CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

LUCIANO STRAMACCIA Functors between homotopy theories

Cahiers de topologie et géométrie différentielle catégoriques, tome 31, nº 2 (1990), p. 169-178

http://www.numdam.org/item?id=CTGDC_1990_31_2_169_0

© Andrée C. Ehresmann et les auteurs, 1990, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

FUNCTORS BETWEEN HOMOTOPY THEORIES

by Luciano STRAMACCIA¹

RÉSUMÉ. Dans cet article, on considère des catégories C munies d'une notion d'homotopie, sous la forme d'une structure de I-catégorie au sens de Baues, engendrée par un foncteur cylindre I, et on étudie la préservation des propriétés d'homotopie relativement à un foncteur $S: C \rightarrow A$. en particulier lorsque S est un réflecteur. Le cas d'un proréflecteur est aussi examiné.

INTRODUCTION.

There are various ways to introduce a homotopy notion in a category C, all related to the concept of model category of Quillen [9]. Most notably, those due to Brown [2] and, more recently, to Baues [1], seem to be very interesting and more manageable than the original one. However there exists, up to author's knowledge, a certain lack in the literature concerning subcategories and comparison of homotopy structures.

In this paper we are concerned with categories endowed with the structure of an I-category in the sense of [1], which is generated by a cylinder functor I on it [1,6]. We study the preservation of homotopy properties by means of a functor S from C to A. In particular, we are interested in the case where S is a reflector, which means that A is a full subcategory of C and S is left adjoint to the embedding functor T: A-C. Also the case of a proreflector P is considered.

1. PRELIMINARIES.

Let C be a category and let Σ be a class of morphisms of C which we call "weak equivalences". A new category $C[\Sigma^{-1}]$ can be constructed by formally inverting weak equivalences. $C[\Sigma^{-1}]$ has the same objects as C and is defined by the following properties:

1. Work partially supported by funds (40%) of M.P.I., Italy. - 169 - (i) There is a functor $P_{\Sigma}: C - C[\Sigma^{-1}]$ which is the identity on objects and which inverts all weak equivalences, that is, $P_{\Sigma}(s)$ is an isomorphism in $C[\Sigma^{-1}]$, for every $s \in \Sigma$.

(ii) If $G: \mathbf{C} \to \mathbf{D}$ is a functor which inverts all weak equivalences, then there is a unique functor $G^*: \mathbf{C}[\Sigma^{-1}] \to \mathbf{D}$ such that $G^* \cdot \mathbf{P}_{\Sigma} = G$.

 $C[\Sigma^{-1}]$ always exists, but its description is particularly nice whenever Σ admits a "calculus of left fractions" in C [3].

Let \boldsymbol{A} be another category endowed with a notion of weak equivalence and let Λ be the class of such weak equivalences. A functor F: $\boldsymbol{C} \rightarrow \boldsymbol{A}$ can be extended to a functor F^{*}: $\boldsymbol{C}[\Sigma^{-1}] \rightarrow \boldsymbol{A}[\Lambda^{-1}]$ iff F preserves weak equivalences, that is $F(\Sigma) \subset \Lambda$. In such a case F^{*} is the unique functor with F^{*}·P_{Λ} = P_{Σ}·F. F^{*} acts on objects as F does.

PROPOSITION 1.1 (cf. [2], p. 426). Let $T: \mathbf{A} \rightarrow \mathbf{C}$ and $S: \mathbf{C} \rightarrow \mathbf{A}$ be functors which preserve weak equivalences. If S is left adjoint to T, then S^{*} is left adjoint to T^{*}.

DEFINITION 1.2. a) A cylinder functor for a category C is a functor I: $C \rightarrow C$ together with natural transformations

$$e_0 \cdot e_1 \colon 1_C \rightarrow 1 \text{ and } \sigma \colon I \rightarrow 1_C$$

such that $\sigma \cdot e_0 = \sigma \cdot e_1 = \text{identity}$.

Two morphisms $f.g \in C(X,Y)$ are homotopic, written $f \cong g$, whenever there is a "homotopy" $H: I(X) \to Y$ with $H \cdot e_0(X) = f$ and $H \cdot e_1(X) = g$. Shortly $H: f \cong g$.

b) Once a cylinder functor is given for C, one can define a morphism $t \in C(X,Y)$ to be a *weak equivalence* when it has a homotopy inverse, that is there exists an

 $s \in C(X,Y)$ such that $s \cdot t \cong 1_X$ and $t \cdot s \cong 1_Y$.

Let Σ be the class of such weak equivalences in **C**.

The cylinder functor I is said to be generating for C (compare [6]) whenever (C, I, +) is an I-category in the sense of Baues [1], with respect to the classes Σ of weak equivalences above and the class Γ of cofibrations, defined by the usual homotopy extension property. Let us denote by + the initial object of C.

Whenever I is generating, the class Σ of weak equivalences admits a calculus of left fractions in C and the category

 $C[\Sigma^{-1}] = HoC$ is called the *homotopy category* of C with respect to I. For every pair of objects X.Y of C, HoC(X.Y) = [X.Y] is the set of homotopy classes of morphisms X-Y in C.

c) Let $J = (J, d_0, d_1, \delta)$ and $I = (I, e_0, e_1, \sigma)$ be cylinder functors for the categories **A** and **C**, respectively. We say that $F: \mathbf{C} \rightarrow \mathbf{A}$ respects the cylinder functors whenever the following hold:

(i) $\mathbf{F} \cdot \mathbf{I} = \mathbf{J} \cdot \mathbf{F}$.

(ii) a) $\mathbf{F} \cdot \mathbf{e}_i = d_i \cdot \mathbf{F}$. i = 0.1: b) $\mathbf{F} \cdot \sigma = \delta \cdot \mathbf{F}$.

2. FUNCTORS PRESERVING CYLINDERS.

It is easily seen that a functor $F: \mathbb{C} \to \mathbb{A}$ which respects the cylinder functors preserves homotopies: in particular F preserves weak equivalences and induces a uniquely determined functor HoF: Ho $\mathbb{C} \to$ Ho \mathbb{A} between the homotopy categories.

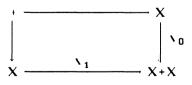
The converse is not true in general: the simplest example is perhaps a constant functor TOP-TOP which induces a constant functor between the homotopy categories. but does not preserve homotopies. We wish to study this situation in detail. in the case where \boldsymbol{A} is a reflective subcategory of \boldsymbol{C} with inclusion T such that T·I=I·T and reflector S which preserves weak equivalences.

Let us denote by $\alpha: 1 \rightarrow T \cdot S$ the unit of this adjunction: then by the universal property of the reflection there exists a unique morphism t_X which renders the following diagram commutative:

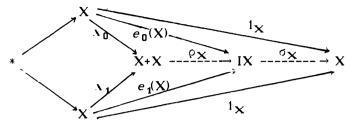
$$IX \xrightarrow{\alpha_{IX}} S(IX)$$
$$I\alpha_X \qquad t_X$$

IS(X)

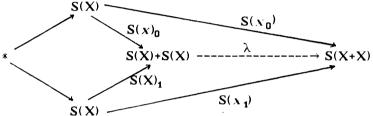
Assume now that I is a generating cylinder functor for C. For every object $X \in C$, there exists the pushout



As for notations. let us also consider the following commutative diagrams



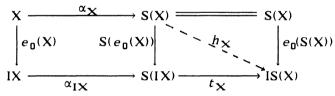
from which it follows that $\sigma_{\mathbf{X}} \cdot \varphi_{\mathbf{X}} = (\mathbf{1}_{\mathbf{X}}, \mathbf{1}_{\mathbf{X}})$ is the folding map for X.



LEMMA 2.1. For every $X \in C$ the following holds:

(i) $t_X \cdot S(e_0(X)) = e_0(S(X))$; in particular t_X is a weak equivalence.

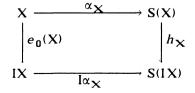
PROOF. Consider the diagram



where the left square is commutative. By the universal property of the reflection, there exists a unique morphism h_X such that

$$h_{\mathbf{X}} \cdot \alpha_{\mathbf{X}} = t_{\mathbf{X}} \cdot \alpha_{\mathbf{I}\mathbf{X}} \cdot e_{\mathbf{0}}(\mathbf{X}) = \mathbf{I}\alpha_{\mathbf{X}} \cdot e_{\mathbf{0}}(\mathbf{X}).$$

Hence the following diagram is also commutative:



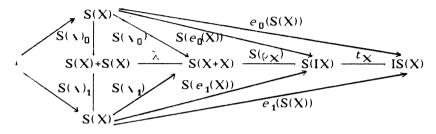
- 172 -

FUNCTORS BETWEEN HOMOTOPY THEORIES

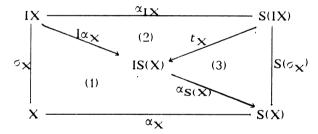
and this forces $h_X = e_0(S(X))$. Finally

 $t_X \cdot \alpha_{IX} \cdot e_0(X) = e_0(S(X)) \cdot \alpha_X$ and $t_X \cdot S(e_0(X)) \cdot \alpha_X = e_0(S(X)) \cdot \alpha_X$. Hence $t_X \cdot S(e_0(X)) = e_0(S(X))$. t_X is a weak equivalence since $e_0(X)$ is, for every X, and S preserves weak equivalences.

Part (ii) follows from the second diagram. applying the functor S. Part (iii) follows from (i) considering the diagram:



(iv) Consider again a diagram:

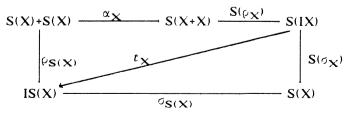


The outer square is commutative since α is a natural transformation. Square (1) commutes since σ is a natural transformation. Triangle (2) commutes by assumption. Let us prove that triangle (3) is also commutative:

 $(\sigma_{\mathbf{S}(\mathbf{X})} \cdot t_{\mathbf{X}}) \cdot \alpha_{\mathbf{I}\mathbf{X}} = \sigma_{\mathbf{S}(\mathbf{X})} \cdot (t_{\mathbf{X}} \cdot \alpha_{\mathbf{I}\mathbf{X}}) = \sigma_{\mathbf{S}(\mathbf{X})} \cdot \mathbf{I} \alpha_{\mathbf{X}} = \mathbf{S}(\sigma_{\mathbf{X}}) \cdot \alpha_{\mathbf{I}\mathbf{X}}.$

By the universal property of the reflection it follows that $\sigma_{\mathbf{S}(\mathbf{X})} \cdot t_{\mathbf{X}} = \mathbf{S}(\sigma_{\mathbf{X}})$.

Let us observe that the previous lemma implies that the following diagram is commutative:



L. STRAMACCIA

In ([1], §5a. p. 112) a diagram similar to the above is constructed in order to prove via a "weak lifting" $L = (h \cdot j)$ of it, that the correspondence

 $[IX.Y] \xrightarrow{S} [S(IX),S(Y)] \xrightarrow{L^* = h^* (j^*)^{-1}} [IS(X),S(Y)]$

given by $(L^* \cdot S)(H) = L^*(S(H))$, carries (homotopy classes of) homotopies to (homotopy classes of) homotopies. A condition on a general functor S. for L^* to be a bijection is that S be compatible with pushouts of the form X+X (see [1]). In case S is a reflector, as we do assume, the work above allows us to obtain the following

THEOREM 2.2. $L^* = (t_X^*)^{-1}$.

In other words L^* is a bijection, which may be restated by saying that the reflector S "respects the cylinder functor up to homotopy".

Let us observe that the phrase "S respects the cylinder functor" above is not correct since A has not its own cylinder functor as well. To be precise we put the following definitions.

DEFINITION 2.3. a) A full subcategory A of C is called a *homo-topy subcategory* (*h*-subcategory, for short) whenever $I(A) \in A$, for every $A \in A$.

In other words, A is a h-subcategory of C when the restriction of I to A is a cylinder functor for A itself.

Let us denote by HoA the category obtained by formally inverting the weak equivalences of C that are contained in A. HoA is the full subcategory of HoC having the same objects as A.

b) Let now I and J be cylinder functors for C and A, respectively. let again S: C - A be left adjoint to T: A - C and assume that T respects the cylinder functors.

We say that the functor S: $\boldsymbol{C} \rightarrow \boldsymbol{A}$ respects homotopies whenever the correspondence

 $A(JS(X),A) \rightarrow A(SI(X),A)$, given by $K \vdash K \cdot t_X$.

is onto, for every $A \in A$. Then S respects homotopies iff t_X is a section, as one easily verifies.

PROPOSITION 2.4. Let **A** be an epireflective h-subcategory of **C**

FUNCTORS BETWEEN HOMOTOPY THEORIES

with reflector $S: \mathbb{C} \to \mathbb{A}$ which respects homotopies. If I preserves epimorphisms then S respects the cylinder functor and HoS: Ho $\mathbb{A} \to$ Ho \mathbb{C} is a reflector.

We note that. since the epimorphisms in C = TOP are the onto continuous maps, then, whenever S is the epireflector of a full subcategory A in TOP, which contains the unit interval I, the following statements are equivalent (cf. [10] Th. 1.2):

- i) $S(X \times I) = S(X) \times I$, for every space X.
- ii) S respects homotopies.

iii) S takes homotopic maps to homotopic maps.

HoS: HoTOP \rightarrow Ho**A** is a reflector whenever these hold.

It is shown in [10] that every quotient reflective subcategory \boldsymbol{A} of TOP such that $I \in \boldsymbol{A}$ satisfies the conditions above. This can be obtained from the following more general result. using Theorem 3.5 of Schwarz [9].

PROPOSITION 2.5. Let C be a monotopological category with a cylinder functor $-\times 1$ where I is an exponential object of C: Let A be a quotient reflective subcategory of C such that $1 \in A$. Then the reflector S respects the cylinder functor and HoS is still a reflector.

3. THE HOMOTOPY STRUCTURE.

Let us recall from [4.5] that the cylinder functor I induces on C a semicubical homotopy system $Q_I: C \to K$. For every $X, Y \in C$, $Q_I(X,Y)$ is the semicubical complex having $C(I^n(X),Y)$ as the set of *n*-cubes, where $I^0(X) = X$ and, for every $n \ge 1$, $I^n(X) = I(I^{n-1}(X))$. Face and degeneracy operators are defined, respectively, by the following:

 $\varepsilon_n^i = C(I^{i-1}(e_{\varepsilon}(I^{n-1}(X), 1_Y) \text{ and } \xi_n^j = C(I^{j-1}(\sigma_{\varepsilon}(I^{n+1-j}(X),), 1_Y))$

 $\varepsilon = 0.1$. The edge of a $\varphi \in \boldsymbol{C}(I^nX,Y)$ is defined to be

$$\mathbf{D}\boldsymbol{\varphi} = (\mathbf{0}_{n}^{\mathbf{1}}\boldsymbol{\varphi}, \mathbf{1}_{n}^{\mathbf{1}}\boldsymbol{\varphi}, \dots, \mathbf{0}_{n}^{n}\boldsymbol{\varphi}, \mathbf{1}_{n}^{n}\boldsymbol{\varphi}).$$

For every pair $X, Y \in C$, we can construct the fundamental groupoid $\Pi_{I}(X,Y)$. Its objects are the 0-cubes of $Q_{I}(X,Y)$, while a morphism f - g in $\Pi_{I}(X,Y)$ is an equivalence class $[\alpha]$ of 1-cubes with $D\alpha = (f,g)$, with respect to the following relation:

if $\alpha, \beta \in \boldsymbol{C}(IX, Y)$, then $\alpha \neq \beta$ whenever a $\gamma \in \boldsymbol{C}(I^2X, Y)$ exists, in such a way that

$$D\varphi = (\alpha, \beta, \xi_{\Pi}^{1} \cup \frac{1}{4}\alpha, \xi_{\Pi}^{1} \cup \frac{1}{4}\alpha).$$

The fundamental groupoid may also be considered as a functor Π_1 : $\boldsymbol{C} \cdot \boldsymbol{C} = Grd$.

If f: X-Y is a homotopy equivalence in C, there are induced natural transformations

 $f^*: \Pi_{\mathbf{I}}(\mathbf{X}, \mathbf{Z}) \to \Pi_{\mathbf{I}}(\mathbf{Y}, \mathbf{Z}), \quad f_*: \Pi_{\mathbf{I}}(\mathbf{Z}, \mathbf{X}) \to \Pi_{\mathbf{I}}(\mathbf{Z}, \mathbf{Y})$

which are natural equivalences of groupoids. for every $Z \in \boldsymbol{C}$.

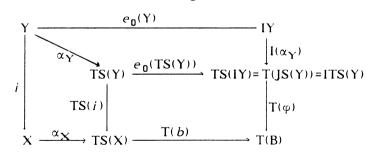
Moreover. any functor $F: \mathbf{C} - \mathbf{A}$ which respects the cylinder functors (I for \mathbf{C} and J for \mathbf{A}) induces a natural transformation $\Pi_{\mathbf{I}}(\mathbf{X},\mathbf{Y}) - \Pi_{\mathbf{J}}(F(\mathbf{X}),F(\mathbf{Y}))$. In fact. F preserves homotopies, hence it takes *n*-cubes to *n*-cubes, and also it preserves the equivalence of 1-cubes, as one verifies with a short calculation.

THEOREM 3.1. Let S: C - A be left adjoint to T: A - C and assume that they respect the cylinder functors. Then

(i) S preserves weak equivalences and cofibrations:

(ii) For every $A \in A$ and $X \in C$, there is an isomorphism of groupoids $\Pi_{I}(X,T(A)) \approx \Pi_{I}(S(X),A)$.

PROOF. For (i) we have only to show that S preserves cofibrations. Let i: Y - X be a cofibration in C and consider a morphism b: S(X) - B and a homotopy $\psi: JS(Y) \rightarrow B$ in A. such that $\psi \cdot d_0(S(Y)) = b \cdot S(i)$. Consider the commutative diagram.



There exists a homotopy $\Phi: I(X) - T(B)$ in **C**. such that $\Phi \cdot e_{\mathbf{D}}(X) = T(b) \cdot \alpha_{\mathbf{X}}$ and $\Phi \cdot I(i) = T(\psi) \cdot I(\alpha_{\mathbf{Y}})$.

Then $\beta_{\mathbf{B}} \cdot S(\Phi) : SI(X) = IS(X) - B$ is a homotopy in **A** such that $\beta_{\mathbf{B}} \cdot S(\Phi) \cdot d_{\mathbf{D}}(S(X)) = \beta_{\mathbf{B}} \cdot S(\Phi) \cdot S(e_{\mathbf{D}}(X)) = \beta_{\mathbf{B}} \cdot S(\Phi \cdot e_{\mathbf{D}}(X))$

$$= \beta_{\mathbf{B}} \cdot \mathbf{ST}(b) \cdot \mathbf{S}(\alpha_{\mathbf{X}}) = b \cdot \beta_{\mathbf{S}(\mathbf{X})} \cdot \mathbf{S}(\alpha_{\mathbf{X}}) = b.$$

Moreover

$$\beta_{\mathbf{B}} \cdot \mathbf{S}(\Phi) \cdot \mathbf{J}(\mathbf{S}(i)) = \beta_{\mathbf{B}} \cdot \mathbf{S}(\Phi) \cdot \mathbf{S}(\mathbf{I}(i)) = \beta_{\mathbf{B}} \cdot \mathbf{S}(\Phi \mathbf{I}(i))$$

$$= \beta_{\mathbf{B}} \cdot ST(\psi) \cdot SI(\alpha_{\mathbf{Y}}) = \beta_{\mathbf{B}} \cdot S(T(\psi)) \cdot JS(\alpha_{\mathbf{Y}}) = \psi \cdot \beta_{JS(\mathbf{Y})} \cdot JS(\alpha_{\mathbf{Y}})$$

$$= \psi \cdot \beta_{SI(Y)} \cdot S(\alpha_{IY}) = \psi \cdot S(identity) = \psi.$$

It follows that S(i): S(Y) - S(X) is a cofibration in **A**. Part (ii) follows from the discussion above and Proposition 2.3.

4. A GENERALIZATION.

We wish to consider now the case of *proreflectors*. Such functors arise in Shape Theory [7] and are a weakened form of reflectors. Here one deals with the procategory $\operatorname{Pro} \boldsymbol{C}$ of the given category \boldsymbol{C} , whose objects are the inverse systems of objects of \boldsymbol{C} of the form $\underline{X} = (X_{\lambda}, p_{\lambda\lambda}, \Lambda)$. The cylinder functor I on \boldsymbol{C} extends naturally to $\operatorname{Pro} \boldsymbol{C}$ by taking $I\underline{X} = (IX_{\lambda}, Ip_{\lambda\lambda}, \Lambda)$.

Let \boldsymbol{A} be a full subcategory of \boldsymbol{C} , then a proreflector P: $\boldsymbol{C} \rightarrow \operatorname{Pro} \boldsymbol{A}$ is a functor which assigns to every $X \in \boldsymbol{C}$ an inverse system $\underline{X} \in \operatorname{Pro} \boldsymbol{A}$ and a morphism $X - \underline{X}$ in $\operatorname{Pro} \boldsymbol{C}$ which is initial with respect to every other morphism $\overline{X} - \underline{Y} \cdot \underline{Y} \in \operatorname{Pro} \boldsymbol{A}$.

We refer to [7.8.11] for the definition of a procategory and related concepts.

Let us recall [11] that \boldsymbol{A} is proreflective in \boldsymbol{C} by means of P iff Pro \boldsymbol{A} is reflective in Pro \boldsymbol{C} by means of the functor P' given by the composition of the extension of P to the procategories. ProP: Pro $\boldsymbol{C} \rightarrow$ ProPro \boldsymbol{A} . with the inverse limit functor

invlim: $\operatorname{Pro}\operatorname{Pro}\boldsymbol{A} - \operatorname{Pro}\boldsymbol{A}$.

Recently Porter [8] has shown that the right homotopy category HoProC of ProC is that obtained by formally inverting the level homotopy equivalences in ProC. A level morphism in ProC is a morphism between inverse systems indexed over the same directed set, which is actually a natural transformation.

THEOREM 4.1. Let A be a proreflective h-subcategory of C. with proreflector P: $C \rightarrow \text{Pro}A$. If P respects the cylinder functors, then HoProA is reflective in HoProC by means of HoP^{*}.

PROOF. We have only to show that P^* takes level homotopy equivalences in Pro C to level homotopy equivalences in Pro A. Let $\underline{f}: \underline{X} \rightarrow \underline{Y}$ be a level homotopy equivalence in Pro C: then ProP(\underline{f}) is an inverse system of homotopy equivalences in Pro A. Finally P (\underline{f}) is a level homotopy equivalence in Pro A. To see

this one can look at the explicit description of the functor P, as given in ([11], 2.6) and making use of the reindexing theorem ([7], 3.3, Ch. 1).

REFERENCES.

- 1. BAUES H.J., Algebraic Homotopy, Cambridge University Press 1989.
- 2. BROWN K., Abstract homotopy theories and generalized sheaf cohomology. *Trans. A.M.S.* 186 (1973),419-445.
- 3. GABRIEL P. & ZISMAN M.. Calculus of fractions and homotopy theory. Springer 1967.
- KAMPS K.H., Zur Homotopietheorie von gruppoiden. Arch. Math. 23 (1972). 610-618.
- 5. KAMPS K.H., Fundamentalgruppoid und Homotopien, Arch. Math. 24 (1973), 456-460.
- KAMPS K.H. & PORTER T., Abstract homotopy and simple homotopy theory. Univ. Col. N.W. Pure Math. Preprints 9, 1986.
- 7. MARDEŠIĆ S. & SEGAL J., Shape Theory, North Holland 1980.
- 8. PORTER T.. On the two definitions of Ho(Pro(C)). Top. and Appl. 28 (1988). 289-293.
- 9. QUILLEN D., Homotopical Algebra, Lecture Notes in Math. 45. Springer 1967.
- SCHWARZ H., Product compatible reflectors and exponentiability, Proc. Int. Conf. Categorical Topology. Toledo 1983. Heldermann 1984, 505-522.
- 11. STRAMACCIA L.. Reflective subcategories and dense subcategories. *Rend. Sem. Mat. Univ. Padova* 67 (1982). 191-198.
- 12. STRAMACCIA L., Homotopy preserving functors. Cahiers Top. & Géom. Diff. Cat. XXIX-4 (1988), 287-295.

DIPARTIMENTO DI MATEMATICA UNIVERSITA DI PERUGIA VIA VANVITELLI I-06100 PERUGIA ITALY