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COMPACT OBJECTS SURJECTIVITY OF

EPIMORPHISMS AND COMPACTIFICATIONS

by Gabriele CASTELLINI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CA 7ÉGORIQlIES

voL. XXXI-1 (1990)

RÉSUMÉ. La notion d’op6rateur de fermeture est utilis6e

pour g6n6raliser dans une categoric abstraite la notion de

compact6 pour les espaces topologiques. La plupart des
resultats classiques sur la compacite peut 8tre prouvee
dans ce cadre plus general. Par exemple, la conipactifica-
tion de Stone-Cech peut 6tre g6n6ralis6e. Dans les sous-

categories de groupes ab6liens cette notion de compacite
est li6e a la surjectivite des épil11orphismes.

INTRODUCTION.

Herrlich, Salicrup and Strecker in [11] presented a genera-
lization of the classical notion of compactness for topological
spaces. Such a generalization provides in an abstract category X
a concept of compactness with respect to a factorization struc-

ture on X. Because of a bijective correspondence between facto-
rization structures and weakly hereditary idempotent closure

operators on X (cf. 171). this naturally yields a notion of com-

pactness with respect to such closure operators. Unfortunately,
it rules out all those that fail to satisfn the weakly hereditary
condition. To avoid this inconvenience, we present here a con-

cept of compactness directly with respect to the notion of clo-
sure operator.

In §1 we reprove in this general setting most of the clas-
sical results about compactness in topological spaces.

In §2 we relate this generalized notion of compactness to

the surjectivity of epimorphisms in subcategories of AB or TOP.
In §3 we present a generalization of Stone-Cech compac-

tification.

PRELIMINARIES.

Throughout the paper we consider a category X and a

fixed class M of X-inonomorphisms, which contains all X-iso-
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morphisms. It is assumed that:

1. M is closed under composition.
2. Pullbacks of M-morphisms exist and belong to M, and

multiple pullbacks 0f (possibly large) familias of M morphisms
with common codomain exist and belong to M.

One of the consequences of the above assumptions is that
there is a (uniquely determined) class E of morphisms in X such
that X is an (E,M)-category (cf. 171). 

The class M will be considered as the class of objects of
a comma category which is denoted again by M. Its morphisms
(f,g): m - n are commutative squares, i.e., n f - gm. Since the
codomain functor U: M-&#x3E;X (U(f,g) = g) is faithful, M is concre-
te over X.

As in 171, by a closure operator on the category X with
respect to the class of subobjects M we mean a concrete func-
tor F:M-M, i.e., UF=U together with a natural transformation

Y : IdM -&#x3E; F such that Uy=1u.
We write

for every m E M . [m]Fx will be called the F-closure of m . Subs-
cripts and superscripts will be omitted when not necessary. The

conglomerate of all closure operators on X with respect to

M with the preorder defined by

will be denoted by CL(X,M).

For F E CL(X,M), any m E M with m *5 [m]F is called F-
closed and any X-morphism f: X-Y such that its (E,M)-factori-
zation (e,m) satisfies [m]F = ly is called F-dense.

F is called idempotent if for every m E M, [m]F is F-clo-
sed.

If m [m]: M -&#x3E; [M]F is the morphism induced by the natural
transformation y. then F is called weakis- hereditary if m[m] is

F-dense. 

The class of F-closed M-subobjects and the class of F-
dense morphisms will be denoted by MF and EF, respectivelj .

If m and n are M-subobjects of the same object X, with
m s n and mn denotes the morphism such that n m n = m , then
F is called hereditari if n[mn] = n n[m] holds for every X E X
and M-subobjects m, n of X with m s n.
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We observe that the pullback of each F-closed subobject
is F-closed (cf. [7]), Therefore if we consider X as a concrete

category over itself via the identity functor, the above definition
of closure operator is equivalent to the notion of global closure
operator which appears in [4].

If C is a subcategory of X, we call a morphism r: X-Y

C-regular if it is the equalizer of two morphisms f,g:Y-Z,
ZcC.

If M contains all regular monomorphisms of X, then for

every M-morphism m: M-&#x3E;X we define

The f unctor FC : M-4M defined by Fc(m) = [m]c is an idempo-
tent closure operator on X (cf. C15, 8,1J).

All the subcategories considered will be full and isomor-

phism-closed. 

1. BASIC DEFINITIONS AND RESULTS.

In what follows F will always denote a closure operator
with respect to the given class M of monomorphisms and X
will be a category with finite products.

DEFINITION 1.1. An X-morphism f: X-Y is called F-closed pre-
serving if , for every F-closed M-subobject m: M - X, in the (E,
M)-factorization m 1 e 1= f m, m 1 is F-closed.

DIFINITION 1.2. An X-object X is called F-compact if for each
X-ob ject Z, the projection Pz: XZ-&#x3E;Z is F-closed preserving.

Comp(F) will denote the subcategory of X whose objects
are the F-compact ones. If F is induced by a subcategory C, we
will write Comp(C) .

Clearly, such a concept generalizes the classical notion of

compactness in Topology, since if X=TOP and F is the closure

operator induced by the topology, then Comp(F) = Compact topo-
logical spaces (cf. [12]),

LEMMA 1.3. Evers- X-isomorphism is F-closed preserving.

LEMMA 1.4. The composition of F-closed preserving morphisms
is F -cl osed preserving.
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PROPOSITION 1.5. Comp(F) is closed under the formation of fi-
nite products.

PROPOSITION 1.6. Let X hal1e products and suppose t ha t thp

pullback. of rrix1z:TTXixZ-XixZ along any v F-cl osed subobject
belongs to E for every i. Then. if the II X; is F-compact. each
factor is too.

PROOF. Let us consider the commutative diagram

where ( e 1, m 1) is the (E.M)-factorization of rrZ m , m is F-closed
and (P. n, p) is a pullback. Since p E E, then (e1P,m1) is the (E,
M)-factorization of rrZ(rri 1Z) n, n being F-closed (as pullback.
of an F-closed subobject) implies that m 1 is F-closed, i.e., Xi is

F-compact.

LEMMA 1.7. If F is weakly v hereditary and idempotent and if
m : M - X is F-closed. then mx1z: MxZ -&#x3E; XxZ is F-closed for-

ev,,eri Z e X

PROOF. Since (E.M) is a factorization structure on X, lZ E M im-
plies that mX 1 Z E M too (cf. [11] Proposition 1.4). Since F is

weakly hereditary, (EF,MF) is also a factorization structure on X
(cf. [7] Proposition 3.2). Thus, being m and 1z both F-closed,
we get that mx1Z is F-closed.

THEOREM 1.8. If F is idempotent and weakly hereditary. then
the F-compact objects are closed under F-closed M-subobjects.
PROOF. Let us consider the commutative diagram
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where X is F-compact, n is F-closed in MxZ, m is F-closed in
X and (e1, n 1) is the (E, M)-factorization of rr Z ( mx 1z) n.

From Lemma 1.7, mx 1 Z is F-closed in XxZ and so is

(mxlz)n (cf. [71, Proposition 3.2). Since X is F-compact, we ha-
ve that n 1 is F-closed. Let PZ : MXZ-Z be the usual projection
and let (e2, n2) be the (E, M)-factorization of PZ n with

n 2: N2-&#x3E;Z . Since (e2, n 2) is another (E , M)-factorization of

rr Z( m x 1Z) n , we get that N 1 = N2 and so n 2 is F-closed, i. e., M
is F-compact.

PROPOSITION 1.9. Suppose that for e E _E . the pullback of ex 1

along ani, f-closed subobject belongs to _E . If f: X-Y is an X-

morphism and (e.m) is its (E, M) -factorization. then if X is

F-compact so is f(X) (where f(X) is the middle object of the

(E, M) -factor-ization).

PROOF. Let us consider the commutative diagram

where n° is the pullback of the F-closed M-subobject 11. Let

(e1,m1) be the (E,M)-factorization of rr Zn and (e2,m2) the (E,
M)-factorization of PZ n° . m 2 is F-closed, since n° , as pullback
of an F-closed monomorphism, is F-closed and X is F-compact.
From the hypothesis (exlz)° belongs to E, i. e., ( e 1( e x 1Z)°, n 1) is
an (E , M)-factorization of PZ n° . Thus, there exists an isomor-

phism i such that m2i - m 1, which implies that m 1 is F-closed.
Hence f(X) is F-compact.

REMARK 1.10. In TOP (GR), the (Epi,Strong monomorphism)-fac-
torization satisfies the requirement of the above proposition.

DEFINITION 1.11. Let f: X-Y be an X-morphism. The morphism
1x,f&#x3E;:X-&#x3E;XxY is called the graph of f.

DBF1NITION 1.12. Let X have equalizers. For every Y E X,
(AY,5Y)=equ(rr1, rr2 ), rr1 rr2 :YxY-&#x3E;Y being the usual projections.
is called the diagonal of Y.

Notice that if M contains all regular monomorphisms,



58

then (Ay,5y) E M for every Y E X. In such a case, let us call

F-separated all those objects Y E X satisfying the condition that

(4y,8&#x3E;.) is F-closed in YxY.

If F is induced by a subcategory C, then me objects Of 1 - k-
are F-separated (cf. [4]).

It is easy to prove the following

PROPOSITION 1.13. Let X have equalizers and let M contain all

regular monomorphisms. An X-object Y is F-separated iff for

every X-morphism f: X - Y, (X,1x,f&#x3E;) is F-closed in X x Y.

THEOREM 1.14. Let X have equalizers and let M contain all re-

gular monomorphisms. An F-compact subobject of an F-separa-
ted object is F-cl osed.

PROOF. Let m: M-X be F-compact and let X be F-separated.
From Propositioin 1.13, 1m,m&#x3E;:M-&#x3E;MxX is F-closed. Let us

consider the commutative diagram

By uniqueness of factorization structures, (1M, m) is the (E,M)-
factorization of rrX 1M, m&#x3E; and since M is F-compact, xx is F-

closed preserving. This implies that m: M-&#x3E; X is F-closed.

COROLLARY 1.15. Let X have equalizers and let M contain all

regular monomorphisms. Let F be idempotent and weakly heredi-

tart, and suppose that for e E E . the pull back of ex1 1 along any 
F-closed subobject belongs to E. If X is F-compact and Y is

F-separa ted. then any X-morphisn1 f: X-Y is F -cl osed preserv-
ing.
PROOF.Let us consider the commutative diagram

where m is F-closed in X and (e l’ m 1) is the (E, M)-factorization
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of f m . From Theorem 1.8, (M, m) is F-compact and from Propo-
sition 1.9, so is (M 1, m 1). Finally from Theorem 1.14, m1 is F-
closed.

The following two results follow directly from Proposi-
tions 3.2 and 3.1 of 171.

PROPOSITION 1.16. Let X be a regular well-powered categor.y
with products and let C be a subcategory of X closed under the
formation of products and M-subobjects. Then [ ]c is weakly 
hereditary in C iff the regular monomorphisms in C are closed
under composition.

PROPOSITION 1.17. Let X be a regular well po wered (epi. strong
monomorphism)-category- with product and let M be the class of
all strong monomorphisms. Let C be a subcategory of X closed
under products and strong subobjects. If I Ic is weakly heredi-
tari- in C, then the extremal monomorphisms in C agree with
the regular monomorphisms in C

Further results concerning the coincidence of regular mo-
nomorphin1s with extremal monomorphisms in C can be found
in [17] and E18L

2. COMPACTNESS AND SURJECTIVITY OF EPIMORPHISMS.

In what follows, we present some applications to the ca-

tegories AB (abelian groups) and TOP (topological spaces) in
which the class M will be the class of all monomorphisms in
the case X = AB and the class of all I embeddings for X = TOP.

LEMMA 2.1. Let C be epireflective in AB and let M be a sub-

group of X E AB . M is C -cl osed in X iff X/M E C.

PROOF. (=&#x3E;) If M is C-closed, then M = equ( f,g) with f, g: X-Y
and Y E _C (cf. [1] Proposition 1.6). Clearly X/M E C, since M =

ker( f- g) .
(=) If X/M E C, then M = equ( q.0) with q,0: X-&#x3E;X/M, i.

e., M is C-closed.

PROPOSITION 2.2. Let C be epireflective in AB, then an object
X E AB is C-compact iff for every Z E AB and subgroup M of
XxZ such that XXZ/M E C, we have Z/7r2( M) E C.

PROOF. It follows directly from Lemma 2.1.
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PROPOSITION 2.3. If C is an epireflective subcategory of AB,
closed under- the formation of quotients. then the projections
are C-closed preser-ving and the r-egular monomorphisms in C

are closPd under composition.

PROOF. Let X, Z E AB. Let us consider 1tz: XxZ-&#x3E; Z and let M be
C-closed in XxZ. Then, M = equ(f,g) with f, g: XxZ--&#x3E;Y and Y E C.
Also XxZ/M is a subgroup of Y and so it belongs to C. Clea-

rly, there exists an epimorphism e: XxZ/M -&#x3E; Z/rrZ(M) and since
C is closed under the formation of quotients, Z/1tz(M) E C, i. e.,
rrZ(M) is C-closed..

Let m : M -&#x3E; N and n:N-&#x3E;X be regular monomorphisms in C.
Since C is closed under subgroups, the monomorphisms in C are

injective. Clearly,

Thus. the regular monomorphisms in C are closed under compo-
sition.

COROLLARY 2.4. If C is an epireflective subcategoi-i- of AB clo-
sed under- the formation of quotients. then [] c is weakJ.F here-
ditari- in C.

PROOF. Apply Propositions 2.3 and 1.16.

PROPOSITION 2.5. If C is a subcategory of AB or TOP and

Comp(C) contains C . then the epimorphisms in C are surjecti ve.
PROOF. Let f: X-Y be an epimorphism in C, i.e.,
[(f(X),m)]c=Y (cf. [1], Theorem 1.11) and let (e,m) be the

(epi,M)-factorization of f lx. Let us now consider the commuta-
tive diagram

Since Y E C, from Proposition 1.13, (X,1,f&#x3E;) is C-closed and sin-

ce X is C-compact, we get that ( f(X), m) is C-closed, i. e.,
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Thus, f is surjective.

We finally obtain

THEOREM 2.6. Let C be epirefl ecti ve in AB. The following sta-
tements are equivalent:

a) C is closed under the formation of quotients.
b) The projections are C-closed preserving and the regular

monamorphisms in C are closed under composition.
c) Comp(C) = AB and the regular monomorphisms in C are

closed under composition.
d) C is contained in Comp(C) and the regular- monomor-

phisms in C are closed under composition.
e) The epimorphisms in C are surjective and []c is wea-

kli v hei-editart in C.
f) Each subobject of a C-object is C-closed.

PROOF. a) =&#x3E; b). Proposition 2.3.
b) =&#x3E; c) . Straightforward.
c) - d). Straightforward.
d)=&#x3E;e). Propositions 2.5 and 1.16.
e) - f). Let (M, m) be an M-subobject of X E C and let us

consider the factorization m = [m]cm[m]. By the weakly heredi-
tary hypothesis. m[m] is C-dense. From [1]. Theorem 1.11, it is

an epimorphism in C. Since the epimorphisms are surjective in

C, we get that [m]c = m.
f) =&#x3E; a) . Suppose there exists an AB-epimorphism q: X-Q

such that X E C but Q£C (clearly Q #0). Let us consider the

M-subobject i: ker( q)-&#x3E;X. X/ker(q)=Q£C contradicts the fact
that i is C-closed.

COROLLARY 2.7. If C is epireflective in AB and closed under
the formation of quotielits, then C is the subcategory of the

compact-separated objects of Fe. 
PROOF. Since C is epireflective in AB. we have that the objects
of C are exactly the separated objects of Fc (cf. [4] Corollary
1.13 and 121. Theorem 2.1) . From Theorem 2.6 we get that C is
contained in Comp(C).

REMARK 2.8. We observe that the previous theorem shows that.

although for a subcategory C of AB being closed under quo-
tients always implies that the epimorphisms in C are surjective.
the converse is not true, unless we put further assumptions on
the subcategory C .

If C is the subcategory of divisible abelian groups (DIV).
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algebraically compact abelian groups (AC), cotorsion abelian

groups (COT) or the category AB itself, then the closure opera-
tor induced by C is weakly hereditary, simply because in all the-
se cases everv subobiect is C-closPd This also implies that

Comp(C) = AB.
From Proposition 2.5. we can conclude that the epimor-

phisms in AC are surjective. Although AC is not closed under

quotients, this does not contradict Theorem 2.6, since AC is not

epireflective in AB.
If C is the subcategory of torsion-free abelian groups

(TF), then

Comp(TF) n TF - torsion free divisible

(cf. [11]. Examples 2.3 and 4.9).
Further results about weakly hereditary closure operators

in AB can be found in 131.

PROPOSITION 2.9. If F is a cl osure oper-a tor on Ab or- TOP,
then the epimorphisms in Comp(F) are surjective.
PROOF. If X E Comp(F) and e: X-&#x3E;Q is an epimorphism in AB or
TOP. then from Proposition 1.9. Q E Comp(F). This clearly implies
that the epimorphisms in Comp(F) are surjective.

For X = TOP. Theorem 2.6 does not hold. For instance, if

C = TOP1 then every extremal subobject of a TOP1- object is

TOP1-closed (cf. 151, Theorem 1.10) but C is not closed under

quotients.
However. fioin Proposition 2.5 we get that if Coinp(C) =

TOP then the epimorphisms in C are surjective. This immediately
implies that if C is one the subcategories Topo. TOP2, Tops 1/2
then Comp(C) # TOP, because in these subcategories the epimor-
phisms are not surjective.

PROPOSITION 2.10. If B is bireflective in TOP. then we ha ve :

Comp(B) = TOP.

PROOF. From [5], Theorem 1.10 and 161, Lemma 2.1, we have
that for every bireflective subcategor),, B of TOP, the B-closure
is the identity. This clearly implies that Comp(B) = TOP. 

r

3. F-COMPACTIFICATION.

Let us assume that in the (E,M)-factorization structure of
X, E is a class of epimorphisms and M contains all regular mo-
nomorphisms. Let us also assume that X is an E-co-well-power-
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ed category with products.
D(F) will denote the subcategory of F-separated objects of

X (cf. 141).

DEFINITION 3.1. Let F be a closure operator on X and let

X E D(F) . An F-compactification of X is a pair

with B: X-4PFX D(F)-dense and such that for every morphism
f:X-Y with YE Comp( F) n D(F) , there exists a morphism

DEFIN’ITIoN 3.2. A closure operator F is called compactly pro-
ductive if Comp(F) is closed under arbitrary products.

LEMMA 3.3. Each F -dense lnorphism is also D(F) -dense.

PROOF. Let f: X-Y be an F-dense morphism and let (e, m) be

its (E . M)-factorization. From [4]. Theorem 1.8. we get that

Since [m]F = [1Y], we get that [m]D(F) = [1y], i.e., f is D(F)-
dense.

PROPOSITION 3.4. Let F be an idempotent and JlveaklJ’ hereditar.y
closure operator such that D(F) is co-well-powered. If F is

compactly productive. then the subcategoyl Comp (F)nD(F) is

EFnMorD(F)-reflective in D(F) .

PROOF. Since Comp(F) and D(F) are both closed under products
(cf. 121, Proposition 1.6), we get that Comp(F) n D(F) is closed
under products in D(F) and under F-closed subobjects (cf. Theo-
rem 1.8). Since F is weakly hereditary, from 171, Proposition 3.2,
(EF,MF) is a factorization structure on X and so

is a factorization structure on D(F). From Lemma 3.3, every

morphism in EFn MorD(F) is an epimorphism in D(F) (cf. [1],
Theorem 1.11). * Thus D(F) is EFn MorD(F)-co-well-powered and
from [10], Theorem 37.1, we get that Comp(F) n D(F) is

EFn MorD(F)-reflective in D(F).

So, we can conclude with the following

THEOREM 3.5. Let F be an idempotent and weakly v hereditary 
closure operator such that D(F) is co-well-powered. It’ F is

compactiv y producti ve. then evers X E D(F) has an F-compactifica-
tion.



64

PROOF. From Proposition 3.4, the subcategory Comp(F) n D(F) is

EFnMor-D(F)-reflective in D(F). For every X E D(F), let B: X-&#x3E;BFX
be the reflection morphism. j3 is F-dense and from Lemma 3.3, it

is D(F)-dense.

EXAMPLE 3.6. If F is the closure operator induced in TOP by
the (dense, closed embedding)-factorization structure, then

Comp (F) = compact and Conlp(F) n D(F) = compact Hausdorff.

If we restrict our attention to TBchonoff spaces, the induced

F-compactification is the Stone-Cech compactification. Notice
that ToP2 is co-well-powered (cf. 161. Corollary 3.4).

EXAMPLE 3.7. If TF is the subcategory of torsion-free abelian

groups, then TFD. the subcategory of torsion-free divisible abe-
lian groups is the subcategory of TF-compact TF-separated ob-
jects (cf. [4] 191 and [11]. Examples 2.3 and 4.9). We want to

construct the []TF-con1pactification. Let G E TF and let DG be

its injective hull. i: G-&#x3E;DG is -TF-dense. as it can be easily seen.

and so an epimorphism in TF. So, given Z E TFD and f: G-Z,
there exists a unique f’: DG- Z such that f’i = f. Since DG is

torsion-free (cf. [14L pp. 21-22). the pair ( i, DG) is the wanted
I ]TF-compactification.

In particular, if G=Z. the additive group of integers, then

DG/T = Q. the additive group of r-ationals.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF PUERTO RICO

MAYAGUEZ, PR 00708.
U.S.A.



65

REFERENCES.

1. G. CASTELLINI, Closure operators, monomorphisms and epi-
morphisms in categories of groups, Cahiers Top. et Géom.

Diff. Cat. XXVII-2 (1986). 151-167.
2. G. CASTELLINI, Closure operators and functorial topologies,

J. Pure &#x26; Appl. Algebra 55 (1988), 251-259.
3. G. CASTELLINI, Hereditary and weakly hereditary closure ope-

rators in abelian groups, Preprint.
4. G. CASTELLINI &#x26; G.E. STRECKER, Global closure operators

versus subcategories. Quaest. Math. (to appear).
5. D. DIKRANJAN &#x26; E. GIULI, Closure operators induced by to-

pological epireflections, Coll. Math. Soc. J. Bolyai 41 (1983),
233-246.

6. D. DIKRANJAN &#x26; E. GIULI, Epimorphisms and co-well-powe-
redness of epireflective subcategories of TOP, Rend. Circolo
Mat. Palermo. Suppl. 6 (1984). 121-136.

7. D. DIKRANJAN &#x26; E. GIULI, Closure operators I, Top. &#x26; its

Appl. 27 (1987), 129-143.
8. D. DIKRANJAN, E. GIULI &#x26; A. TOZZI, Topological categories

and closure operators, Preprint.
9. T.H. FAY, Compact modules, Comm. Alg. (to appear).
10. H. HERRLICH &#x26; G. E. STRECKER, Category Theory. 2nd edi-

tion, Heldermann, 1979.
11. H.HERRLICH, G. SALICRUP &#x26; G.E. STRECKER, Factoriza-

tions, denseness, separation and relatively compact objects,
Top. &#x26; its Appl. 27 (1987). 157-169.

12. S. MOWRKA. Compactness and product spaces. Colloq. Math.
7 (1959). 19-22.

13. L.D. NEL &#x26; R.G. WILSON, Epireflections in the category of

T0-spaces, Fund. Math. 75 (1972). 69-74.
14. A. ORSATTI, Introduzione ai gruppi abeliani astratti e topo-

logici. Quaderni dell’Un. Mat. Italiana 8, Pitagora Ed., Bolo-

gna 1978.
15. S. SALBANY. Reflective subcategories and closure operators,

Lecture Notes in Math. 540. Springer (1976). 565-584.
16. L. SKULA, On a reflective subcategory of the category of all

topological spaces, Trans. A. M.S. 142 (1969). 37-41.
17. L. STRAMACCIA, Some remarks on closure operators induced

by topological epireflections. Preprint.
18. L. STRAMACCIA, On regular and extremal monomorphisms in

general I categories, Preprint.


