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CAHIERS DE TOPOLOGIE VOL. XXXI-1(1990)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

LOCAL ANALYTIC RINGS'!
by Jorge C. ZILBER

RESUME. Cet article développe certains aspects de la
théorie des anneaux anaytiques locaux introduite par Du-
buc-Taubin. Un anneau analytique local est un morphisme
local A-C; on montre qu'il peut aussi &étre défini comme
un foncteur UpP A(U) préservant les recouvrements ou-
verts arbitraires. Ceci est utilisé pour construire le topos
classifiant de la théorie des anneaux analytiques locaux:
c'est le topos des faisceaux sur le site dont les objets
sont les modéles locaux d'espaces analytiques, avec la
topologie de Grothendieck des recouvrements ouverts.
Enfin on construit le spectre d'un anneau analytique finie-
ment présentable.

INTRODUCTION.

In this article we develop some aspects of the theory of
analytic rings introduced by E.Dubuc and G.Taubin in [3]. The
principal results are the following:

(1) In [3] an analytic ring A in Ens was defined to be lo-
cal if it had a local morphism A-C into the ring of complex
numbers. Here we define A to be local if, viewed as a functor
Ul AW, it preserves arbitrary open coverings. Then, we show
the equivalence of these two definitions. This shows that the
purely algebraic notion of being local (notice that in the case of
ordinary rings preservation of arbitrary coverings by Zarisky
opens is equivalent to the axiom "xV(1-x) invertible”) is in this
case equivalent to the existence of a morphism A-C, which is
of higher order.

(2) Based on the previous result, we explicitely construct
the classifying topos of the theory of local analytic rings. More
explicitely, we show that it is the topos of sheaves on the site
whose objects are the local models of analytic spaces (in the
usual sense, see for example Malgrange [6]1), with the Grothen-
dieck topology of the open coverings. This result shows that
the notion of analytic ring and local analytic ring is the adequa-
1 Research partially supported by “Subsidio UBACYT EX 068,

Proyecto: Anillos analiticos y espacios analiticos, de la Universi-
dad de Buenos-Aires.
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te algebraic tool for the study of analytic spaces.

(3) We explicitely construct the spectrum (in Cole's sense)
of a finitely presentable analytic ring. In particular, we show
that the spectrum of an analytic ring of ine form
O,(W/(hy,....hy) is the local (special) model associated to the
ideal (hy,...,hy). In this case the construction is more complica-
ted than in the cases corresponding to ordinary or C®-rings, be-
cause analytic rings is an algebraic theory where the quotients
are not surjective.

We thank Eduardo Dubuc for valuable conversations du-
ring the research and writing of the paper.

0. BASIC DEFINITIONS.
0.1. DEFINITION. We denote with C the category of open sub-
sets of €™ (all n) and holomorphic functions.

0.2. DEFINITION. Let U,V and W be open subsets of C?,C™
and Ck, respectively; f:U-V and g: W=V holomorphic func-
tions. We say that a diagram in C:

X W

g

u £ \%

is a transversal pullback, if it is a pullback in C and f and g
are transversal (in the usual sense. see for example [4]).

0.3. DEFINITION. A diagram in C:

—h
E—U__—_3cCk

0

is an independent equalizer if it is an equalizer in C and the
components of h are independent (in the usual sense).

0.4. PROPOSITION. Let E be a category and A: C -E a functor.
Then, the following statements are equivalent:
1. A preserves transversal pullbacks and terminal object.
2. A preserves independent equalizers, finite products (in-
cluding the terminal object) and open inclusions.

PROOF. Cf. Dubuc & Taubin [3]. =

0.5. DEFINITION [3]. Let E be a category with finite limits; a
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functor A: € - F is an analytic ring in FE if any of the two equi-
valent conditions in Proposition 0.4 holds. A morphism between
analytic rings is a natural transformation, as functors.

0.6. OBSERVATION. By an abuse of notation, we will write A
for A(C), and if ¢: A=B is a morphism, we will write ¢ for @g;
let Ens be the category of sets, and A an analytic ring in Ens.
If V and U are open subsets of C™" and VCU, then A(V) is a
subset of A(U). This is so because A preserves open inclusions.
Moreover, if f:U-W is a holomorphic function, we have that
A(FIV) = A(F)IA(V), and if ¢:A-B is a morphism and a <A(V),
then ¢yla) =ey(a).

We also have that A(C") =A" and

penlay,....a, = (play,...,ela,)) for (ay,...,a,) c A"

Note that if ¢,$: A->B are morphisms such that @& =g,
then ¢y =¢v for all VeC.

Thus, an analytic ring may be thought as a C-algebra A,
with the additional structure given by operations with domain of
definition A(V) C A", one for each holomorphic function V-C,
for all V open in some C".

0.7. EXAMPLE. If U is an open subset of C”, we denote with
O0,(U0) the analytic ring of holomorphic functions in U; that is,
if V is an open subset of €™, we define

(0,(W)(V) = {g: U=V | g is holomorphic},
and if W is an open subset of C" and f:V-W is a holomorphic
function, we define

(0,() (F))(g) = fog for g (O, (W) (V).

0.8. OBSERVATION. Notice that O,(U) is the representable
functor [U,—1. Thus, any morphism ¢: O,(U)=A into an analytic
ring A is characterized by the element ¢y(idy) ¢ A(U). (Yoneda's
Lemma, see [5].) ’

0.9. EXAMPLE. Note that C has a structure of analytic ring in
Ens given by C() =U, C(f)= f.

It is immediate to check the following:

0.10. PROPOSITION. If A is an analytic ring, then A preserves
finite intersections. =

0.11. OBSERVATION. Given an analytic ring A in Ens. the cano-
nical morphism C—A is a morphism of analytic rings. This is so
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because if U is an open subset of C and a«<U, then the inter-
pretation a, of a in the C-algebra A belongs to A(U), and this
result extends immediately to open subsets of C”. We abuse
the notation and denote o, =a. Moreover. it is clear that thic
defines a morphism of analytic rings.

It is immediate to check the following:

0.12. LEMMA. lLet A be an analytic ring. U and Vopen subsets
of €C" and C™Mrespectively, and f: U~V a holomorphic function.
Then. if W is open. WCV,

AH)"HAW)) = A(FHUW)). =

1. LOCAL ANALYTIC RINGS.

1.1. DEFINITION. Let A be an analytic ring in a category E. We
say that A is a Jocal analytic ring if A preserves open coverings,
that is, if for each open covering (U,),. of an open set U of
C€", the family (A(U,) —— A(WU)),. is a universal effective epi-
morphic family in E. Remark that this notion is stronger that to
say that A is an analytic ring which is local as a ring.

1.2. OBSERVATION. When E = Ens, it means that if U=U_U,,
then A(U) = U, A(U,).

1.3. OBSERVATION. Since the empty family covers the empty
set, it follows that if A is a local analytic ring in a topos BF,
then A(J)=0.

1.4. DEFINITION [3]. Let A and B be analytic rings in a category
E, ¢: A>B a morphism of analytic rings. We say that ¢ is Jocal
if for all open inclusions VCU in C, the square-

A(V) < > A(U)

o Jou

B(V) & B(U)

is a pullback in E. It is equivalent to ask this condition only for
U=C", all n. When E= Ens, it is equivalent to the condition:

"if a ¢ A(U) and ¢yla) ¢ B(V), then a ¢ A(V)".

1.5. OBSERVATION [3]. It is easy to see that if A is an analytic
ring in Ens and there exists a local morphism w:A-C, then A
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preserves open coverings, that is, A is a local analytic ring.

1.6. THEOREM. Let A be a local analytic ring in Ens. Then. the-
re exists a local morphism m: A- C.

PROOF. Let a be an element of A=A(C). For each j ¢N, we wri-
te €=Up,.cB(p.17j), where B(p,1/j) is the open ball in C of
center p and radius 1/j. Then since A preserves open coverings,
we have A=Up€CA(B(p,1/j)). Hence, there exists an element
oe€C such that ac<A(Bla;1/7/). It is immediate that
a-a;< A(B(0,17/)) (1) (here we think o; ¢A). Then we have

(2) ooy = (aj-a)+(a-ay) « A(B(0,(1//)+(17K)))

(where we use the fact that if a < A(B(O,ry) and a,<A(B(O,r5),
then a +a, < A(B(O,r +r5)), which is immediate considering

+: B(O,I’i)xB(O,I‘Z) — B(O,I‘1+r2).
Now, we shall prove that if B¢C and B<A(B(O,r)), then [Bl< r

(3). In fact, if |B|> r, then Be¢U. where U={z ¢C||z|>r}. Then,
by 0.10 and 1.3, we have

A NA(B(,r) = A(UNB(0.r) = AW@) = T .

Now, by O.11, B¢ A(W); hence B £ A(B(0,r)). Using this fact we
obtain by (2) that Iaj—ozkls(l/j)+(1/k), and thus, (a);n is a
Cauchy's sequence of complex numbers; therefore, there exists

o= limj_,ooaj.

We show now that a-o<A(B(0,)) for all ¢> 0: In fact,
given £> 0, there exists jge¢N such that |a-a;|<e/2 for jzjj.
Let j; be such that 1/,<e/2. If j,=max{jq,j4, then

a-a = (a-o;,)+(ojp-a). where a-a;,¢ A(B(0,1//,))
(by (1)), and since 1/j,< /2, then B(0,1/,) CB(0,2/2). Hence,
A(B(0,1//5,)) C A(B(0,e/2));

thus a-a;;< A(B(0,e/2)) (4).
On the other hand, since j,2 jg, then |a -a;,/<e/2, that
is, ocjz—aeB(O,s/Z), and (by 0.11), ojr-ae A(B(0,£/2)) (5). Hence, by

(4) and (5) we obtain that a-a < A(B(0,¢)). Hence, we have esta-
blished that given a< A, there exists a¢C such that

a-o ¢ A(B(O,s)) for all £>0.

Now we shall see that « is unique: Let B be a complex number
such that a-Be¢A(B(0,¢)) for all £¢> 0. Given £> 0, then

B-a ¢ A(B(0,c/2)) and a-a<A(B(0,¢/2)):
hence
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(B-a)+(a-a) = B-oae A(B(0.2)):

therefore, by (3). |B-al <¢. Then, B =a.

In conclusion, we have that, given a <A, there exists a
WillGUE w e C such thai a-ae AiBI0,g)) for ail £ O. This defines a
function w: A-=C which verifies n(a) =a iff a-a<A(B(0,s)) for all
¢ >0 (6). We are going to prove now that m defines a morphism
of analytic rings. For this, let us see first that if U is an open
subset of €7, and a = (ay....a,) ¢ A(l), then (m(ay.....nm(a,)) «U.
Since U is open. we can write:

u = UjsJBj,‘li ...YBj’n,

where each B; is an open ball in C and B;,...xB; ,CU. Hen-

)

A = U;yA(B;y ~...xB; p) = UjA(B; 1)~ ...- A(B; ).
Since a =(ay,...,ap,) ¢ A(U), there exists j ¢] such that
a ¢ A(B; 1)~...xA(B; ), that is, ap<A(B;,) (1sksn).
Therefore. if B; ;. = B(z; ,r; ). we have that
ap=2zj <« ABO.r; 1)).

Moreover. by (6). if ap=mla,) (I1<ks<n), then xy-a,e<A(B(0.g))
for all ¢>0. Then. it follows that a,-z;,<A(B(O.r; g+¢)). The-
refore, by (3), we have

lep=z;: 1| < r; .+ for all >0.
k™ “j.k Jj.K
Then lag-z; x| < rj . that is.

opeBlz;pr; ) = l?,\ (1<k<n).

Then. _ .
(ai..... an) € Bj,l \...‘(Bj'nc Bj,l" B/v n ZUu.
that is. (m(a,),....m(a,)) e U. This defines. for each open subset
U of €7, a function my: A(U)->U. given by
nylag....,ay) = (mlay...., mla,)).

Finally. in order to prove that m is a morphism of analytic
rings, we have to prove that if f:U—-V is a holomorphic functor
(where U and V are open subsets of € and C'™. respectively).

then the square:
A(f)

A(l) = A(V)

(7) ,t__{
f

u —m—m—YV

v

commutes. Suppose that VCC. and let a be an element of A(U),
a=(ay,...,a,). Then myla)=(a,..... a,), where o, =ml(ay), 1 <ksn.
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If b=A(f)(a), we have my(b)=n(b) (VCC). and then, we have to
see that f(oy..... a,) =m(b). By (6). it is sufficient to prove that

(8) b-floy..... o) ¢ A(B(O.g)) for all €> 0.
If ¢> 0. since f is continuous. there exists § > 0 such that. if
|z —agl <8, oo 1z o, <8,

then |[f(z)-Ffla)|<es (a=(oty.....a,)). By (6), we have that
ag-oy ¢ A(B(0,§)), that is. ay ¢ A(Blay.8)). Then

a=(ay,....,a, ¢ A(Bla,,8) x...xA(Bl«,,8)) = A(Bla4.8) ~...~Bla,,d)).
But we have f: B(oy,8) x...xBla,,8) »B(f(a),e) and then
A(H): A(B(a4,8) »...xBla,,8)) — A(B(f(a),e) .

Then, A(f)(a) ¢« A(B(f(a),e)), that is A(f)(a)-fla) ¢ A(B(O,s)). Then,
by (8) (since b =A(f)(a)), this proves that the square (7) com-
mutes.

When VCC™, the proof is the same that for the case
m=1, working in each coordinate.

This proves that m is a morphism of analytic rings. Final-
ly, we have to prove that m is local. Let a = (a4,....a,) be an
element of A”, and U be an open subset of C” such that
nen(@) eU. If a=mnen(a), then op=n(ay) (1<sksn); then, there
exists r> 0 such that

Bloag,r)x...xBla,,r) CU.
By (6), ap-oy < A(B(O,r)), that is, a, ¢ A(B(ay,r)). Thus,
a =(ay,...,a,) ¢ A(Blay, 1) x...xAB(a,,r)) = ABlagr)x...xBla,,r).

Since
A(Blaq, 1)~ ... xBla,, r ) C AL,

we have a <« A(U). This proves that m is local =

1.7. OBSBERVATION [3]. It is immediate that if m: A~B is a local
morphism of analytic rings in a category E and B is local, then
A is local.

1.8. EXAMPLE [3]. Let E be a topological space and let Sh(E)
be the topos of sheaves on E. We consider the sheaf Cg of
germs of continuous complex-valued functions defined in E.

Then, Cg is an analytic ring in Sh(E), and it preserves
open coverings. That is. Cg is local. Here. Cg: C = Sh(E) is the
functor defined by Cg(U)(H)= continuous(H.U) for H open in E
and UeC.
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1.9. EXAMPLE [3]. Let U be an open subset of C”, and let
hy.....h be holomorphic functions defined in U. Let
E=Z(h,....,h), that is,

E={pecUl h{p)=0 for 1<is<k}.
Let Og be the sheaf on E whose fiber in a point pe¢E is
O, p/thy p.....hy p). where O, , is the ring of germs of holo-

morphic functions in p. and h; , is the germ of h; in p (for
t<i< k). If S is a section of O over an open subset HCE,
then for each p <H. there exists an open subset V of U such
that p ¢V and a holomorphic function f defined in V such that

S(x) = FX for x ¢ VNE, where f, is the equivalent class of f,,
fie O/ hyy, ... ).

We define the value of S at‘p by VS(p) = f(p). This defines a
continuous function VS: H-C.

For each open subset W of C™, we define the sheaf
Og(W) on E by:
O(W)(H) = {(S,.....S,,))|S; is a section of Og over H and
(VS{v),...,VS,,,(x) e W for xecH}.

m
Then, Og is an analytic ring in Sh(E). Moreover. we have the
morphism 7m: Og = Cg, defined by
Tw, H(Sq .. Spy) = (VS4...., VS, ).
Here, since (Sg,...,S,) ¢ Og(W)(H), then (VS,,...,VS,) is a con-
tinuous function H-W.

It is easy to see that m is local: then, since Cgis local,
we obtain, by (1.7), that Og is local.

2. GERMS AND ZEROS OF HOLOMORPHIC FUNCTIONS.

2.1. DEFINITION-PROPOSITION [3]. For each p «C", we will de-
note with O, , the ring of holomorphic functions in p. Then,
O, is an analytic ring in Ens, and, for each open subset V of
C™M, O, p(V) is the set of germs of holomorphic functions with
values in V, or. equivalently, the set of germs of holomorphic
functions f such that f(p)eV.

2.2. LEMMA. 1. Let U and V be open susbsets of C" such that

UD V. Then, the restriction morphism O, (U)->O_(V) is an epi-
morphism in the category of analytic rings in Ens.
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2. Let U be an open subset of C" and p <U; then, the
canonical morphism O,()->O0, , is an epimorphism of the ca-
tegory of analytic rings in Ens.

PROOF. | follows from Yoneda's Lemma [5] (recall that O,(V) is
the representable functor [V.—1).

2. It is an immediate consequence of 1 and the fact that
O, o is the filtered colimit of the analytic rings O,(V) with p
in VCU (see [3]1, Proposition 1.13). =
2.3. LEMMA (Basic Universal Property of 0,(U)-0, ,). Let U
be an open subset of C" and p <« U. Consider the diagram

r
0,() —— 0,,

where r is the canonical morphism. Let a be the element which
characterizes ¢ (that is, a = eylidy) ¢ A(U), see 0.8).

Then, a necessary and sufficient condition for the existen-
ce of §:0n,p~>A such that §r =¢ is that a <« A(V) for all open

~

neighborhoods V of p. Moreover, if this happens., ¢ is unique.

PROOF. Suppose that there exists ¢: On,p—>A such that ¢r =o.
Let a be the element rylidy <O, (U). It is clear that
ae O, (V) for all open neighborhoods V of p (1). Let V be an

open neighborhood of p, VCU; then, by (1) and (0.6), it follows
that ¢ y(a) = @y (). Moreover,

a = (Pu(ldu) = fﬁu(l’u(ldu)) = Cﬁu(a)
Then, a =@ y(a), with §y: O, (V)=>A(V). Hence, a <A(V).

Conversely, suppose that a < A(V) for all open neighbor-
hoods V of p. For Be O, p. there exists an open neighborhood
V of p, VCU, and f ¢ O,(V) such that = f, (the germ of f in
p): we define &(P) =A(f)(a) (recall that we have ac¢A(V) and
A(f): A(V)=A). It is easy to see that this definition does not
depend on the representant f of §. We define

B omBrBm) = BBy, FB).

We shall prove that if B=(By,....B,,) €O, ,(W), where W is an
open subset of C™, then cﬁcm(ﬁ) e A(W).

In fact, there exists a holomorphic function f: V=W, whe-
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re V is an open neighborhood of p. such that B = f,: if f =
=(fy....f). then B; = f; , 1<i<m), and

FemB) = (@ (By,...dB) = (AFY@),...,AF,)(a) = A(F)(a).

Since f: V=W, then A(f): A(V)=>A(W). Hence, A(f)(a) < A(W), that
is, § cm(B) ¢ A(W). Thus, for each W, @ w: 0,, I,(W) - A(W),

Finally. it is easy to see that the family (§ w)w.c = & is
a natural transformation, that is. §: 0, p~A is a morphism of
analytic rings. It is clear that ¢ r = ¢, smce if feO, (WD),

F(r(F) = §(f,) = AlPa),

and, by Yoneda's Lemma [5]1, ¢(f)=A(f)(a) for all feO, ().
Moreover. since r is an epimorphism (by (2.2)), ¢ is unique. =

2.4. COROLLARY (Universal Property of O, (U= O, is
the analytic ring which solves the umvetsal problem defmedpb»
"to send f into all the neighborhoods of f(p)".

More explicitely:

L ro,(W-0,, verifies that if f:U-=C is a holomorphic
function, then r(f)e O, (X) for all open neighborhoods X of
f(p).

2. If ¢: 0,(U)=>A is a morphism of analytic rings which veri-
fies that "if f:U-C is a holomorphic function, then @(f)<A(X)
for all open neighborhoods X of f(p)”, then there exists a uni-
que $:0, ,~A such that ¢§r =¢
PROOF. 1. Let f: U-C be a holomorphic function and X an open
neighborhood of f(p). Then, since f is continuous, there exists
an open neighborhood V of p, VCU. such that f(V)CX. Then,
r(f)= f,= g, where g = f|V. g: V->X. Hence, g,¢0, ,(X), that
is r(f) e 0, p(X).

2. Let z;: U->C be the j-th projection C?=C restricted to
U and let a =¢lidy) be the element which characterizes ¢ (see
0.8). Then, by (0.6),

a= @enlidy = eenlzq.....2y) = (@(z 9, 0(z ).
Let V be an open neighborhood of p. VCU. There exist
Xqs.oos X, where X: is an open nelghboxhood of p; (Isjsn),
such that X, x.. )( CV. Then. since X; is an open neighbo-
rhood of p;= 2z (p) we have that ¢(z)) <A(X) (1sj<n) (by the
hypothesis made on ¢). Hence.

a=(plzy,. ..,0o(z ) e AXPx...xA(X,) = A(Xx...xX,) CA(V).

Then. by (2.3), there exists a unique ¢: O, ,~A such that
Fr=g.
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2.5. OBSERVATION. In the case of C®-rings, the ring C5° has
the universal property of making invertible all f «¢C*=(U) such
that f(p) +0 (U is an open subset of R” and p <U) (see [2])
(1). Let

R* = {x ¢R| x%0).

Then. given ¢: C®()=A and f «C=®(U). ¢(f) is invertible if and
only if ¢(f) ¢ A(R*)=A*, where A*C A is the set of invertible
elements of A (see [2]).

Thus, Corollary 2.4 means that in the analytic case, ins-
tead of C* we have to consider all the neighborhoods of f(p).
The result (1) follows from the fact that, in the C®-case, all
open subsets of R?” are Zarisky open sets. That is, for each
open subset X of R?”, there exists f ¢C*®(R™ such that X-=
F-YR*). This is no longer true in the analytic case. However, if
we assume that analytic rings preserve arbitrary intersections
(that is, if U is an open subset of C? and U=(), U, where U,
is an open subset of C” (ael). then A(U) =[], A(U,)). then the
corresponding result holds. In fact:

2.6. PROPOSITION. Assume that anal)tic rings preserve arbitrary
intersections. Then, O, , is the analytic ring which solves the
universal problem of making invertible all fe O, (U) such that
f(p) #0.

More explicitely:

1. r: 0,()= 0, , verifies that, if f(p)*0, then r(f) is inver-
tible in O, .

2. If ¢: 0,(UW)->A verifies that ¢(f) ¢ A* for all f ¢ O,(U) such
that f(p)#0, then there exists a unique ¢: O, ,~A such that
¢r=co.

PROOF. 1. It is clear from (2.4) and the previous observation.

2. We will use the fact that if V is an open ball in €C”
and g £V, then there exists f « O, (C™ such that f(g)=0 and
f(z)*0 for all z «V. Hence, if V is an open ball in C?, there
exists a family (£ )y , where f, ¢ O_,(C™), such that

V =Ny fa HCH).
(It is enough to consider for each ¢q¢C”-V a function

F9e¢0,(C™ such that f@(q)=0 and f9(2)%#0 for all z ¢V;
then,

= (Q)-1¢*
V= enyf @THED)

Let a =¢pylidy) and let V be an open ball in C” centered at p,
VcuU. Let (fy )y be a family, with fo ¢ O, (C™ such that V=
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Neer Fo NCY). Then, V=g h C"). where h, = f,|U. Hence

(1 A(V) =Ny AR HCT™)).

Since p ¢V, then o ¢ A UC*) for cach w«i. That is, Ay ip) *U;
hence ¢(h,)¢A*. Moreover. by Yoneda's Lemma we have

f(h,) = A(hy )(a). Then, we obtain that A(h )(a)c A*=A(C™), that
is, a ¢ A(h,)”"(A(C*)). But, by (0.12),

Alh)~HA(CY) = A(AZUCY).

Hence, a ¢ A(h;(C*)) for each a<¢l. Then, by (1), a ¢ A(V). Hence,
a < A(V) for all open balls V centered at p, VCU; then a<V for
all open neighborhoods V of p, and, by (2.3), it follows that
there exists a unique ¢: 0, ,~A such that §r=¢. =

2.7. PROBLEM. We do not know whether analytic rings preserve
arbitrary intersections in general. Neither we have a counter-
example.

2.8. DEFINITION. Let hg,...,h, be holomorphic functions in an
open subset U of €™ and let A be an analytic ring in a category
E with finite limits. We denote with Z, (h,..... h;) the equalizer
in E of

AU) T3 Ak
0

where h=(hy,...,h), h:U-Ck.

2.9. OBSERVATION. If FE= Ens,
Za(hy,...,h) = {a <cA(W) | A(hp(a) =0 for 1| sisk}.

2.10. THEOREM. With the hypothesis of Definition 2.8, if V is
an open subset of C" such that Z(hy,...,h) CVCU (where

Z(hy,...,h) = {x cU| h(x)=0 for 1sisk});

then the canonical inclusion v:Za(hy,...,hy) “—A(U) factorizes

Zalhy,..., b)) ———— A(U)

A(V)

where A(V) ~— A(U) is the natural inclusion given by the struc-
ture of analytic rings.
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PROOF. Let g: U— R be the function defined by:
g(z) = |h(z)|+dist(z.U-V),

where dist(z,U-V) is the distance of z to U-V. g is a conti-
nuous function which satisfies:

1. g(z) >0 for all z<U.
In fact, if z «¢V, since V is open, then dist(z,U-V) >0, and if z
is in U-V, since VD>Z(hy....,hy). then zgZ(hy....,h). Hence,
there exists j, 1<j<k, such that h;(z)+0.

2. glU-V = |h||U-V, that is, if z<U-V, g(z)=|h(2)].

3. glV>IhllV, that is, if z ¢V, g(z)>|h(2)].
In fact, if z ¢V, since V is open, then dist(z,U-V) > 0.

Let U, be the set

U;=z,w) | z U, w eCK and |w|< g(2)}.

Since g is continuous, then U, is an open subset of UxCX. Let
1:V->U, be the function defined by I(z)=(z,h(z)). (If z eV,
then, by 3, |h(2)I< g(z); hence, (z,h(z)) eU,.) Let t: U, >CX be
the function defined by t(z,w)= h(z)-w. It is easy to see. by 2
and 3, that

I -t

V——— U, > ¢k

is an independent equalizer. Then, we deduce that

A _A
(4) AV) ——— Ak

AUy ——
is an equalizer in E. If we define m: U-U, by m(z)=(z,0) (by 1,
g(z) >0 for all z «U; hence (2.0) «U,), and
p:ZAlhy,.... 1 )= A(U,) by ¢=A(m).

then it is easy to see that A(t)e=0. Thus, by 4, there exists a
unique
p:Zalhy,..., b)) — A(V) such that A(/)p =¢.

Finally. it is straightforward to check that diagram (+) above
commutes. .

3. CLASSIFYING TOPOS OF LOCAL ANALYTIC RINGS.

3.1. DEFINITION. Let P be the category of pairs (U,h), where U
is an open subset of C” (all n) and h:U-CX is a holomorphic
function. We note h=(h,...,h) and Z(hy....h;) the set of
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common zeros of hy,..., ~h.

An arrow (U,h)-(V,g) in P is a collection (f_ ), of holo-
morphic functions f :U,~>V. where U, is open. U,CU and
7(h, Ry U U, which satisfies

1. for each ael. xe U ,NZ(hy,.... ) and j.
(gifodyelhy oo hp )
(ideal generated by (h4 y.....hy ) in O, ).
2. for each xeU,NUgNZ(hy,.... h). F(x) = fg(x).

3. for each x ¢ U,NUgNZ(hy,..., hy) and for each holomor-
phic function ¢ in an open neighborhood of f,(x)= fg(x),

(EF ) = (EFE) e (hy xrs g x)

We define (f )y and (f, )y to be equivalent when:

1. for each xe¢ U, NU_NZ(hy,...,~h), f(x)= fo(x) (oel,
ae]).

2. for each x<U,NU_.NZ(hy,...,h) and for each holo-
morphic function t in an open neighborhood of f_(x)= f_.(x),

(tf ) ~(tf ) o E(hi,x""’hk,x)'
o el, a'¢].

The arrows in P are equivalent classes of these collections.

3.2. OBSERVATION. It is sufficeint to verify 3 and 2' for t = z,,
1 <ism (V is an open subset of €C™), where z;: V-C is the i-th
projection €C™-C restricted to V. This follows easily from the
(local) Hadamard's Lemma (see [3]1. Proposition 0.9).

Let A: C-P be the functor such that: A(U)=(U,0); if f:
U-V is a holomorphic function, A(f):(U,0)—~(V,0) is the canoni-
cal arrow in P induced by f.

3.3. PROPOSITION. Let E be a category with finite limits and let
B be a local analytic ring in E. Then. there exists a functor p:
P - E such that pA= B. Explicitely, p(U,h) =Zg(hy,.... hy).

e
B 7

¢ 7~
E '
PROOF. We define p(U.h)=Zg(hy,....Hh). Let f:(U.h)—=>(V,g) be
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the collection (f,)y.1, which saitsfies 1, 2 and 3. We are going
to define
[J(f) :ZB(h‘l""’hk) - ZB(g‘l""’gl‘)'

We have . .

Z(hy,....h ) cU cU, where U=, U,.
By Theorem 2.10, Z g(hy,..., hy) is a subobject of B(LI). More ex-
plicitely, we have j: Zg(hy,..., hy) = B(U) which satisfies tj = i,
where ¢:B(0) =—B(U) is the canonical inclusion and i:
Zg(hy,...,h)) =—B(U) is the inclusion of the equalizer. It is
immediate to check the existence of an arrow

mg.: ZB(hian,...,thUa) — ZB(hl"“’hk)

(for acl), which makes the following diagram a pullback in E:

Zg(hylUg,... Uy & 7o (hy,..., By
W l 1,-
B(U,) © B(O)

Since B is local and U=Uqy U, then the family
(B(U,) “—B(U)) .y is universal effective epimorphic in E ; hence.
by (1), the family

my: Zg(hylUy..... Uy Cﬁ Zg(hyeoo b))

is effective epimorphic in E (2). Let

Jjoi Zp(hyIU,, ..., B JU) —— B(U,)
be the inclusion of the equalizer (for each a<¢I), and consider
B(f,): B(U,)—>B(V). It is easy to see that the family

B(fo) joi Zn(hy|Ug..., bilUg) Szgy= B(V)

is compatible. Hence. by (2). we deduce that there exists a uni-
que arrow t: Zg(h,,....h)=>B(V) such that tm =B(f ) j, for
each ae¢l. Likewise, it is easy to verify that if (f_ ), and
(fo) ey are equivalent, then we obtain the same arrow t.

Finally it is straightforward to prove that B(g)t=0; there-
fore, by definition (2.8) there exists a unique

f: ZB(h'l""’hk) i ZB(gi""’gl')'

such that ¢t =1, where (": Zg(g,,..., g,) “—B(V) is the inclusion
of the equalizer. We define p(f)=%. It is immediate to check
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that p is a functor: moreover. for each U« C,
p(A(D) = p(U.0) = Zxg(0) =B,

and it is clear that p(A(f))=B(f) for each holomorphic function
f: U-V. Hence pA=B. L]

3.4. DEFINITION. Recall (see [3]1) the following definitions: An
A-ringed space is a pair (X,0x), where X is a topological space
and Oy is an analytic ring in Sh(X) (the topos of sheaves on
X), furnished with a local morphism Iy: Oyx—>Cyx of analytic
rings in Sh(X) (where Cyx is the sheaf of germs of continuous
complex-valued functions defined in X).

It can be seen that Cyx is a local analytic ring in Sh(X).
Hence, by (1.7). Oy is local.

A morphism (X,0x)—(Y,Oy) of one A-ringed space into
another is a pair (f,9), where f: X-=Y is a continuous function
and ¢: f*Oy-Oyx is a morphism of analytic rings in Sh(X)
(f*Ovy is the inverse image in Sh(X) of the sheaf Ovy).

3.5. OBSERVATION. Let U be an open subset of C” and let I be
a coherent sheaf of ideals in Oy (the sheaf of germs of holo-
morphic functions defined in U). Let

E={p<U| h(p)=0 Vhye L.

Let Og be the restriction of Oy/I to E (E has the topology of
subspace of U). It can be seen (see [3]) that Og is an analytic
ring in Sh(E) and that (E,Og) is an A-ringed space.

3.6. DEFINITION. We shall call local model the A-ringed space
defined in (3.5). The coherence of I means that every point p
of ECU of a local model has an open neighborhood V in U
such that ENV is cut out of V by the vanishing of finitely many
holomorphic functions defined in V.

A special model is a local model (E,Og), E CU, cut out
by the vanishing of the same (finitely many) holomorphic func-
tions globally defined in U. That is. E=Z(hy,.... hx) and for each
p <E. I, is generated by (hy ... ~hx p).

We will say that (U,h) is a presentation of E, where h =
(hy,..., b)), h:U=ck.

3.7. PROPOSITION. The category L of local models has all finite
limits. (We remark that an equalizer of special models is not a
special model. This forces the consideration of local models.)
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PROOF. It follows with no difficulty; see [6] and (3], Proposi-
tion 2.12. =

3.8. OBSERVATION. It is straightforward to verify that an arrow
in P, say (U ,h)=(V,g), is equivalent to a morphism of A-ringed
spaces (E,Op)— (F,Op), where E=Z(hy...,h), F=2(g4,....g,)
(1). Then, if (E,Og) is a special model, we can define p(E,Of),
where p: P-FE is the functor constructed in (3.3).

Let L be the site of local models with the Grothendieck
topology given by the open coverings. Let A be the analytic ring
in L given by A(W) =(U,0y) for UeC; that is, A=(C,O¢) (see
[3], Corollary 2.9).

3.9. THEOREM. Let E be a Grothendieck topos and B a local
analytic ring in E. Then, there exists a unique functor p:L-E
which preserves finite limits and is a point of the site L such
that pA=B.

A

C———— L

b
BJ . 73'p
-
EK

PROOF. By (3.3) and (3.8), if E=Z(hy,...,h) is a special model,
then p(E,Og)=Zg(hy,...,h) is well defined and p is a functor
from the category of special models to E (1). Now, let (E,Of)
be a local model given by a coherent sheaf of ideals R in Oy,
with EC U. The coherence of R means that there exists a cove-
ring (E);.; of E, E=UJ;4E;, where each E; is a special model,
E;=Z(h{" .....0{?), h{” is a holomorphic function in an open
subset U; of U, and E;=ENU;. Moreover. R, is generated by
(hy P b ) for each x ¢E;. We define:

p(E.Op) = Ujq pP(E;,Og).

It can be seen, using that B is local, that this definition does
not depend on the election of the covering of E. Now, let
(£f.9): (E.Og)—>(F.Op) be an arrow between local models. Writing
F=U; F;, where each F; is a special model, it follows that
f"YF) is open in E. Then, f XF) is a local model; hence,
f'l(F1)=Uj€Jl,Ej, where each E; is a special model. Therefore,

E = Ui f 'F; = UiaUjg,Ej

Hence, E=Uj€JEj, where each E; is a special model, and for each
j €], there exists i; ¢I such that E;C f“(F,-j). Then, we have the
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following arrow between special models:
(fIEi,cplf*(OFj.))
(E/'OEI) L > (Fl’i, OF,',»)
Therefore. by (1), we have

p(fIE; @ F*(Og, )
p(E;.Og)) L p(F;;. Og;) > p(F.Og)

that is. we have for each j¢]J. an arrow p(E;Og)- p(F,Op). It
is easy to see. using that B is local, that this family of arrows
is compatible: hence. this defines a unique arrow T
p(E,Op) = p(F,Of). Similarly. it is easy to see that t does not
depend on the election of E; and F;. It is clear that p is a
functor and. like in (3.8). p(E,Og) does not depend on the pre-
sentation of E. Also, it is straightforward to prove that p pre-
serves finite limits, p is a point of the site L and pA=B. Uni-
queness of p follows from the fact that every object in L is a
union of special models. and these are obtained from open sub-
sets in C by means of equalizers (see [3], Proposition 2.12, and 1
in (4.7) ahead).

3.10. OBSERVATION (Classifiing topos of local analytic rings).
Let L be the topos of sheaves on the site L. It is straightfor-
ward to see that the topology of L is subcanonical. Then, we
have L~ L which is full and faithful. Considering the compo-
site
c—A ¢ 4

which we denote again by A, it follows from general topos
theory that Theorem (3.9) implies that given a local analytic ring
B in a Grothendieck topos E, there exists a unique functor p™:
I - E which preserves colimits and finite limits such that
p*A=B (see [1]). Moreover, it is obvious that A: C - L is local.

Bl //p*
E‘(/

This means that L is the classifying topos of local analytic
rings.
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4. FINITELY PRESENTABLE ANALYTIC RINGS.

4.1. PROPOSITION. Let A be the category of analvtic rings in
Ens. Then. the following statements hold:
1. A has finite elements and they are computed pointwise.
2. A has filtered colimits. they are computed pointwise
and commute with finite limits (see [3]).

Recall:

4.2. DEFINITION. We say that an analytic ring A is finitely pre-
sentable if the representable functor [A,—] preserves filtered
colimits. We denote with A, ¢ the category of finitely presenta-
ble analytic rings in Ens.

4.3. OBSERVATION. By a general category construction we know
that if A<A, then A<A, ¢ if and only if A is retract of a quo-
tient of O,(U): that is, there exists n20, an open subset U of
C", holomorphic functions hy,.... A in U and a retraction

w,v: A= O0,(W)/(hy,....h), wv =idy.

Here, the quotient O (U)(hy,..., k) is defined by the usual uni-
versal property. In order to fix the notation, we stretch this
property in the following diagram:

0, (W) A

2 _ -3¢
et
BK

O, (W/(hy,..., hy)

¢r=¢, o(h;) =0 for 1<is<k.

@ is equivalent to an element b «B(U) (0.8) and ¢(f)=B(f)(b)
for all f ¢ O,(U). Hence. the condition ¢(h) =0 is equivalent to
B(h)(b)=0, 1 <i<k; that is. b ¢Zg(hy,....h) (2.8 and 2.9). The-
refore, there exists a bijection:

[0 ,(W/(hy,....h).B]l ~ Zg(hy,..., hy)
(where [O,(U)/(hy,.... h),B] is the set of arrows
0, (W) /(hy,..., h) ——B).

4.4. OBSERVATION. Consider the dual category A% .

Let j: C > AZ% be the functor given by j(lW)=0,(U). Let
f: U~V be a holomorphic function: we have f': 0, (V)=0,(W).

and hence we have an arrow O,()-0,, (V). Then. j is an analy-
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tic ring in ApFr (see [31). By the general theory we know that j
has the following universal property: if E is a category with
finite limits and B is an analytic ring in E, then there exists a
uniaque finite limits preserving functor F: 492 -~ E such that we

have Fj =B:

Furthermore, there exists an equivalence of categories between
the analytic rings in F and the functors ASF—FE that preserves
finite limits.

When E=Ens, F is given by F(A)=I[A,B] (the set of mor-
phisms A-B of analytic rings). This then generalizes to arbitrary

E considering Yoneda's Lemma E “— (EnsE)°oP.

4.5. OBSERVATION. Let (X.Oyx) be a local model (see 3.6) and
let U be an open subset of C™. It is easy to see that there
exists a bijection

IN(X.0x(U) = [(X.0x).(U,0)].

where I' denotes "global sections” and [(X,04),(U,0Oul is the
set of arrows (X,03)~(U,0yy) in L. Since

I(X.0x(W) = I'(X,0x) (W),
(see [3]) and
['(X,05) ) ~ [0,(L),I'(X,0x)]

{(Yoneda). we obtain a bijection
[O,(U), T(X.0x)] ~ [(X,0x).(U,0 )1,
Now, we shall prove a generalization of this result.
4.6. LEMMA. Let U be an open subset of C", hy ,...,hge O, (1)
and (X,0x) ¢« L. There exists a natural bijection
[0,(U)/(hy,..., 1), [(X,0x)] ~ [(X,0x),(E,OF)]
where E=Z(hy,..., hy) and Og is the sheaf on E defined in (1.9).

4.7. OBSERVATION. The naturality means that if

e: O,()/(hy,...,h) — T'(X,05)]
and
$: Om(V)/(ll,...,Iq) — O0,(W)/(hy,..., )
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are morphisms of analytic rings. and we denote ¢ and ¢¢ the
arrows given by the bijection:

¢: (X.0x) = (E,Op) . ¢§: (X.0x) = (F,Op)
(where F=Z(/4....,14)), then ¢P= i(Q)¢. Here, i ApF — L is the
unique finite limits preserving functor such that the diagram

c—1L A

L~ -
commutes (4.4). where C —L is the analytic ring given by
WP (W,0y,) for WeC ; that is, it is the analytic ring (C,O¢)
considered before Theorem (3.8). Remark that, since i preserves
finite limits, then

i(0,(U)/(hy,....h)) = (E.Op) and i(Om(V)/(11,...,1q)) = (F,0p);
hence, i(]): (E,Op)-(F,OF).

PROOF OF THE LEMMA.
1. Construction of the bijection. We have the following
equalizer in L (see [3]):

(h.h")
(E,Op) “— (U,0y) ___W (€C*.0L K
where h =(h,,.... h)). Hence, a morphism (X.Oy)—(E.Og) in L is
equivalent to a morphism

@: (X,0x)=>(U.Oyy) such that (h,A")e=(0.0%¢ (1),
@=(f,n). where f:X-U is a continuous function and 7:
f*Oy—=0x. By (4.5). ¢ is equivalent to a section S <T(X.05)(U).
Explicitely: S=(S84,...,S,) and Six)=n(z;.f(x)) (<isn). where
z; is the ji-th projection C”"=C (see [31). By (1). we have hf =0
and 1 M) =0x0F vy (2). Here.

’

hp: Ok ppy”Ou. p for p e U.

Equation (2) applied to wy,....w, (where w; is the i-th projec-
tion CK-C), shows that
(3) n_\,(h,-,f(\,))=0 in OX,\' (x eX. 1<isk).

Given x ¢ X (fixed). there exists an open neighborhood W of A
and a local extension f of fin W such that n .(tg. ) =(tF).
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for ¢t holomorphic in a neighborhood of f(x’), x"¢ XNW (see [3]).
Hence.

S"(X.) = T]x'(zi’f(x')) = (Z"f)x' = i‘l.,,\";

therefore. S(x)= f,. for x'¢«XNW. that is S is given by Ff
around x. Hence, for 1<is<k,
T(X,0x)(h): T(X,0x) (W) — I'(X,0y)
satisfies. by (3). that
(DX O (B)(S)(x) = (h;F)x = nxlhiFee) = O.
Hence, (I(X,0x){(h))(S) =0 (1 si< k), which means that

SGZF(X.Ox)(hl"”’hk)'
Therefore. by (4.3), S is equivalent to a morphism

O (W /(hy,..., hy) — T(X,05).

Conversely, a morphism O, (U)/(hy,...,h) — T(X,0y) is
equivalent, by (4.3), to a section

S € Zr(x,Ox)(h‘l"“ ’hk) C F(X,Ox)(u)

Then, since S<I'(X,05)(U), S is equivalent, by (4.5), to a mor-
phism ¢ = (f,n):(X,0x)~>(U,0y). Explicitely, we have f(x)=VS(x)
for x ¢ X, where VS(x) is the value of the section S in the point
x, and 1n,(z; px))=S;(x) (1<i<n) (see [3]1). Hence, if S is given
by f around x ¢X and t is a holomorphic function defined
around f(x), we have that

T]x(tf(_\»))=(ti‘)_\..
Since SEZF(X,Ox)(h17“"hk)’ we have that
0 = (I(X,0x)(h(S)(x) = (hj7 ) (Usjsk),
which means that (hj?)xe I, (5), where I is the sheaf of ideals

which defines X. Hence h;f(x)=0 (1s j<k), that is h(f(x))= 0.
Now, if g is a holomorphic function in a neighborhood of 0 in
Ck, we can write

K
g(w)-g(0) =j=Z wiv(w)

with v; holomorphic in a neighborheod of 0 in Ck. Hence, for x'
in a neighborhood of x in CP, some p, XCCP, we have:
~ k ~ ~
glhf(x))-g0) = ¥ (i £)YN) -y (hE (X)),
it
Therefore. ’
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(ghF)x-(g(0)xe ((hyf)x,e, (hp F)x),

which is the ideal generated by (h, ?)x,...,(hki‘)x. Hence, since
(h;f)xeIy (by (5), we obtain that
(ghf)x-(g(0)xe I, that is, (ghF)x=(g(0)x

(here, g(0) is the constant function). Therefore, by (4),
1x(8F) pix) = Mx (80 £ex)),

where now g(0) is the constant function defined in C”. Therefo-
re, we obtain that
Nxlhetn) (80)) = nx(0pey) (£9))s

and this holds for all holomorphic function g in a neighborhood
of 0 in CK. Hence nxhf,,) = nx0f(); moreover. we have seen
that hf = 0. This means that ¢ =(f,n) satisfies the equation
(h,h")e = (0,0,)9; hence, by (1), ¢ is equivalent to a morphism
(X,0x%)-(E,Op). It is easy to see that this establishes the re-
quired bijection.

2. Naturality: we sketch the proof. First, one proves that if
$: 0,(V)/Uy,..., 1g) — O,(W/(hy,..., )
is a morphism of analytic rings,
e: O,(W/(hy....,h) — T'(E,OF)

is the canonical morphism (obtained from the canonical mor-
phism O,(W)-T(E.Og)) and £{:(E,Op)~(F.Op) is given by the
bijection established in 1, then £} = i({) (see (4.7). Then, given

®: 0, (W/(hy,..., h) — T(X,0).

¢ is equivalent, by (4.3), to a section S<¢Zpr(x,0y)(h1--\hy).

Hence, S «T'(X,0x)(U) is a section which takes values in E. Mo-
reover, if

Y=0¢: On(VI/(y. ... 1g) — T(X.0x).
then. by (4.3). 9 is equivalent to a section
[o] EZF(X’OX)(II, e Iq) C F(X,Ox)(v).

hence, o is a section of (X.Ox) which takes values in F. Finally,
i) (E,Op)=(F,Og), that is, i(@) =(t,)), where :E=F is a con-
tinuous function. In order to prove the naturality, that is, 9=
iQ)¢, first it is shown that Vo=1-(VS) (here, VS:X-E and
Vo: X-F). From this fact and the equation E:]J= i(@), it can be
seen that § = ()@ . =
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4.8. OBSERVATION. Let

s

W
A ¢ — O, (W) /(hy.....hy).  wy =idy

be a finitely presentable analytic ring in Ens. and let i: AgK—L
be the functor considered in (4.7). It follows that the diagram

— i(w id
i® — . (Eop —-—— (E.0p
itvw)
is an equalizer in L. We denote .
i(A) = (X5.0x,4) ¢ Land i(vw)=(f).
By (1), we have X4 ={\ ¢E| f(x)= v}. Now, if B is an analytic
ring in Ens. we define the following function
fB: ZB(hihk) — ZB(hlhk)
if beZglhy.....h), by (1.3). b is equivalent to a morphism
¢: O,(W)/(hy,....h,) — B :
then, we consider
evw: O (U)/(hy,...,h)) — B
which, by (4.3). is equivalent to an element ¢ «Zg(hy,..., hy). We

define fg(b)=c. Now, it is easy to see that there exists a
bijection:

[ABl ~ {b ¢Zg(hy.....h)) | fg(b) = b}
that is,
[A,B]l » {¢: O, (W/(hy,....,h ) > B | pvw = ¢}.

4.9. OBSERVATION. As before, it can be proved that there
exists a natural bijection

[AT(X,05)] & [(X,0%),(X5,.0x )] ((X,0x) L),

where the naturality means that if B is a finitely presentable
analytic ring in Ens, ¢: B2 A is a morphism of analytic rings and
@: A>T(X,0x). then cpAtl) = i(Q)¢. This result is obtained from
(4.6) and (4.8).

5. SPECTRUM OF A FINITELY PRESENTABLE ANALYTIC RING.

Here. first we shall compute the spectrum of a quotient
O,(U)/(hy.....hy).

Recall that the spectrum of an analytic ring A in Ens is a
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Grothendieck topos S, together with a local analytic ring Spec A
in S5 and a morphism A*A-SpecA, such that for all Grothen-
dieck topos E and all local analytic ring B in E furnished with a
morphism A¥*A-B. there exists a unique pair (p*.®). where p” is
the inverse image of a geometric morphism.

p*:Sp—E and m: p*Spec A—~B

is a local morphism, such that the following diagrams
commuite:

Ens —A————> E A*A —— 5 B
A*
p* T
Sa p*Spec A

S.1. OBSERVATION. Here A" is the constant sheaf. and the mor-
phism A*A-SpecA gives rise to a morphism p*(A*A)- p*(SpecA),
that is, A*A- p*SpecA. In this case the diagram

Ens —— > E

A*
p*

Sa
always commutes. since there exists a unique geometric mor-
phism E - Ens, whose direct image is “global sections” and who-
se inverse image is A*.
Let U be an open subset of C” and hy,..., iy holomorphic
functions in U. We denote E=Z(h,...., h) CU; we have the local
analytic ring Og in Sh(E) (see (1.9)).

5.2. THEOREM. The spectrum of O, (UW/(h,,...,h,) is the Gro-
thendieck topos Sh(E) together with the local analvtic ring OEg
in Sh(E). That is. Spec(O,(U)/(hy,....,h)) = OE.

PROOF. We denote by I'(E,Op) the analytic ring of global sec-
tions of the sheaf Og. Let p: O,(U)->I(E,Op) be the canonical
morphism (if f ¢ O, (W), po(f) is the global section of Og given
by f). Let r: O, (W)= O,(U)/(hy4,...,h) be the projection to the
quotient. Since p(h;) =0 for 1<i< k. there exists a unique

@: O, (W/(hy.....h) — T(E.Og)

such that or=¢p. ¢ is equivalent to a morphism

- 45 -



J. €. ZILBER

©: A*(0,(W/(hy,..., hy)) — OE

of analytic rings in Sh(E). Let B be a local analytic ring in a
Grothendieck topos FE and let

A: A0, (W/(hy.....h) — B

be a morphism of analytic rings in E. By (5.1), we have to prove
that there exists a unique pair (¢*“.7). where ¢': Sh(E)= E is the
inverse image of a geometric morphism and w:¢"Og-B is a lo-
cal morphism of analytic rings. such that the following diagram
commutes:

8O0 (W/ ... b)) — B
$* (o)
T
¢*OE

g (@) =A. Here. A is equivalent to a morphism of analytic rings
On(U)/(hy,...,h))—=T(B), and. by (4.3), this morphism is equiva-
lent to an element b ¢Zpg)(hy..... ) CTB(UW). It follows that b
is equivalent to an arrow b:1-B(U) where 1 is the terminal ob-
ject of E. In fact, we actually have b:1=Zg(h,,.... h ) —B(U) ().

Now, we shall define a functor ¢: O(E)=E, where O(E) is
the category of open subsets of E and open inclusions, with the
Grothendieck topology given by the open coverings. Let H be an
open susbset of E, H=VNE, where V is an open subset of C”
and VCU. It can be easily seen that if H=V,NE, where V, is an
open subset of €7, V,CU. then

Zg(h V.. b V) = Zg(hy|V, ... b lV).
Hence. we can define $(H) as the following pullback in E :

$(H) 1
b

ZlhdV.... B lV) —— Zp(hy..... by

It is easy to see that if H; “—H,, then there exists an arrow
$(H,)=>¢(H,) in E. and that ¢ is a functor which preserves finite
limits. We are going to prove that { is a point of the site O(E);
that is. if H=U,.H,, where H, is an open subset of E, then
the family ¢(H_)=¢(H) is an epimorphic family in E. Here,
H,=V,NE where V, is an open subset of C". V_ CU; hence
H=VNE where V =, V.. By (3.9) there exists a unique func-
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tor B*: L- E which preserves finite limits and is a point of the
site L such that B'A=B. where L is the site of local models and
A is the analytic ring in L given by A(W)=(W.0).

We have the following pullback in L (aecl):

(H,,OH,)© (H. Ogy)
@ [ 1
(V,Ovy © (V,0y)

From the fact that
Hy = V,NE = VoNZ(hq... b)) = ZChqVg.... i V)
and H=Z(h,/V..... 5 ]V). it follows that
B*(Ho,OHy) = Zg(hy|Vy,.... i [V,)

and B*(H,Op) = Zg(hylV,.... b lV):

moreover,

B*(V,.Ov,) = B*A(V,) = B(V,) and B*(V,Oy) = B(V).
Hence, applying BY to the pullback (2), we obtain that the fol-
lowing square

Zg(hylVa.oo Byl V) ——— Zg(hylV..... by V)

|

B(V,) — B(V)

is a pullback in E (for all a<l) (3). Since B is local. we have
that (B(V_,) ~—B(V)),. is an epimorphic family in E: hence, by
(3). we obtain that

Z 1|V gV - Zg(hy|V ... by V)

(oce])
is an epimorphic family in E (4). Moreover. it is easy to see that
$(Hy) ¢(H)
ZB(hIIVO(""‘hk|ch) c > ZB(h1[V..h1\|V)

is a pullback in FE (for each a<I). Hence. by (4). it follows that
(G(Hy)=¢(H)) o1 is an epimorphic family in E . This proves that
¢ is a point of the site O(E). Hence. ¢: O(E)=FE extends to a
functor
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¢*: O(E) = Sh(E)- E

which preserves colimits and finite limits [1].

Now. we have to define a lucal morphism of anaiytic rings
n: ¢*O—B. For each open subset W of C™. we have that
Op(W) = colim [—,H]

[-.Hlg Op(W)
where [—,H] is the contravariant representable functor associated
to He O(E): then.

(5) V" (OE(W)) = colim $(H)
[-.HIZ Op(W)

Let S:[—.H]=Og(W) be an arrow. By Yoneda's Lemma, S is
equivalent to an element Se¢ Os(W)(H). that is, S is a section of
Oe(W) defined in H. Thus. S<I'(H,Ox(W)), and. by (4.5), S is
equivalent to an arrow in L. S: (H.Op)—(W.Ow). Hence, we have

B(S): B*(H,Oy) — B*(W,0y).

Here, H=VNE where V is an open subset of C”, VCU; then
B*(H,Oy) = Zg(hlV,..., i |V); and B*(W.Oy) = B*A(W) =B(W).
That is, B*(S): Zg(hlV,..., V) = B(W). Moreover, by defini-

tion of ¢. we have an arrow

myg: Y(H) — Zg(hy|V, ..., b IV).
We define yg= B*(S)my: $(H)=B(W). It is easy to see that the
collection (yg). S:[—,HI=-Og(W), H<O(E), induces, by (5), a
unique arrow Ty : ¢*(OE(W))—>B(W). Moreover, it is straightfor-
ward to prove that the collection (nyw)w. defines a local mor-
phism of analytic rings m:¢*Og—B such that w{*(e) = X.

Now we are going to prove that ($*. m) is unique. Let ¢ :
Sh(E)—>E be the inverse image of a geometric morphism and let
n': ¢ Oe—~B be a local morphism of analytic rings. It is easy to
see, using the fact that w' is local. that for each open subsets

H of E (H=VNE where V is an open subset of C”, VCU), there
exists an arrow

Ty ZquAOE(hIIV.....thV) — Zg(h,V..... V)
such that the square

Zyrog BV o BIIV) == Z 2 (g g

s

Zg(hylV..... B lV) —— Zo(hy,....h})
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is a pullback in E (6). Moreover, the identity idy: V=V induces a
section of Og(V) defined in H; and this section induces an ar-
row [—.H] = Zo(hylV.....h|V). Similarly, we have an arrow
[ El = Zoglhy,...,hy). , and it is easy to see that the square

[—.H1] [—El=1

| |

Zog (B IV B V) —— Zop (hy oo )

is a pullback in Sh(E). Applying ¢, which preserves finite limits,
we obtain that the square

¢ ([=,HI) 1

oM |

Zq_,i“()E(hi!v,... y hk!V) — Zq),l*OE( h1 yeee s hk)

is a pullback in E (where
b1 (Zog (hy|V..... B V)

Zyjoet hyV ...l V)
and
q)r(ZoE(hi ,...,hk)) = Zq_,fOE( hl "“'hk))‘

By (6) and (7). it follows that the square
¢ (I—=,HD 1

| |

Z (hylV...., b [V) ——— Zg(hy..... )

is a pullback in E, and it is easy to see that, in this square. the
arrow 1 = Zg(hy,...,hy) is b (see (1)). Then, from the definition
of ¢. it follows that

¢ (= HD = ¢(H) = ¢*([—.HD

(for He O(E)). Hence, by preservation of colimits, it follows that
$3 =¢*. Finally, it is straightforward that t'=m. =

5.3. OBSERVATION. Let A be a retract of a quotient of O,(U).
Recall that we have the object (X4,0x,) <L (4.8). It can be seen

that the spectrum of A is the Grothendieck topos Sh(X,) with
the local analytic ring Oy, in Sh(X,). This result follows by
Theorem (5.2) and the natural bijections (4.6) and (1.9). Hence
we have:
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S.4. THBOREM. If A is a finitely presentable analytic ring in
Ens. then the spectrum of A is the Grothendieck topos Sh(Xj,)
with the local analytic ring Ox, in Sh(X,). That is. we have
Spec A=Ox,. ®

OPEN PROBLEMS.

The following are three problems of the theory of analytic
rings that had resisted our effort to solve them. We think that
a satisfactorily answer is of interest to the theory, and that
would require some deep ideas.

PROBLEM A. Preservation of infinite intersections by analytic
rings. This is relevant to a classical algebraic characterization of
the rings of germs of holomorphic functions.

PROBLEM B. The computation of a general quotient of finitely
presentable analytic rings. See Appendix.

PROBLEM C. Problem of the epimorphic-effective and universal
character of the open coverings in the dual of the category of
finitely presentable analytic rings (or the theory of analytic
rings).

Problems B and C are relevant to characterize this cate-
gory. Namely, is or is not a category of ringed spaces?

APPENDIX.

In general. we don’t know how to compute the quotients
of analytic rings: in particular. we don't have any description of
the ring O,(U)/(hy,..., h;). However. we have the following re-
sult. obtained with the collaboration of A.Dickenstein and C.
Sessa:

Let hy.....h; be holomorphic functions in an open subset
U of C" and E=Z(hy,....hy). If E has a base of Stein neighbo-
rhoods (see Grauert and Remmert. Theory of Stein spaces,
Springer 1979). then

O, (W/(hy,....h) = T(E.O)

where (E.Og) is the special model defined in 3.6 and T(E,Og) is
considered with its structure of analytic ring (see [3]. Theorem
2.10). Moreover. the kernel of the map

ot 0,(UNC) — O, (W)/(hy.....h)
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is the usual ideal as C-algebras and o¢ is surjective.

PROOF. It is easy to see that if Uy is an open subset of C” such
that UD Uy D E. then

0, (W /(hy.....h) = O, (Ug)/(hUg..... I Ug).

Then. taking Ug Stein. we may assume that U is Stein. Let
0: O,(W)>T(E,Op) be the canonical morphism; we will prove
that given ¢: O,(U)->B (B an analytic ring) such that ¢(h) =0,
1<isk, then there exists a unique ¢:[(E,Og)-B such that we
have ¢p=¢. Let S¢I'(E.Op). Since U is Stein. we can take a
holomorphic function fe¢ O, (U) such that S=p(f); we define
¢ (S) = (f). This is well defined; in fact, if p(f-g) =0, then

fp

and, again. since U is Stein, we have that f-g ¢(h4,.... hy): then
(Ff-g)=0.

i gThis essentially shows that I'(E.Og) is the quotient as C-
algebras. It remains to see that it actually is the quotient as
analytic rings.

We will prove now that if Se¢T'(E,Og)(W), where W is an
open subset of C, then &(S)<B(W). Clearly, we have S=p(f)
with Ff(E) CW; hence, there exists an open subset V of C7,
ECcVcU such that f(V)CW. ¢ is equivalent to an element b
of B(U) such that ¢(¢t)=B(¢)(b) for t <O, (U), and since ¢(h;)=0
(1 <sisk), we have

B(h;)(b)=0 (1sisk). that is, b ¢Zg(hy,.... ).

By (2.10). we have that Zg(h,...., hy) CB(V); then. beB(V) and by
considering f|V: V=W, we have:

@(f) = B(F)(b) = B(f|IV)(b) e B(W).

that is. ¢ (S) <« B(W). This defines an arrow ¢ :I'(E,Og)(W)-=B(W).
Similarly. we define ¢ for W an open subset of C™.

Finally, from the fact that E has a base of Stein neighbo-
rhoods. it will follow that ¢ defines a morphism of analytic
rings. Let g: W—=C be a holomorphic function: we have to prove
that the square

-8p <(hy ... by p) for all p <E,

[(E.Op) (W) ——& 4 [(E.OF)
Pw @
B(W) Big) 5B

commutes (we suppose again that WC C). Let S¢T'(E.Op)(W) and
f «O,(U) be such that S=p(g). Take as above an open subset V
of €7 ECVcCU. such that F(V)CW. Then. g'(S) = g'(gof|V),
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where ¢': O,(V)=T(E.Og) is the canonical morphism. On the
other hand. there exists t ¢ O,(U) such that g*(S)=¢(¢t); hence
§(g*(S)) = @(t) = B(e)(b):

moreover. §wiS)=@(r) = B{F)(b): then
B(g)(@ w(S)) = B(g)B(FYb)) = B(ghB(f|IV)(b)) = B(goflV)(b).

Then, we have to prove that B(t)(b) =B(gof|V)(b) (1). By hypo-
thesis. there exists an open subset V3 of C€” such that
ECVgCV and Vg is Stein; and, by (2.10). Zg(hy...., hy) CB(Vy).
Hence. b ¢« B(Vy). Hence.

(2)  B(£)(b) = B(t|Vy)(b) and B(gof|V)(b) = B(gOoflVy)(b).

Since t|Vy and gof|Vy define the same section g*(S) in (E,Op),
then using that Vg is Stein we obtain that

gOflVg-tIVge(hyVg.....h Vo).
Then it follows (by evaluation at b) that
B(gof|Vg)(b) = B(¢t|Vg)(b):
thus. using (2). we obtain (1).

The proof for WC C” is the same working in each coordi-
nate.
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