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LOCAL ANALYTIC RINGS1 

by Jorge C. ZILBER

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATEGORIQUES

VOL. XXXI -1 (1990)

ReSUMe. Cet article d6veloppe certains aspects de la
th6oi-ie des anneaux anaytiques locaux introduite par Du-
buc-Taubin. Un anneau anaiytique local est un morphisme
local A-C; on montre qu’il peut aussi etre defini comme
un foncteur Uh A(U) pr6servant les recouvrements ou-

verts arbitraires. Ceci est utilise pour construire le topos
classifiant de la th6orie des anneaux analytiques locaux:
c’est le topos des faisceaux sur le site dont les objets
sont les mod6les locaux d’espaces analytiques, avec la

topologie de Grothendieck des recouvrements ouverts.

Enfin on cons truit le spectre d’un anneau analytique finie-
ment presentable.

INTRODUCTION.

In this article we develop some aspects of the theory of
analytic rings introduced by E. Dubuc and G. Taubin in 131. The

principal results are the following:
(1) In 131 an analytic ring A in Ens was defined to be lo-

cal if it had a local morphism A-C into the ring of complex
numbers. Here we define A to be local if, viewed as a functor
U [-&#x3E; A(U), it preserves arbitrary open coverings. Then, we show
the equivalence of these two definitions. This shows that the

purely algebraic notion of being local (notice that in the case of

ordinary rings preservation of arbitrary coverings by Zarisky
opens is equivalent to the axiom "xV (1-x) invertible") is in this
case equivalent to the existence of a morphism A-C, which is

of higher order.

(2) Based on the previous result, we explicitely construct

the classifying topos of the theory of local analytic rings. More
explicitely, we show that it is the topos of sheaves on the site

whose objects are the local models of analytic spaces (in the
usual sense, see for example Malgrange 161), with the Grothen-
dieck topology of the open coverings. This result shows that
the notion of analytic ring and local analytic ring is the adequa-
I Research partially supported by "Subsidio UBACYT EX 068,
Proyecto: Anillos analiticos y espacios analiticos, de la Universi-
dad de Buenos-Aires.
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te algebraic tool for the study of analytic spaces.
(3) We explicitely construct the spectrum (in Cole’s sense)

of a finitely presentable analytic ring. In particular, we show
that the spectrum nf an analytic ring ul eiue form

O n(U)/ (h1...,h k) is the local (special) model associated to the
ideal (h1, ... , hk) . In this case the construction is more complica-
ted than in the cases corresponding to ordinary or C°°-rings, be-
cause analytic rings is an algebraic theory where the quotients
are not surjective.

We thank Eduardo Dubuc for valuable conversations du-

ring the research and writing of the paper.

0. BASIC DEFINITIONS.

0.1. DEFINITION. We denote with C the category of open sub-
sets of Cn (all n) and holomorphic functions.

0.2. DEFINITION. Let U,V and W be open subsets of Cn,Cm 
and Ck, respectively; f:U-V and g: W-&#x3E; V holomorphic func-
tions. We say that a diagram in C:

is a transversal pullback, if it is a pullback in C and f and g
are transversal (in the usual sense, see for example 141).

0.3. DEFINITION. A diagram in C:

is an independent equalizer if it is an equalizer in C and the

components of h are independent (in the usual sense).

0.4. PROPOSITION. Let B be a category and A : C -E a functor.
Then, the Following statements are equivalent:

7. A preserves transversal pullbacks and terminal object.
2. A preserves independent equalizers, finite products (in-

cluding the terminal object) and open inclusions.

PROOF. Cf. Dubuc &#x26; Taubin C3J. ·

0.5. DEFDJITION C3J. Let B be a category with finite limits; a
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functor A: C -E is an analytic ring in E if any of the two equi-
valent conditions in Proposition 0.4 holds. A morphism between
analytic rings is a natural transformation, as functors.

0.6. OBSERVATION. By an abuse of notation, we will write A

for A(C), and if ç: A-&#x3E;B is a morphism, we will write cp for CPc;
let Ens be the category of sets, and A an analytic ring in Ens.

If V and U are open subsets of Cn and V C U, then A(V) is a

subset of A(U). This is so because A preserves open inclusions.
Moreover, if f:U-&#x3E;W is a holomorphic function, we have that

A(flV) = A(f)lA(V), and if cp:A-4B is a morphism and a E A(V),
then ç u (a) = çv(a).

We also have that A(C") = A" and

Note that if ç, Y: A-&#x3E;B are morphisms such that cpc =Y c,
then Yv = Yv for all V E C.

Thus, an analytic ring may be thought as a C-algebra A,
with the additional structure given by operations with domain of
definition A(V)CA", one for each holomorphic function V-C,
for all V open in some C-n.

0.7. EXAMPLE. If U is an open subset of C", we denote with
On (U) the analytic ring of holomorphic functions in U; that is,
if V is an open subset of Cm, we define

and if W is an open subset of Cr and f: V-W is a holomorphic
function, we define

0.8. OBSERVATION. Notice that On(U) is the representable
functor lU,-I. Thus, any morphism ç: on(u)--&#x3E;A into an analytic
ring A is characterized by the element ç u(idu) E A(U). (Yoneda’s
Lemma, see [5].) 

0.9. EXAMPLE. Note that C has a structure of analytic ring in
Ens given by C(U) = U, C( f) = f.

It is immediate to check the following:
0.10. PROPOSITION. If A is an analytic r-ing. then A preserves
finite intersections..

0.11. OBSERVATION. Given an analytic ri ng A in Ens. the cano-
nical morphism C-A is a morphism of analytic rings. This is so
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because if U is an open subset of C and a E U, then the inter-

pretation aA of a in the C -algebra A belongs to A(U), and this
result extends immediatel) to open subsets of Cn. We abuse
the notation and denote a A = a. Moreover, it is clear that this 

defines a morphism of analytic rings.
It is immediate to check the following:

0.12. LEMMA. Let A be an analytic ring. U and V open subsets
of C" and Cm-respectively, and f: U-V a holomorphic function.
Then. if W is open. W C V, 

1. LOCAL ANALYTIC RINGS.

1.1. DEFINITION. Let A be an analytic ring in a category E. We
say that A is a local analytic ring if A preserves open coverings,
that is, if foi- each open covering (Ua) acI of an open set U of

Cn, the family (A(Uac) C----&#x3E; A(U))aEI is a universal effective epi-
morphic family in E. Remark that this notion is stronger that to
say that A is an analytic ring which is local as a ring.

1.2. OBSERVATION. When E = Ens, it means that if U U,,
then A(U) = UaEIA(Ua).

1.3. OBSERVATION. Since the empty- family covers the empty
set, it follows that if A is a local analytic ring in a topos E,
then A(0) =0.

1.4. DEFINITION 131. Let A and B be analytic rings in a category
E , cp : A-&#x3E; B a morphism of analytic rings. We say that cp is local
if for all open inclusions V C U in C , the square-

is a pullback in B. It is equivalent to ask this condition only for
U=Cn, all n. When E= Ens, it is equivalent to the condition:

1.5. OBSERVATION [3]. It is easy to see that if A is an analytic
ring in Ens and there exists a local morphism rr: A-&#x3E;C, then A
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preserves open coverings, that is, A is a local analytic ring.

1.6. THEOREM. Let A be a local analytic ring in Ens. Then. the-
re evists a local morphism 1t: A- C.

PROOF. Let a be an element of A=A(C). For each j E IN , we wri-
te C=UpeCB(p,1/j), where B(p,1/j) is the open ball in C of

center p and radius 1/j. Then since A preserves open coverings,
we have A=UD~C(B(P,1/j)). Hence, there exists an element

a g E C such that a E A(B(aj,1/ j)). It is immediate that

a - aj E A(B(0,1/ j)) (1) (here we think aj E A). Then we have

(where we use the fact that if ai~A(B(0,ri)) and a 2 E A(B(0, r2)) ,
then a 1+a 2 E A(B(o, r1+r2)) , which is immediate considering

Now, we shall prove that if PEC and p~A(B(0,r)), then l3l r

(3). In fact, if l3l&#x3E; r, then 3EU, where U = {z E C ll zl&#x3E; r}. Then,
by 0.10 and 1.3, we have

Now, by 0.11, 3eA(U); hence j3 A(B(0,r)). Using this fact we
obtain by (2) that laj-akl (1/j)+(1/k), and thus, (aj)jclN is a

Cauchy’s sequence of complex numbers; therefore, there exists
a = limj-&#x3E;°°aj.

We show now that a -a E A(B(0,E)) for all E&#x3E; 0: In fact,
given s &#x3E; 0, there exists j o E IN such that la-ajl E/2 for j &#x3E;j o .
Let j 1 be such that 1/ j1  E/2. If j2 = max{j o,j 1}’ then

a - a = (a-aj2)+(aj2-a). where a-aj2 E A(B(0,1/j2))
(by (1)), and since 1/ j2 E/2, then B(0,11 j2) C B(0,E/2). Hence,

thus a-«l2 E A(B(0,E/2) (4).

On the other hand, since j2 &#x3E;jo , then la -Otj2l  E/2, that

is, aj2-a E B(0,E/2), and (by 0.11), aj2- U e A(B(O,E/2» (5). Hence, by
(4) and (5) we obtain that a-« E A(B(O,E)). Hence, we have esta-

blished that given a E A, there exists a E C such that

a -a  A(B(0, s ) ) for all s ) 0 .

Now we shall see that a is unique: Let 3 be a complex number
such that a - )  A(B(0, s)) for all E&#x3E;0. Given E &#x3E; 0, then

hence
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therefore, by (3). lB-als. Then, B= a.
In conclusion, we have that, given a E A, there exists a

unique a E C such that d-OL E ttkl3kV,Ell for all E&#x3E; u. ThIS defines a

function 7c:A-C which verifies 1t(a)=rx iff a-a  A(B(0,E)) for all
E &#x3E; 0 (6). We are going to prove now that 1t defines a morphism
of analytic rings. For this, let us see first that if U is an open
subset of Cn , and a = (al,... , an) E A(U), then (1t(at) ..., rr (an)) E LI.
Since U is open. we can write:

where each Bj,k is an open ball in C and Hen-

Since thei-e exists j E J such that

Therefore. if we have that

Moreover, by (6). if then a(k-akEA(B(O,E))
for all E &#x3E; 0. Then. it follows that The-

refore, by (3), we have

Then

Then.

that is, (rr(a1) ,.... rr(an)) E U. This defines, for each open subset
U of C", a function 1tu: A(U)-U. given by.

Finally, in order to prove that jr is a morphism of analytic
rings, we have to prove that if f:U-V is a holomorphic functor
(where U and V are open subsets of Cn and Crr’. respectively).
then the square:

commutes. Suppose that V C C, and let a be an element of A(U),
Then where
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If b = A( f) (a ) , we have 11:v( b) = 11:( b) ( V e C ). and then, we have to
see that f(a 1.... , Ct. n) = 1( b). By (6). it is sufficient to prove that

If E&#x3E; 0. since f is continuous. there exists5 &#x3E; 0 such that. if

then lf(z)-f(a)l  E (a= (al.....an)). BN (6). we have that

ak-akEA(B(0,5)), that is. a k E A(B(ak.5)). Then

But we have f: B(a1,5)x...xB(an,5) -&#x3E;B(f(a),E) and then

Then, A(f)(a) E A(B(f(cx),E)), that is A(f)(a)-f(a) EA(B(O,:E)) . Then,
by (8) (since b = A(f)(a)), this proves that the square (7) coln-

mutes.

When V C Cm, the proof is the same that for the case

m = 1. working in each coordinate.

This proves that rr is a morphism of analytic rings. Final-

ly, we have to prove that x is local. Let a = ( a 1, .... a n) be an
element of An, and U be an open subset of C" such that

1’(cn(a) E U. If a =rr Cn(a ) , then aK=rr(a k) (1k n ) ; then, there

exists r &#x3E; 0 such that

we have a E A(LI) . This proves that x is local ·

1.7. OBSERVATION 131. It is immediate that if x: A-B is a local

morphism of analytic rings in a category E and B is local, then
A is local.

1.8. EXAMPLE 131. Let E be a topological space and let Sh(E)
be the topos of sheaves on E. We consider the sheaf CE of

germs of continuous complex-valued functions defined in E.

Then, CE is an analytic ring in Sh(E) , and it preserves
open coverings. That is. C E is local. Here. CE: C -&#x3E; Sh(E) is the
functor defined by CE(U)(H) = continuous(H.U) for H open in E

and U E C.



28

1.9. EXAMPLE 131. Let U be an open subset of Cn, and let

h1.... , hk be holomorphic functions defined in U. Let

E = Zt h 1.... , hk), that is,

Let 0 E be the sheaf on E whose fiber in a point p E E is

On. p/(h1. ...h k.p). where On, p is the ring of germs of holo-

morphic functions in p. and h;, is the germ of hi in p ( for
1  i  k). If S is a section of iyE over an open subset H C E,
then for each p E H, there exists an open subset V of U such
that p E V and a holomorphic function f defined in V such that
S(,x) f x for x E V n E, where f.x is the equivalent class of fl,

We define the value of S at p by VS(p) = f (p). This defines a

continuous function VS:H-&#x3E;C.

For each open subset W of ern, we define the sheaf

OE( W&#x3E; on E by:

Then, OE. is an analytic ring in Sh(E) . Moreover, we have the

morphism rr: OE -&#x3E; C E, defined by

Here, since (S1,...,Sm)EOE(W)(H), then (VS 1, ... , VSm) is a con-

tinuous function H-&#x3E;W.

It is easy to see that x is local: then, since C E is local,
we obtain, by (1.7), that OE is local.

2. GERMS AND ZEROS OF HOLOMORPHIC FUNCTIONS.

2.1. DEFINITION-PROPOSITION 131. For each p E C n, we will de-
note with 0 n.p the ring of holomorphic functions in p. Then,

O n p is an analytic ring in Ens, and, for each open subset V of

em, On.P(V) is the set of germs of holomorphic functions with
values in V, or, equivalently, the set of germs of holomorphic
functions f such that F( p) E V.

2.2. LEMMA. 1. Let U and V be open susbsets of en such that
UDV. Then, the restriction morphism O n(U)-&#x3E;O n(V) is an epi-
morphism in the category of analytic rings in Ens.
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2. Let U be an open subset of en and p E U; then, the
canonical morphism O n(U)-&#x3E;Onp is an epimorphism of the ca-

tegory of analytic rings in Ens.

PROOF. 1 follows from Yoneda’s Lemma [5] (recall that °n(V) is

the representable functor EV,2013]).
2. It is an immediate consequence of 1 and the fact that

On.p is the filtered colimit of the analytic rings On(V) with p
in VCU (see 131, Proposition 1.13). a

2.3. LEMMA (Basic Llnv·ersal Property of O n (U) -&#x3E; O n,p). Let U

be an open subset of Cn and p E LI. Consider the diagram

where r is the canonical morphism. Let a be the element which

characterizes cp (that is, a = CPu(idu) E A(U), see 0.8).
Then, a necessary and sufficient condition for the existen-

ce of 0: On,p--)A such that §5 r = cp is that a E A(V) for all open
neighborhoods V of p . Moreover, if this happens. cp is unique.
PROOF. Suppose that there exists cp : On, p-&#x3E; A such that cp r = cp .
Let a be the element rU(id U) E 0 n,p(U). It is clear that
a E °n1P(V) for all open neighborhoods V of p (1) . Let V be an

open neighborhood of p, VCU; then, by (1) and (0.6), it follows
that cp u(a) = cp V (a) - Moreover,

Then, a = cp v(a) , with cp v: O n,p(V) -&#x3E; A(V). Hence, a E A(V) .

Conversely, suppose that a E A(V) for all open neighbor-
hoods V of p. For 0 E 0n P, there exists an open neighborhood
V of p, VCU, and f E 0 n(V) such that B = fp (the gern1 of f in

p) : we define cp (B) = A(f)(a) (recall that we have A E A (V) and
A (f):A(V)-&#x3E; A). It is easy to see that this definition does not

depend on the representant f of P. We define

We shall prove that if B=(B1...,Bm)~0p(W), where W is an

open subset of cm, then cp cm(B) E A(W).
In fact, there exists a holomorphic function f: V--&#x3E; W, whe-
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re V is an open neighborhood of p, such that B = f p: if f =

=(f1....,fm). then Pi = fi,p (1 i  m ), and

Since f: V-&#x3E; W, then A( f) : A(V)-A(W). Hence, A(f)(a) E A(W), that

is, cp Cm(B) E A(W). Thus, for each W, CP W: O np (W) -&#x3E; A(W) .
Finally. it is easy to see that the family (cp W) WcC = cp is

a natural transformation, that is. cp: 0 n.p -4 A is a morphism of

analytic rings. It is clear that cp r = cp, since if f E 0 n( U) ,

and, by Yoneda’s Lemma 151, cp ( f) = A (f) (a) for all f E O n (u).
Moreover, since r is an epimorphism (by (2.2)), cp is unique. ·

2.4. COROLLARY (Universal Propert) of O n (U) --&#x3E; O n . p)- O n. p is

the analitic ring which solves the universal problem defined b.y:
"to send f into all the neighborhoods of f(p)".

More explicitely:
1. r: On(U)-&#x3E;On.p verifies that if f: U-&#x3E; C is a holomorphic

function, then r (f) E On, p(X) for all open neighborhoods X of

f (p).
2. If cp:0n (U)-&#x3E;A is a morphism of analytic rings which veri-

fies that "if f:U-C is a holomorphic function, then cp( f) E A(X)
for all open neighborhoods X of f(p) ", then there exists a uni-

que cp : On.p -&#x3E;A such that cp r = cp.

PROOF. 1. Let f: U-C be a holomorphic function and X an open
neighborhood of f(p). Then, since f is continuous, there exists

an open neighborhood V of p, V C U, such that f ( V) C X . Then,
r(F) = f p = g p where g = flV. g : V-&#x3E; X . Hence, g p E 0 n, p (X), that
is r (f) E 0 n,p(X) . 

2. Let z j: U-&#x3E; C be the j-th projection Cn-&#x3E;C restricted to

U and let a = cp u(id u) be the element which characterizes cp (see
0.8). Then, by (0.6),

Let V be an open neighborhood of p. V C U. There exist

X 1, ... , Xn , where X j is an open neighborhood of pj (1  j  n ),
such that X1x ... X Xn C V. Then. since Xj is an open neighbo-
rhood of Pj= z j( p) , we have that cp(zj)E A(Xj) (l5aj5an) (by the

hypothesis made on p). Hence.

Then. by (2.3), there exists a unique cp: On, p--&#x3E;A such that

cp = cp. 
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2.5. OBSERVATION. In the case of C°°-rings, the ring C°°p has

the universal property of making invertible all f E C°°(U) such
that f(p) * 0 (U is an open subset of IR" and p E U) (see 121)
(1). Let

Then. given cp : c°(U)-A and f E C°°(U) , cp( f) is invertible if and

only if cp ( f) E A(IR*) = A*, where A* C A is the set of invertible
elements of A (see 121).

Thus, Corollary 2.4 means that in the analytic case, ins-

tead of C* we have to consider all the neighborhoods of f(p).
The result (1) follows from the fact that, in the C’-case, all

open subsets of IR" are Zarisky open sets. That is, for each

open subset X of R", there exists f E C °°(IRn) such that X=
f-1(IR*) . This is no longer true in the analytic case. However, if
we assume that analytic rings preserve arbitrary intersections

(that is, if U is an open subset of C’ and U=na~IUa, where Ua 
is an open subset of C" (a E I), then A(U) = nacIA(Ua)). then the

corresponding result holds. In fact:

2.6. PROPOSITION. Assume that analitic rings preserve arbitrary 
intersections. Then, O n .p is the anal.Ftic r-ing vvhich solves the
universal problem of making invertible all f E O n (U) such that

f (p) = 0.

More explicitely:
1. r: On(U)-&#x3E;On, p verifies that, if f( p) * 0, then r( f) is inver-

tible in O n.p. 
-&#x3E; A verifies that cp (f) E A* for all f E 0 (U) such2. If cp: On(U)-&#x3E;A verifies that cp (f) E A" for all l f E O n( u) such

that f(p) = 0, then there exists a unique cp : On. p-&#x3E;A such that
cp r = cp .

PROOF. 1. It is clear from (2.4) and the previous observation.
2. We will use the fact that if V is an open ball in C"

and q 9 V, then there exists f E On(Cn) such that f(q) = 0 and
f (z) t- 0 for all z E V.. Hence, if V is an open ball in Cr’, there
exists a family (f a) aEI, where fee E On(Cn), such that

(It is enough to consider for each q E Cn-V a function

f(q) E On (Cn) such that f(q) (q) = 0 and f(q)(z) * 0 for all z E V;
then,

Let a = cpu(idu) and let V be an open ball in Cn centered at p,
V C U. Let (fa)aEI be a family, with faEOn(Cn) such that V=
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where h« = f a lU. Hence

Since p ç V, then p ha-1(C*) for eac!i a E I. That is, ha(p)=O;
hence cp(ha)eA*. Moreover, by Yoneda’s Lemma we have

f(ha)=A(ha)(a). Then, we obtain that A(ha)(a)EA*=A(C*), that
is, a E A(ha)-1(A(C*)). But, by (0.12),

Hence, a E A(ha- 1(C*)) for each a E I . Then, by (1), a E A( V) . Hence,
a E A( V) for all open balls V centered at p, VCU; then a E V for
all open neighborhoods V of p, and, by (2.3), it follows that
there exists a unique cp: On.p-&#x3E; A such that cp r = p. 

2.7. PROBLEM. We do not know whether analytic rings preserve
arbitrary intersections in general. Neither we have a counter-

example.

2.8. DEFINITION. Let h1,..., hk be holomot-phic functions in an

open subset U of Cn and let A be an analy-tic ring in a category
E with finite limits. We denote with ZA (h1..... hk) the equalizer
in E of

where

2.9. OBSERVATION. If E= Ens,

2.10. THEOREM. With the h)pothesis of Definition a8. if V is

an open subset of Cn such that Z( h 1’’’. , hk) C V C Lt (where

then the canonical inclusion L: ZA( h 1’.’. hk) C- A(U) factorizes

where A(V) c----&#x3E; A(U) is the natural inclusion given b.r the struc-
ture of analytic rings.
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PROOF. Let g: U -&#x3E; IR be the function defined 1?y:

where dist(z,Li-V) is the distance of z to U-V. g is a conti-
nuous function which satisfies:

1. g(z) &#x3E;0 for all z E LI .

In fact, if z E V, since V is open, then dist(z,U-V) &#x3E; 0, and if z
is in U-V. since V ) Z(h1....,hk). then z£Z(h1....,hk). Hence,
there exists j, 1 s. j s. k, such that hj( z )# 0.

In fact, if z E V, since V is open, then dist(z,U-V) &#x3E; 0.
Let U 1 be the set

Since g is continuous, then U1 is an open subset of U xCk . Let

1:V-&#x3E;U1 be the function defined by I(z)=(z,h(z)). (If z E V,
then, by 3, lh(z)l g(z); hence, (z,A(z))~Ui.) Let t: lit -&#x3E;Ck be
the function defined by t ( z , w) = h ( z ) - w. It is easy to see, by 2
and 3, that

is an independent equalizer. Then, we deduce that

is an equalizer in Fs. If we define m: U-&#x3E;U1 by m(z) = (z,O) (by 1,
g(z) &#x3E; 0 for all z E LI ; hence ( z .0) E U1 ), and

then it is easy to see that A(t) cp = O. Thus, by 4, there exists a

unique

Finally, it is straightforward to check that diagram (*) above
commutes. ·

3. CLASSIFYING TOPOS OF LOCAL ANALYTIC RINGS.

3.1. DEFINITION. Let P be the category of pairs (LI, h), where U
is an open subset of C" (all n) and h: U -&#x3E;Ck is a holomorphic
function. We note h = ( h 1, ... , hk) and Z(h1,....hk) the set of
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common zeros of h1, ... , hk.
An arrow (U,h)-&#x3E;(V,g) in P is a collection (fa)aEI of holo-

morphic functions f a : Ua-&#x3E;V. where Ua is open. Ua c U and

7( hi., hk) cUaEIUa, which satisfies 

(ideal generated by
2. f or each

3. f or each and for each holomor-

phic function t in an open neighborhood of

We define and to be equivalent when:
1’. for each

2’. for each and for each holo-

morphic function t in an open neighborhood of 

The arrows in P are equivalent classes of these collections.

3.2. OBSERVATION. It is sufficeint to verify 3 and 2’ for t = z;,
I £ I£ m (V is an open subset of Cm), where zi: v-C is the i-th

projection C"’-C restricted to V. This follows easily from the
(local) Hadamard’s Lemma (see C3J. Proposition 0.9).

Let A: C-P be the functor such that: A(U) = (U,O); if f:
U-v is a holomorphic function, A(f): (U,O)-&#x3E;(V,O) is the canoni-
cal arrow in P induced by f.

3.3. PROPOSITION. Let E be a category with finite limits and let
B be a local anal r-tic ring in E. Then. there ex*ists a functor p:
P - E such that pA = B . Explicitely, p(U, h) = ZB( h 1, ... , h k)

A

PROOF. We define
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the collection (f a)aEI, which saitsfies 1, 2 and 3. We are going
to define

We have

By Theorem 2.10, ZB(hi,... , hk) is a subobject of B(Ù). More ex-
plicitely, we have j : ZB( h1, ... , hk) c---&#x3E; B(Ù) which satisfies t j - i ,
where t: B(Ù) c--&#x3E;B(U) is the canonical inclusion and i:

ZB( h1,..., hk) c-&#x3E; B(U) is the inclusion of the equalizer. It is

immediate to check the existence of an arrow

(for a E 1), which makes the following diagram a pullback in E:

Since B is local and LI = UaEUa, then the family
(B(Ua)C--&#x3E;B(Ù)) acI is universal effective epimorphic in E ; hence.

by (1), the family-
I-

is effective epimorphic in E (2). Let

be the inclusion of the equalizer (for each a E I), and consider

B( f ex): B(Ua) -&#x3E; B(V). It is easy to see that the family

is compatible. Hence, .by (2). we deduce that there exists a uni-

que arrow z : ZB(ht,....hk}-&#x3E;B(V) such that tma,=B(fa)ja for
each a E I . Likewise, it is easy to verify that if (fa) aEI and

(fa’)aEJ are equivalent, then we obtain the same arrow T.

Final ly it is straightforward to prove that B(g) t = O; there-
fore, by definition (2.8) there exists a unique

such that if = T, where C: ZB(g1,... , gr) C--&#x3E;B(V) is the inclusion

of the equalizer. We define p( f) = T . It is immediate to check
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that p is a functor: moreover, for each U E C,

and it is clear that p(A( f)) = B( f) for each holomorphic function
f : U- V. Hence pA = B . ·

3.4. DEFINITION. Recall (see [3]) the following definitions: An

A-ringed space is a pair (X, Ox) , where X is a topological space
and Ox is an analytic ring in Sh(X) (the topos of sheaves on

X), furnished with a local morphism IX: Ox-&#x3E;Cx of analytic
rings in Sh(X) (where Cx is the sheaf of germs of continuous

complex-valued functions defined in X).

It can be seen that Cx is a local analytic ring in Sh(X).
Hence, by (1.7), Ox is local.

A morphism (X,Ox)-&#x3E;(Y,Oy) of one A-ringed space into

another is a pair ( f, cp) , where f: X-&#x3E;Y is a continuous function
and cp: f*OY--&#x3E;Ox is a morphism of analytic rings in Sh(X)

(f *Oy is the inverse image in Sh(X) of the sheaf Oy).

3.5. OBSERVATION. Let U be an open sttbset of Cr’ and let I be
a coherent sheaf of ideals in Ou (the sheaf of germs of holo-

morphic functions defined in U). Let

Let OE be the restriction of OU/I to E (E has the topology of
subspace of U). It can be seen (see [31) that OE is an analytic
ring in Sh(E) and that (E, OE) is an A-ringed space.

3.6. DEFINITION. We shall call local model the A-ringed space
defined in (3.5). The coherence of I means that every point p
of ECU of a local model has an open neighborhood V in U
such that En V is cut out of V by the vanishing of finitely many
holomorphic functions defined in V.

A special model is a local model (E,OE)’ E C U, cut out

by the vanishing of the same (finitely many) holomorphic func-
tions globally defined in U. That is. E=Z(h1,....hk) and for each

p E E . Ip is generated by (h1,.P,....hk.p)-
We will say that (LI, h) is a presentation of E, where h =

(h1,...,hk)’ h:U-&#x3E;Ck.

3.7. PROPOSITION. The category L of local models has all finite
limits. (We remark that an equalizer of special models is not a

special model. This forces the consideration of local models.)
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PROOF. It follows with no difficulty; see [6] and C3J, Proposi-
tion 2.12. 

3.8. OBSERVATION. It is straightforward to verify that an arrow
in P, say (U,h)---&#x3E;(V,g), is equivalent to a morphism of A-ringed
spaces (E, OE) -&#x3E; (F,OF), where E=Z(h1,...,hk), F = Z(g 1, , ... , gr)
(1). Then, if (E,OE) is a special model, we can define p(E,OE),
where p: P-E is the functor constructed in (3.3).

Let L be the site of local models with the Grothendieck

topology given by the open coverings. Let A be the analytic ring
in L given by A(U)=(U,0U) for U E C; that is, A = (C, 0,C) (see
[3], Corollary 2.9).

3.9. THEOREM, Let E be a Grothendieck topos and B a local

anali-tic ring in E. Then, there evists a unique functor p: L-&#x3E; B
which preserves finite limits and is a point of the site L such
that p A = B.

PROOF. By (3.3) and (3.8), if E = Z(h1, ... , hk) is a special model,
then p(E,OE)=ZB(h1,...hk) is well l defined and p is a functor
from the category of special models to E (1). Now, let ( E, OE)
be a local model given by a coherent sheaf of ideals R in Ou,
with E C U. The coherence of R means that there exists a cove-

ring (Ei)i,l of E, E=UiEIi, where each Ej is a special model,

Ei = Z(h (i) ,..., hk(i)), hj(j) is a holomorphic function in an open
subset Ui of U, and Ei = E n Ui. Moreover. Rx is generated by
(h1. x h kxv(i) ) for each A E Ei . We define:

It can be seen, using that B is local, that this definition does
not depend on the election of the covering of E. Now, let

( f, cp) : (E,OE)-&#x3E;(F,OF) be an arrow between local models. Writing
F= U¡c¡F¡, where each Fi is a special model, it follows that

f-1(F ¡) is open in E. Then, f-1(F;) is a local model; hence,

f-1(Fi) = UjJiEj, where each Ej is a special model. Therefore,

Hence, E = Uj(JEj’ where each Ej is a special model, and for each

j E J, there exists ij E I such that Ej C f -1(Fij). Then, we have the
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follovving arrow between special models:

Therefore. by (1), we have

that is, we have for each j E J . an arrow p(Ej,OEj)-&#x3E; P(F,OF). It

is easy to see, using that B is local, that this family of arrows
is compatible: hence, this defines a unique arrow z:

p(E,OE) -&#x3E; p(F, OF) . Similarly, it is easy to see that t does not

depend on the election of Ei and Fj. It is clear that p is a

functor and. like in (3.8), p(E, OE) does not depend on the pre-
sentation of E. Also, it is straightforward to prove that w pre-
serves finite limits, p is a point of the site L and pA = B. Uni-

queness of p follows from the fact that every object in L is a

union of special models, and these are obtained from open sub-
sets in C by means of equalizers (see [3], Proposition 2.12, and 1

in (4.7) ahead).

3.10. OBSERVATION (Classifting topos of local anal) tic r-ings).
Let L be the topos of sheaves on the site L. It is straightfor-
ward to see that the topology of L is subcanonical. Then, we

have L c--&#x3E; L which is full and faithful. Considering the compo-

which we denote again by A, it follows from general topos
theory that Theorem (3.9) implies that given a local analytic ring
B in a Grothendieck topos E, there exists a unique functor p*:
L - E which preserves colimits and finite lilnits such that

p*A= B (see [1]). Moreover, it is obvious that A: C --&#x3E; L is local.

A -

This means that L is the classify ing topos of local analytic
rings.
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4. FINITELY PRESENTABLE ANALYTIC RINGS.

4.1. PROPOSITION. Let A be the category of analytic rings in

Ens. Then. the following statements hold:
l. A has finite elements and thei- are computed pointwise.
2. A has filtered colimits. the f are computed pointwise

and commute with finite limits (see 131).

Recal l:

4.2. DEFINITION. We say that an analytic ring A is finitely pre-
sentable if the representable functor [A,-] preserves filtered
colimits. We denote with Ap, f the category of finitely presenta-
ble analytic rings in Ens.

4.3. OBSERVATION. By a general category construction we know
that if A E A, then A E Ap. f if and only if A is retract of a quo-
tient of On(U) : that is, there exists n &#x3E; 0, an open subset U of
C", holomorphic functions h1..... hk in U and a retraction

Here, the quotient O n(U)(h1,...,hk) is defined by the usual uni-
versal property. In order to fix the notation, we stretch this

property in the following diagram:

cp is equivalent to an element b E B(U) (0.8) and cp (f)=B(f)(b)
for all f E On (U). Hence. the condition cp(hi) = 0 is equivalent to

B(hi)(b)=O, 1 ik; that is, b EZB(h1,....hk) (2.8 and 2.9). The-
refore, there exists a bijection:

(where [On(U)/(h1,...,hk),B] is the set of arrows

4.4. OBSERVATION. Consider the dual category Ap, f op .
Let j: C - Ap, f be the functor given by j(U) = On(U) . Let

f:U-V be a holomorphic function: we have f+:On(V)-&#x3E;On(U),
and hence we have an arrow 0n(U)---&#x3E;Om(V). Then, j is an analy-
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tic ring in Aoppf (see [3]). By the general theory we know that j
has the following universal property: if E is a category with
finite limits and B is an analytic ring in E, then there exists a

unique finite limits preserving functor F. A OR -&#x3E; E such that we 

have Fj = B:

Furthermore, there exists an equivalence of categories between
the analytic rings in E and the functors Aopp-&#x3E;E that preserves
finite limits. 

When E= El1s, F is given by F(Ã) = [A, BJ (the set of 1110r-

phisms A-B of analytic rings). This then generalizes to arbitrary
E considering Yoneda’s Lemma E c--&#x3E; (Ens E)op.

4.5. OBSBRVATION. Let (X.OX) be a local model (see 3.6) and
let U be an open subset of C". It is easy to see that there
exists a bijection

where r denotes "global sections" and [(X,Ox),(U,Ou)] is the
set of arrows (X,Ox)-&#x3E;(U,Ou) in L . Since

(see [3]) and

(Yoneda), we obtain a bijection

Now, we shall prove a generalization of this result.

4.6. LBMMA. Let U be an open subset of Cn, h1 hkE On(U)
and (X, Ox) E L. There evists a natural bijection

where is the sheaf on E defined in (1.9).

4.7. OBSERVATION. The naturality means that if

and
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are morphisms of analytic rings. and we denote cp and q9w the
arrows given by the bijection:

(where F=Z(l1...,lq)), then q9w = i(Y)cp. Here, i : Aopp.f --&#x3E; L is the

unique finite limits preserving functor such that the diagram

commutes (4-4). where C -&#x3E; L is the analytic ring given by
W k4 (W, Ow) for W E C ; that is, it is the analytic ring (C, 0,C)
considered before Theorem (3.8). Remark that, since i preserves
finite limits, then

PROOF OF THE LEMMA.

1. Construction of the bijection. We have the following
equalizer in L (see 131):

where h = (h1,..., hk). Hence, a morphism (X.0y)-&#x3E;(E.OE) in L is

equivalent to a morphism

cp=(f,n), where f : X-&#x3E;U is a continuous function and 11:

f* Ou-&#x3E; Ox. By (4.5). cp is equivalent to a section S E r( X, OX) (U) .
Explicitely : S = (S1, ... , Sn) and Si(x) = nx ( zi. f(x)) (1i n) , where

z i is the j-th projection Cn-&#x3E;C (see [3]), By (1), we have hf = 0
and nx h*f(x) =nx -O*O f (y) ( 2) . Here.

Equation (2) applied to W1,... Wk (where w; is the i-th projec-
tion Ck-&#x3E;C), shows that

Given E X (fixed). there exists an open neighborhood W of x 

and a local extension 1 of fin W such that nx (tf(x) =( tf) x 



42

for t holomorphic in a neighborhood of f(X’), x’ E xnw (see 131).
Hence.

therefore, S(x)= f x. for x’ E XnW. that is S is given by f
around .t-. Hence, for 1  i  k ,

satisfies, by (3). that

Hence, (r(X.Ox)( h;))(S) =0 (1ik), which means that

Therefore, by (4.3), S is equivalent to a morphism

Conversely, a morphism is

equivalent, by (4.3), to a section

Then, since S E r(X, ox) (u), S is equivalent, by (4.5), to a mor-

phism cp = (f,n): (X,Ox)-&#x3E;(U,Ou). Etplicitely, we have f(.V) = VS(x)
for "y E X, where VS(x) is the value of the section S in the point
x, and nx,(zi.f(x)) = Si(x) (1  i  n) (see [3]). Hence, if S is given
by I around v E X and t is a holomorphic function defined
around f(x), we have that

Si nce we have that

which means that (hjf&#x3E;xE I x (5), where I is the sheaf of ideals

which defines X. Hence hjf(x) = 0 (1 s j:rk), that is h(fLy»= 0.

Now, if g is a holomorphic function in a neighborhood of 0 in

Ck. we can write

with yj holomorphic in a neighborhood of 0 in C K. Hence, for x’
in a neighborhood of yin CP, some p . X C CP, we have:

Theref ore.
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which is the ideal generated by (h1 f) ,y , ... , (hkf) x. Hence, since

(hjf ) X E Ix (by (5», we obtain that

(here, g(0) is the constant function). Therefore, by (4),

where now g(0) is the constant function defined in C’. Therefo-
re, we obtain that

and this holds for all holomorphic function g in a neighborhood
of 0 in C k Hence nx h*f(x) = nxO*f(x); moreover. we have seen

that h f = 0. This means that cp=(f,n) satisfies the equation
(h,h*)cp = (0,0*) cp; hence, by (1), cp is equivalent to a morphism
(X,Ox)-(E,OE)- It is easy to see that this establishes the re-

quired bijection.

2. Naturality : we sketch the proof. First, one proves that if

is a morphism of analytic rings,

is the canonical morphism (obtained from the canonical mor-

phism On(U)-&#x3E;r(E.OE)) and EY (E,OE)-(F.OF) is given by the

bijection established in 1, then EY = i(Y) (see (4.7). Then, given

cp is equivalent, by (4.3), to a section SEZF(X,ox)(h1,...,hk)-
Hence, S E rx,Ox)(U) is a section which takes values in E. Mo-

reover, if

then. by (4.3)..9. is equivalent to a section

hence, o is a section of (X.Ox) which takes values in F. Finally,
i(Y): (E,OE)--&#x3E;-(F,OF), that is, I(Y) = (r,l), where r: E-F is a con-

tinuous function. In order to prove the natul"ality, that is, .6=
I(Y)cp, first it is shown that V(3=r(VS) (here, VS: X -&#x3E; E and

V6: X-&#x3E;F). From this fact and the equation sY= i(Y) , it can be

seen that 9 = I(Y)cp 
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4.8. OBSERVATION. Let

be a finitely presentable analytic ring in Ens. and let i: Aoppf-&#x3E;L
be the functor considered in (4.7). It follows that the diagram

is an equalizer in L. We denote

By (1), we have XA = (B  E l f(B)= v}. Now, if B is an analytic
ring in Ens. we define the following function

is equivalent to a morphism

then, we consider

which, by (4.3), is equivalent to an element c E Z B(hk1 ... , hk) . We
define FB (b) = c. Now, it is easy to see that there exists a

bijection:

that is,

4.9. OBSERVATION. As before, it can be proved that there
exists a natural bijection

where the naturaHty means that if B is a finitely presentable
analytic ring in Ens, 4J: B-&#x3E;A is a morphism of analytic rings and
cp : A-&#x3E; r(X, OX) , then cp Y = i(Y)cp This result is obtained from
(4.6) and (4.8).

5. SPECTRUM OF A FINITELY PRESENTABLE ANALYTIC RING.

Here, first we shall compute the spectrum of a quotient
On(U)/(h1..... hk).

Recall l that the spectrum of an analytic ring A in Ens is a
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Grothendieck topos SA together with a local analytic ring Spec A
in SA and a morphism A*A-SpecA, such that for all Grothen-
dieck topos E and all local analytic ring B in E furnished with a

morphism 4*A-&#x3E;B. there exists a unique pair (p*.rr). where p* is

the inverse image of a geometric morphism.

is a local morphism, such that the following diagrams
commute:

5.1. oBSBRVATION. Here 4* is the constant sheaf, and the mor-

phism A-*A-SpecA gives rise to a morphism p*(4*A)-&#x3E; p*(Spec A),
that is, 4*A-&#x3E; p*SpecA. In this case the diagram

always commutes. since there exists a unique geometric mor-

phism E-Ens, whose direct image is "global sections" and who-
se inverse image is A*.

Let U be an open subset of C" and h1,..., hk holomorphic
functions in U. We denote E=Z(h1....,hk)CU; we have the local

analytic ring OF in Sh(E) (see (1.9) ).

5.2. THEOREM. The spectrum of On(U)/( h1,..., hk) is the Gro-
thendieck topos Sh(E) together gith the local analytic ring OE
in Sh(E) . That is. Spec ( 0 n(U)/( h1...hk)) = OE.
PROOF. We denote by r(E,OE) the analytic ring of global sec-

tions of the sheaf OE . Let p: 0 n(U)-&#x3E;r(E, OE) be the canonical

morphism (if f E 0 n(U), p(f) is the global section of OE given
by f ). Let r: On(U) -&#x3E; O n(U)/(h1..., hk) be the projection to the

quotient. Since p( h;) = 0 for 1  i  k, there exists a unique

such that cpr= p. cp is equivalent to a morphism
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of analytic rings in Sh(E) . Let B be a local analytic ring in a

Grothendieck topos E and let

be a morphism of analytic rings in E. By (5.1), we have to prove
that there exists a unique pair (Y*rr). where Y*: Sh(E)-&#x3E; E is the
inverse image of a geometric morphism and rr: Y*OE---&#x3E;B is a lo-
cal morphism of analytic rings, such that the following diagram
commutes:

rrY* (cp) =k Here, X is equivalent to a morphism of analy tic rings
On(U)/(h1,...,hk)-&#x3E;r(B), and, by (4.3), this morphisms is equiva-
lent to an element b EZr(B)(h1.....hk)cFB(U). It follows that b
is equivalent to an arrow b: 1-&#x3E;B(U) where 1 is the terminal ob-

ject of E. In fact, we actual ly have b: 1-&#x3E;rZB(h1, ... , hk) c--&#x3E; B(U) (1) .

Now, we shall define a functor Y: O(E)-&#x3E;E, where O(E) is

the category of open subsets of E and open inclusions, with the
Grothendieck topology given by the open coverings. Let H be an

open susbset of E, H = VfIE, where V is an open subset of C"
and V c U. It can be easily seen that if H = V1nE, where V1 is an
open subset of en, V 1 cU. then

Hence. we can define 4J(H) as the following pullback in E :

It is easy to see that if H 1 c--- H 2, then there exists an arrow

4;(H1)-&#x3E;4;(H2) in E. and that 4; is a functor which preserves finite
limits. We are going to prove that 4; is a point of the site O(E) ;
that is, if H = U(xEI Hoc, where Ha is an open subset of E, then

the familn 4(Ha) -&#x3E;4;(H) is an epimorphic family in E. Here,
Ha = VanE where Vex is an open subset of en. Va CU; hence

H = VnE where V = UexEI Vex’ BN (3.9) there exists a unique func-
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tor B*: L- B which preserves finite limits and is a point of the
site L such that B*A = B. where L is the site of local models and
A is the analytic ring in L given by A(W) = (W. Ow).

We have the following pullback in L (a E I ) :

From the fact that

and it follows that

and

moreover,

Hence, applying B’t’ to the pullback (2), we obtain that the fol-

lowing square

is a pullback in Fs (for all a E I) (3). Since B is local, we have
that (B(Va) c-&#x3E; B(V))aEI I is an epimorphic falllily in E: hence, bN
(3). we obtain that

is an epimoi-phic family in E (4). Moreover. it is easn to see that

is a pullback in E (for each a E I). Hence. by (4). it follows that

(4;(Ha)-&#x3E;4;(H))aEI is an epimorphic family in E. This proves that

4; is a point of the site O(E). Hence. 4;: O(E)-E extends to a

functor
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which preserves coliimits and finite limits [1].

NcB%. Bvc have to define 0 local murphism of analytic rings
rr:4*OE-&#x3E;B. For each open subset W of Cm. we have that

where C-,HJ is the contravariant representable functor associated
to H E O(E): then.

Let S: [-.H]-&#x3E;OE(W) be an arrow. By Yoneda’s Lemma, S is

equivalent to an element S E OE(W)(HL that is, S is a section of
OE(W) defined in H. Thus, S E r(H,OH(W)), and. by (4.5), S is

equivalent to an arrow in L. S: (H.OH)-&#x3E;(W,Ow). Hence, we have

Here, H = Vn E where V is an open subset of Cn, V C LI; then

B"(H,OH) = ZB (h1lV, ... , hk lV) ; and B*(W,Ow)=B*A(W) =B(W).
That is, B*(S): ZB(h1lV,...,hklV) -&#x3E; B(W). Moreover, by defini-
tion of 4J. we have an arrow

We define Ys= B*(S)mH:4J(H)-4B(W)’ It is easy to see that the
collection (YS) , S:[-,H]---&#x3E;OE(W), H E O(E) , induces, by (5), a

unique arrow rrw:Y(OE(W))-&#x3E;B(W). Moreover, it is straightfor-
ward to prove that the collection (rrw)w(c defines a local mor-

phism of analytic rings rr: 4*OE-&#x3E;B such that rr4;*(cp) = X.
Now we are going to prove that (4*. rr) is unique. Let 4J;:

Sh(E)-E be the inverse image of a geometric morphism and let

rr: 4*1OE-&#x3E;B be a local morphism of analytic rings. It is easy to

see, using the fact that rr’ is local, that for each open subsets
H of E (H=VnE where V is an open subset of Cr’, VCU), there
exists an arrow

such that the square
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is a pullback in E (6). Moreover, the identity idv: V-&#x3E;V induces a

section of OE(V) defined in H; and this section induces an ar-

row E2013,H] -&#x3E; ZOE(h1lV..... hklV). Simi 1 arly, we have an arrow

E2013,E] -&#x3E; ZOE( h1...hk). , and it is easy to see that the square

is a pullback in Sh(E) . Applying 4J;, which preserves finite limits,
we obtain that the square

is a pullback in E (where

and

By (6) and (7), it follows that the square

is a pullback in E, and it is easy to see that, in this square, the
arrow 1 -&#x3E; ZB(h1,...,hk) is b (see (1) ). Then, from the definition

of 4;. it follows that

(for H E O(E) ). Hence, by preservation of colimits. it follows that

Y1*=Y*. Finally, it is straightforward that rr’ = rr.

5.3. oBSBRVATION. Let A be a retract of a quotient of On(U).
Recall that we have the object (XA,OXA) E L (4.8). It can be seen

that the spectrum of A is the Grothendieck topos Sh(XA) with
the local analytic ring OXA in Sh(XA) . This result follows by
Theorem (5.2) and the natural bijections (4.6) and (4.9). Hence
we have:
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5.4. THEOREM. If A is a finitely presentable analytic ring in
Ens. then the spectr-um of A is the Grothendieck topos Sh ( XA)
H’ith the local analytic r-ing °XA in Sh(XA). That is. we have

Spec A = OXA.

OPEN PROBLEMS.

The following are three problems of the theory of analytic
rings that had resisted our effort to solve them. We think that
a satisfactorily answer is of interest to the theory, and that
would require some deep ideas.

PROBLEM A. Preservation of infinite intersections by analytic
rings. This is relevant to a classical algebraic characterization of
the rings of germs of holomorphic functions.

PROBLEM B. The computation of a general quotient of finitely
presentable analytic rings. See Appendix.

PROBLEM C. Problem of the epinioiphic-effective and universal
character of the open coverings in the dual of the category of
finitely presentable analytic rings (or the theory of analytic
rings).

Problems B and C are relevant to characterize this cate-

gory. Namely, is or is not a category of ringed spaces?

APPENDIX.

In general, we don’t know how to compute the quotients
of analytic rings: in particular, we don’t have any description of
the ring 0 n(U)/( h 1..., hk), However, we have the following re-

sult. obtained with the collaboration of A. Dickenstein and C.
Sessa:

Let h1..... hk be holomot-phic functions in an open subset
U of en and E = Z( h1,.... hI.)’ If E has a base of Stein neighbo-
t-hoods (see Grauert and Remmert, Theori- of Stein spaces,
Springer 179)). then

where (E,OE) is the special model defined in 3.6 and r(E,OE) is
considered with its structure of analytic r-ing (see [3]. Theorem
2.10). Moreover. the kernel of the map



51

is the usual ideal as C- algebras and Pc is surjecti ve.
PROOF. It is easy to see that if Uo is an open subset of Cr’ such
that UDUo D E. then

Then, taking Uo Stein, we may assume that U is Stein. Let

p: 0n(U)-&#x3E;r(E,OE) be the canonical morphism; we will prove
that given cp: On(U)-&#x3E;B (B an analytic ring) such that cp (hi) = 0,
1  i  k, then there exists a unique cp : r( E. DE) --&#x3E; B such that we
have §5p=p. Let S E r(E. OE). Since U is Stein. we can take a

holomorphic function f E on(u) such that S=p(f); we define

cp (S) = cp(f). This is well defined; in fact, if p( f -g) = 0, then

and, again. since U is Stein, we have that f - g E (h 1...hk): then
p(f-g) =0.This essentially shows that r(E.OE) is the quotient as C-
algebras. It remains to see that it actually is the quotient as

analytic rings.
We will prove now that if S~r(E,OE)W), where W is an

open subset of C, then cp (S) E B( W) . Clearly, we have S = p( f)
with f (E) c W; hence, there exists an open subset V of C",
ECVCU such that f(V)CW. cp is equivalent to an element b
of B(U) such that cp( t) = B( t)( b) for t E On,(U), and since cp(hi) = 0
(1 i k), we have

By (2.10) , we have that ZB(h1.... ,hk) C B(V); then. b E B(V) and by
considering f lV: V-&#x3E;W. we have:

that is. cp (S) E B(W). This defines an arrow cp: r(E,OE)(W)-&#x3E;B(W).
Similarly, we define cp W for W an open subset of C,".

Finally, from the fact that E has a base of Stein neighbo-
rhoods, it will follow that cp defines a morphism of analytic
rings. Let g: W-C be a holomorphic function: we have to prove
that the square

commutes (we suppose again that W C C). Let S Er (E.OE)(W) and
f E 0n(U) be such that S = p(g). Take as above an open subset V
of Cn, EC VC U, such that f(V)CW. Then, g’(S) = C-,’(gofIV),
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where p’: On(V)-&#x3E;r(E.OF) is the canonical morphism. On the
other hand. there exists t E On(U) such that g*(S) = p(t); hence

moreover then

Then, we have to prove that B(t)(b)=B(goflV)(b) (1). By hypo-
thesis. there exists an open subset V o of Cn such that

E C V O C V and Vo is Stein; and, by (2.10). ZB(h1....,hk)CB(Vo).
Hence, b E B( Vn) . Hence.

Since tlV 0 and goflV 0 define the same section 9*-(S) in (E, OE),
then using that Vo is Stein we obtain that

Then it follows (by evaluation at b) that

thus. using (2). we obtain (1).

The proof for WCCn is the same working in each coordi-
nate.
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