v,
and

Mooy (BBV (v, 0L (0))) = Tenoy () & Tamoy (V(v, w0t (00))= £ (00 (vOt(0))) = v,

It remains to prove that C"(t) = C"(r). Clearly, this would follow
readily from a condition such as

C*V =0 (€22 D
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« M, EUNGE

which happens to be true simply because Sv = Se-, and because both V
and C* are torsion free. To prove it, we first observe that one may
regard C"oV: M°xw M° 5 M° as a bilinear form, and that it vanishes on
the diagonal, i.e., for g(v,w) = (".V)(v,w), we have g(v,v) = 0.
Indeed:
gv,wv) = C°(V(v,w)) = C(Se(v)) = C (Se-(V)) =
= C(V " (v,v)) = C V" (v,v) = 0,

It follows that ¢ (v,w)> = 0 for all v,w. Indeed:

0 = g(vtw,viw) = g(v,v) + g(v,w) + g (w,v) + g(w,w) = g (v,w) + g (w,v),
so g (v,w) = —g (w,v).
Hence

2.4 (v,w) = 0,

hence g (v,w> = 0, for all v, w (since 2 € Q is invertible and R is a
Q-algebra). This finishes the proof.

2, FROM SPRAYS TO CONNECTIONS,

In the classical proof of the Ambrose-Palais-Singer Theorem (cf.
(1, 19)), the passage from a spray to a torsion free connection of
which the spray is a geodesic spray, is guaranteed by the local
integrability of sprays, in turn a consequence of the corresponding
theorem on the local existence of solutions to second order differ-
ential equations (cf. [14D).

As a motivational device only, we begin by assuming the "local"
integrability of sprays, expressible by means of any given
topological structure on E in the sense of [3], i.e.,, of the data
consisting of a subobject OX) C Q*, for each object X, closed under
finite infima (including the empty one) and under arbitrary suprema
in Q*, satisfying, in addition, the condition of continuity for every f
€ Y ie., if U € OCY) then £~7(U) € OX). A further assumption (true,
e.g., of the Penon or intrinsic topological structure, cf. [10]) will
be that any open of X contain the monad of each of its points, i.e.,
that for every U ¢ OQX) and x € X, if x € U then 171{x} C U. As is
usual in SDG, R will be assumed to be a field of fractions (cf. [10,
8)), from which it follows that D C -11{0).

Ve now give the following, for O any topological structure on E
as above:
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ON A SYNTHETIC PROOF OF THE AMBROSE-PALAIS-SINGER THEOREM S

2.1. DEFIKNITION. Let S be a spray on M. An O-local flow for S is a
morphism g: U, -+ M°, <[11,0n> € Uy € OQRxM), such that

(1) DxM® O U,, and

DM — S o
|
Uy
commutes;
1i FOEN, V) = gOLEON, W) ("flow equation™);
(1iid g, AOv) = Nog O, W ("homogeneity"),

the last two for every X, X' € R, v € M°, such that (say) the left
hand-side of each equation is defined (so is the other and it holds).

Since O is a topological structure on the topos E, taking the
pullback:

V¢ =l U¢

Y I

MP —————————— RxM°
<[1},id>

gives an object V, ¢ OM°) such that, for all pe M, 0, € v. Then, for
diy...ds € D and wi,...,v» € M® such that mw(w) = ..= m(vy) = p, it
follows that

(d:0v) @& ... & (dOVve) € V,.

2.2. PROPOSITION. (“Local exponential map"). Let (E,R) be a model of
SDG with R a field of fractions. Let O be a topological structure on
E, such that every O-open contains the monad of any one of Iits
points. Let us assume given an O-local flow ¢ of S, for a spray S on
M. Then, there exists a "local exponential map" for S, i.e., a morphism
exps: V4 » M with On € V4 € OM®), such that

expy (d ov) = v(d) ),
The above is easily shown (cf. [5]). So is the next Proposition,

whose proof we recall in detail since it will be by examining it that

the “exponential map property" - to be shown a consequence of
infinitesimal linearity - will be extracted.
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10 M., BUNGE
2.3. PROPOSITION. Under the same assumptions as in Froposition 2.2,
for 8 a spray on M, the formula

Vs (Vl,Vz)(d1,dz) = exp,(d;ovl ® d:Oovy)

defines a torsion free connection Vs on M such that the geodesic
spray associated uniquely to Vs by Theorem 1.7 is § Itself.

PROOF. Vs is a connection. - Ve verify (i) and (ii) in the definition
of a connection (Definition 2.1). By (%) in Proposition 1.4, we get
i

]

Vs (vi,v2) (d,0) = exps((d 0v1)0C00V2)) = expy (dowvr) v (d)
and

Vs (vi,v2) (0,d> = exps ((00v1)8(d 0vz)) = exps (d Ova) = vz(d).

As for the homogeneity conditions on Vs, expressed in (ii), they just
follow from the definitions:

OeVs (vy,v2)) (dr,d) = Vs (vy,v2) Ovedy,d2) =
exps ((hed)Ovy 0 d:0vz)) = exps (di0 W0V )8(d0v)) = Vs NOVy,v2) (dv,d2)
and

0Vs (vi,v2)) (dy,d2) = Vs (vi,v2) (dr,\ed2) =
exps ((dr10v1)8(Xed2)0V2)) = expy ((d10v1)8(d0(N\0V)) = Vs (vi 2OV (dr,d2).

(2) Vs 1s torsion free. -

Vs (vy,v2) (dz,d) = eXP;((dzO‘H Yeld,ov)) =
eXP;((d10Vz)0(d20V‘|)> = Vs (Vz,Vp) (d,,d.

(3) Svs = 8. -

Svs (V) (d1) (d2) = Vs (v,w)(d:1,d2) = exps((d:0WO(d0V)) = exps ((d;+d2d0OW)
= T[n(ﬂ(1‘(d1+dz)ov)) = mn{g(di+dzw) = ﬂn(ﬂ(d:,ﬂ(dhv)) =
I (S°(d2,S7(d;,")) = (neSH(S"(d;, W) (d2)) = S"(d;, W) (d) = S(v)(d:){d.

A closer look at the above proof indicates immediately that all
we need of the map exps: V4 » M is its restriction to the subobject
D2(M°) of V4 given by the image of the morphism

¥: DxDx(MPxx MP) — MP

whose rule is given by:
(dy,dz, (v7,v2)) b (d.0v)6(dz0Vv) ;
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ON A SYNTHETIC FROOF OF THF AMBROGE-PALAIS-SINGER THEOREM L]

notice that D.(M°) = Im(y) C V,, by Lemma 3.3. I.e., we could do with a
map es: D2(M°) + M such that

DM & N

A’
commutes.

This observation was made already in [5]. Here we go one step
further in the same direction by assuming that the desired
exponential map be defined directly on the object DxDx(M°xn MP) rather
than on the quotient given by the image of ¥, but restoring the
properties of need in the proof of the above Proposition as in the
following definition, directly suggested by the above considerations.

Vs

2.4 DEFINITION. An object M is said to have the exponential map pro-
perty if for any spray S on M there exists a morphism

& DxDx(MPxy M?) — M

satisfying the conditions (for all v e¢ M°, (v,,v2) € M°xs M°, d, d.,
dz € D, and X € R):

EXP(1) (¢D) & d,0, (v,,v2)) v, {d) ;
i e (0,d, (vi,v2)) vz (d) ;
(111) esnedy,dz (v1,v2)) = &(dy,dz,(N0WV1,V2))
iv) e (dy \edz, (vi,v2)) = e (dy,dz,(w AOV2))

i

and
EXP(2) & (dr,dz, (v,v)) = S(v)dy,d.

The following proposition is obvious, but it will be seen later
to contain a superfluous hypothesis: indeed, it will be shown that the

exponential map property is, in fact, a consequence of infinitesimal
linearity.

2.5. PROPOSITION. Let M be an infinitesimally linear object satisfying
the exponential map property (as in Definition 2.4). Let S be a spray

on M, and let &: DxDx(M°xw MP°) 9 M be as in Definition 2.4. Then the
formula

Vs (vi,v2) (dy,d2) = es(di,dz, (vi,v2))
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12 M, BUNGE

defines a torsion free connection Vs on M, with S as its unique
associated geodesic spray.

Before stating and proving our last theorem linking our treat-
ment in [5] to the general result obtained in [16] with the help also
of results established in [11] and (12}, we recall the following
theorem proven 1in [5] giving an alternative characterization of
sprays on infinitesimally linear objects. Ve refer to (5] for the
proof, where infinitesimal linearity is used in an essential way.

2.6. THEOREM. Let M be an infinitesimally linear object. A spray on M
is given, equivalently, by the data consisting of a "spray map" o:
M° o M°%, where D: = Ixe R | x®= 01, satisfying:

(i) MY ew = id, where u: D D: is the inclusion, i.e., for d € D,
ve M, o(v){d) = v(d) ;

11> e(MV) = )or (v), for any ve M°, X\ € R.

We now prove our main result in this section
2.7. PROPOSITION. ("Exponential map property"). Let M be infinit-
esimally linear. Then, M satisfies the exponential map property (in

the sense of Definition 2.4).

PROOF. The diagram of Weil algebras given by:

Qe,00 L Que,ayd _’_—'L_'Q[e,cx,x,y]
where
€2 = a2 = x3 = p® = Q, fE€) = €. ¥, fe) = a. x, gle) = ¢ p,
gl = a. p, g& =%  he) = €. x, ho=o x, h& =np

is an equalizer, as it is easily checked. It follows that the diagram

. 9"
*) Moxo__n_'____, MoxDxD, K —> MOxDx02xD
— ®
where

“*d,,d:8) = 6.d:,6.d2, 8°(d:,dz,61,62) = (&:1.d1,61.d262),
h'(d,,dz61,62) = (8§z.dy,82.d2,61)
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ON A SYNTHETIC PROOF OF THE AMBROSE-FALAIS-SINGER THEOREM 13

for d:, dz € D and 8., 62 € Dz, is an equalizer in E. In fact, since
the class of infinitesimally linear objects is closed under exponen-
tials by arbitrary exponents, also the more complicated diagram

. id#”
(%) ryoo . 1d77 piyoxnan, T (r)yox0s0gun,
idh”

—_—

where L = M°xuM°, is an equalizer in E. Consider the morphism

e DxDxDaxL ~— M
given by
e (dy,dz,68, (Vvy,v2)) = ¢ ((d,0v1)8(dz20v2)) (&8,

where o is the spray map associated to a given spray S on M, and for
which we wish to define an "exponential map" S, as in Definition 2.4.
It is easily verified that e ¢ M-)P*°*%2 is equalized by the two
morphisms of the equalizer diagram. This follows from:

&(81.d1, 51.dr,52, (vy,va)) = 0 ((8,.d1)ov8(8,.d0v (8 =
0(610(d10v1)8(dz0v)) () = (8,00 ((d:0v1)0(d0v))) (62 =
0 ((d10v1)0(d0Vv))I(E1.62) = ¢ ((d10v)8(d0v2)) (62.8,) =
0 ((E2.d1)0v18(82.d20V2)(81) = & (82.d1,62.d2,61,(Vy,v2)).

Therefore, there exists a unique (global section) & € (M-)?P satis-
fying, when regarded as a morphisn

&: DxDxL — M,
the condition: for d,, d2€ D, § € Dz, (vi,v2) € L,
es(8.dy,8.dz, (vy,v2)) = e (dy,dz6, (Vvi,v2)).

We now verify the conditions EXP(1) and EXP(2). We begin by
EXP(2). Consider, for v ¢ M°,

g
DxD .

y )

given by:
’(dl,dz) = &(dr,dz, (v,v)) and Y(d1,dz) = S(v)d:)(d.
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To show they are equal, on account of

), it is enough to verify
that they are equalized by M7, if ¢,
elements of M°°. Now

y are regarded as global

M7 gy (di,dz8) = &(8.d1,6.dz (Vv,v)) = &(d:i,dz6, (v,v)) =
o ((d,0V)9(d:0m) (§) o ((di+d220v) &)

o (v)(6.di+8.d2) = S(v)(6.d1)(8.d)

o () ({d:1+d) .6
M7 (y){dr,dz6).

This establishes EXP(2).

Ve now turn to EXP(1). To show (i) (ii) is
similar), consider, for a given (v:,v2) € M°xn M°, the two morphisms
#, y: DxD 5 M given by

g(d,,d») = a(d:,0,(v:,v2)) and y(di,da) = v (di).
Now

M7 (g)(d:,dz6) = &.d1,6.0,(v:,v2))
o ({d10v1)®00Vv) ()

e (d1,0,8, (v,v)) =

o (d,0m)(E) = v (wm)(d+.8) = 0v(wm>E.dy) =

w(§.d) =

M) (dr,dz,6),

where we have used the fact that, for d € D and 6§ € Dz 6.d € D. This
shows (1), and similarly, (ii) holds.

To show (iii) and

(iv) we need to consider the equalizer (¥#)
again, at least, the fact that the equalizer map is mono. Consider the
following morphisms ¢, y: R -+ (M-)°*® defined as follows:

§ Q) (dy,d2) (vi,v2)
while

& (di,\.dz (Vv;,v2))
y W) (drd2) (vr,v2)
Now

[}

e (dy,dz, (Vi 2OV2)).

&(5.d1,)\.(6-d2), vy, v2))
& (d;,\.dz6, (vy,v2)) =
o ((d10v1)8dz0N0V2)) (§)

M) 7> O (dy,d2,6) (v1,v2) = g 6.d1,6.d) (vy,v2) =

&(S‘dy,é‘.()\.dz), (vy,vz))
o ((d:0v1)®N.d2)0V2) (&)

= e.(d1,dz,6,<V1 ,)x@Vz)) =
&(6.dr,6.dz, (Vi ,\0V2)) = yA)(S.d1,6.d2) (vy,v) =

(MY 7 (yd> VD) (dr,dz,6) (v, va).

This shows that ¢ and y are equal, hence (iv) holds, and {ii) is
similarly proved.

It remains to establish (v). In this case, let g and y be global
sections of (M “)°*® be defined by:

g(d,,dp (vi,v2) = e&(d;,dz (Vvz,v1)),
whereas
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y(dr,dz) (vi,v2) = &(di,dz (vi,v2)),

and the fact that they are equal follows, just as in the previous
cases, by observing that for &§ € D

e (6.dr,6.dz, (Vv1,v2)) = v ((d,0v1)8(d0v)) () =
v ((dowm)I8(d0v2))(8) = &(8.dz6.dyv, (vi,v2)).

This completes the proof.

2.8. THEOREX [16] (Ambrose-Falais-Singer Theorem for infinitesimally
linear spaces"). Let (E,R) be any model of SDG and let M be any
infinitesimally linear object 1n E. There 1is a bijective cor-
respondence between torsion free connections V on M and sprays S on
M, given by the rule V b Se, with So (v) = V(v,v).

PROOF. By Theorem 1.7, there is such a correspondence, and it is
injective on torsion free connections. By Proposition 2.7, M satisfies
the exponential map property, therefore, by Proposition 2.5, the cor-
respondence is also surjective, hence a bijection.
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