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THE TOPOLOGY OF CONTINUOUS

PARTIALLY-ADDITIVE MONOIDS

by Fernando Gonzalez RODRIGUEZ and Antonio BAHAMONDE

CAHIERS DE TOPOLOGIE

ET GÉOMETRIE DIFFERENTIELLE

CATÉGORIQUES

VOL. XXXI -1 (1990)

ReSUMe. La S6mantique dénotationnelle peut être 6tudi6e
du point de vue ordonn6 (Scott) ou partiellement additif
(Arbib &#x26; Manes); ici 1’equivalence des deux est mise en

relief par 1’etude des propri6t6s topologiques du cadre
naturel pour cette s6mantique: 1’ensemble des fonctions

partiellement d6finies d’un ensemble de donn6es A vers un
ensemble de r6sultats B. Cet ensemble est muni d’une

topologie naturelle induite par sa structure partiellement
additive (pam); et on prouve que dans ce type de pam,
l’ordre est equivalent a la topologie.

INTRODUCTION.

The question of providing a mathematical meaning to

computer programs has got several approaches in last decades.
The denotational semantics introduced by Dana Scott (see [9,6])
offers algebraic techniques for characterizing the denotation of a 
program; so, a partially-defined function transforming input data
to output results can be computed from the syntax of the

program. Therefore, the properties of a program can then be
checked by direct comparison of the denotation with the specifi-
cation.

Nowadays we have two viewpoints in denotational seman-
tics : order semantics (Scott) and partially-additive semantics
(Arbib and Manes 11,2,51). In any case, when dealing with recur-
sive programs, one has to compute a limit in the set of partial-
ly-defined functions from a set of input A to a set of outputs
B, denoted Pfn(A,B) .

In this paper we try to reinforce the equivalence of those
approaches providing a study of the topological properties of a

special kind of partially-additive monoid (pam) defined by Arbib
and Manes in order to have an algebraic setting to build their
semantic theory.

The topology of pams was introduced by Bahamonde in
[3] and here we prove that in continuous pams (Pfn(A,B) is one
of those pams) the topology induced by its additive structure is

equivalent to their ordering.
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1. THE ALGEBRAIC STRUCTURE OF PARTIALLY-ADDITIVE
MONOIDS (PAMS).

1.1. DBFINITION [1]. A partial1.J -additive monoid (pam) is a pair
(A,EA), Vrhcrc A Is a iiirii empty set, EA is d partial operation 
on countable (i. e. finite or denumet-able) families in A subject to

the following axioms:
(Pam 1) Partition-associativity axiom: If the countable set

I is partitioned into (Ij: j E J) (i.e., (Ij: j E J) is a countable fami-
ly of pairwise disjoint sets whose union is I), then for each fa-

mily (Xi: i e I) in A,

in the sense that the left hand side is defined iff the right is

defined, and then the values are equal.
(Pam2) Unary sum axiom: For the one-element families

the sum is defined and EA(a) = a .
(Pam 3) Limit axiom: If (,x-i: i E I) is a countable family in

A and if LA(:B i: i E F) is defined for every finite subset F of I,
then EA(xi: i E I) is defined.

The families for which LA is defined are called A-summable.

1.2. From (Pam 1 ) we infer that any subfamily of a summable fa-
mily is summable, so given that (Pam 2) guarantees the existence
of some sums, the sum of the empty family is defined. This
sum will be denoted by lA and can be easily proved to be the

countable zero element of (A,sA).
We usuallly drop the A from 2:A. lA and A-summable if

no confusion arises. To ease the reading we eventually write

1.3. It can be easily seen that a pam is countable-commutative.
In fact, if (xi: i E I) and (yj: j E J) are countable families in A,
and Y:I-&#x3E;J is a bijection such that y Y (i)= xi for all i el, then
from (Pam 1) and (Pam 2) axioms we have that

in the sense that the left side is defined iff the right side is

defined, and then they are equal.

1.4. A pam satisfies the following "positivity property":

That is why pams are called positive partial monoids in 181. To
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prove this, let i E I and set i- to be i E 1- {i}). Then

1.5. If (A,£) is a pair satisfying (Pam 1) and (Pam 2), then (Pam 3)
is equivalent to the following axiom:

(Pam 3’) If (.,1(i: j E N) is a family in A such that (xi: i := 0,..., n)
is summable for all n E N, then (xi: i E N) is summable.

1.6. Types of Pams.
DEFINITION. Let (A, 7-) be a pam and a , b E A, we say that a is

smaller than b (denoted, as usual, by a s b) iff there exists C E A
such that a + c = b . In symbols

This is a reflexive and transitive relation but, in general,
it fails to be antisymmetric; we will give some counterexamples
below.

DEFINITION. (A,Y-) is an ordered pam iff the relation "s" defined
above is an ordering in A; that is to say, iff "" is antisymme-
tric.

DEFINITION C3J. A pam (A,E) is said to be a continuous pam
provided that whenever 7-(xi: i := 0, ... , n) s a for all n E N, then

7- (.Vi : i EN)sa.

1.7. EXAMPLES.

The basic example in denotational semantics of computer
programs is the set of partially defined functions from a set A
to a set B: Pfn(A,B). Here the sum is defined for families of
functions (fi : i E I) whose domains of definition DDfi are pair-
wise disjoint, and we define

This definition can be extended to allow sums of coherent over-

lapping families of functions, i.e., fi(a) = fi(a) whenever a is in

DDf¡n DDfj. We will l denote this extended sum by Y-".

Obviously, the "" relation defined in 1.6 is the same for
these sums and it is an order relation in Pfn(A,B). Moreover, it
is the usual extension ordering of partial functions; that is,

Let (L,) be an ordered set with least upper bound (lub)
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of any countable subset, then (L,lub) is a pam where the order
relation induced by its pam structure is the given one at the

beginning.

Let W be a set and let S be a nonempty collection of
subsets of W closed foi- countable unions. Then, (S, U) is a

pam. Moreover, S endowed with the disjoint union is also a

pam, and in any case we have the natural order of subsets.

In the unit interval 10.11. we define the sum E(xi: i E I) to

be: the usual series sum whenever it is defined and belongs to

[0,1], ¿(.1(j: i E0):= 0; and E(xi:i E I) is undefined otherwise. So

defined, the pair (10,11,F) is an ordered pam which induces the
usual order again.

Let (G,+) be a commutative monoid and define G^ (cf. [7])
to be the disjoint union of G and (i,T), where 1 and T do not

belong to G. Then it is possible to provide G^ with a pam
structure such that 1 is the countable zero defining the sum for
families in GU{T} as follows:

7-(a i: i E I) := { T if I is infinite or finite but ai = T for some i E I

a 1+ ... + anI if I = {1, ... , n} and 4i E I, a i E G
where a 1+ ... + a n is the sum in (G, +) . It can easily be shown
that in general the "smaller than" relation here is not an order-

ing.

2. PAM TOPOLOGY.

A pam (A,Y-) can be provided with a natural topology as

was shown in [3]. In this section we recall this topology and
some immediate properties.

DEFINITION. Let (A,E) be a pam. A subset UCA is said to be
in il iff it satisfies the following two axioms:

(1) y E U whenever X E U and x y (1.6);
(2) if E-(Xi: i E N) E U, then there exists n E N such that

E(xi;i :=o,...,n) E u.
The collection i£ is a topology (the additive topology) in A.

Given that the countable zero, 1, is "smaller than" any
other element in A, from the first axiom we infer that the only
open set that contains 1 is A. Therefore rE is trivially compact
and connected.
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3. MAIN THEOREM.

This section is devoted to prove the central result of this

paper which stresses the relation between the topology and the
"smaller than" () relation for continuous pams.

3.1. To prove this theorem we will need to state the following:

PROPOSITION. Let (A, 5-’) be a continuous pam and let a. b E A.
Then the next statements ar-e equivalent:

(i) a b:
(ii) a E {b}^ (the topological closure of {b} in (A,tL);
(iii) V U e rE, a E U =&#x3E; bELI.

PROOF. The equivalence between (ii) and (iii) is standard. Mo-
reover, (i) implies (iii) from the defintion of t L. To prove that
(iii) implies (i) let us assume that a T  b; i. e.,

So it will be enough if we show that Rb is an open set since
we have b 9 Rb; but this is trivial because if

then there exists an integer n such that E(xi: i := 0,... , n) E Rb
since otherwise.

V n E(xi : i := 0, ... , n)  b implies that E(xi : i E N) s b

given that (A,Y-) is continuous

3.2. THEOREM. Let (A,¿) and (A,I") be continuous pams. then
the associated topologies are equivalent iff the induced "small er
than" relations are. In s..’.mbols:

PROOF. The induced "s" relations coincide if rE = rE’ due to the
last proposition. To see the opposite it is enough to establish
that rE C rE’. To do this let U E rE be such that E’(xi: i E N) E U 
for some family E’-summable in A. We must find an integer n

for which E’(xi: i := 0,..., n) E U. First of all. we are going to

build up by induction a family (yi: i E N) such that

Define y 0 := xo and having built -i-,, notice that

therefore
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Now -we have that

and taking account that (A,£’) is continuous, we have that

Since Ueil we have that E(yi: ieN)~U and therefore there
exists an integer n such that

as we wanted to show.

3.3. Now it is trivial to show that the pam topologies induced

by (Pfn(A,B),Ldi) and (Pfn(A,B).E0v) (1.7) are the same since they
have the same ordering associated. Moreover, the pam topology
of Pfn(A,B) is the Scott countable topology. In fact, let sup( f; :
i E I) be the least upper bound of (fi: i E I} whenever this is a

countable directed family. The pair (Pfn(A,B),sup) is a pam that
induces the natural ordering of partially-defined functions. The-
refore its pam topology is the pam topology of (Pfn(A,B),di)
or (Pfn(A.B).E’v).

On the other hand, LI C Pfn(A,B) is an open set (i.e., Ueisup)
iff: .

(1) g E U whenever f E U and f  g :
(2) if D is countable directed, and sup (D) E D, then D n U # ø.

But this is the Scott topology of Pfn(A,B) [9].

3.4. Finally, it is noteworthy that the previous theorem does not
need the antisymmetric property of the "smaller than" () rela-
tion. Moreover, due to the Proposition (3.1) a continuous pam
(A,£) is ordered iff (A, t E ) is a To-space; and, in that case, the
"smaller than" relation is the specialization order 161 of a

To-space.
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