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SHEAVES OF SEMIPRIME IDEALS

by S. B. NIEFIELD and K.I. ROSENTHAL

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFPRENTIELLE

CATÉGORIQUES

VOL. XXXI - 3 (1990)

R6SUM6. Cet article étudie le quantale Idl( O ) des ideaux
d’un faisceau commutatif d’anneaux 0 sur un local L. En

particulier, on caract6rise les 616ments premiers et semi-

premiers de ce quantale et on les utilise pour donner une

description explicite externe du spectre de Zariski de 0.
Un faisceau d’anneaux peut etre defini sur ce spectre, ce

qui permet d’it6rer la construction. Ces r6sultats sont

compares au travail de Hakim et Tierney.

INTRODUCTION.

Recall that a quantale is a complete lattice Q together
with an associative binary operation &#x26; such that a &#x26;- and -&#x26;a

preserve sups, for all a E Q. Quantales were first introduced by
Mulvey [10] to provide a setting for non-commutative logic.
Examples of quantales include the lattice Idl(R) of two-sided
ideals of a ring R as well as any locale (which is just a quanta-
le in which &#x26; = n, the usual lattice meet). Of course, a special
case of the latter example is the lattice Q(X) of open subsets
of a topological space X. By a morphism of quantales, we shall
mean a sup, &#x26; and t preserving map, where T denotes the top
element of a quantale. Note that in the case of locales such a

map gives a morphism in the category of frames, the dual of
the category of locales.

In [11], we presented an explicit description of the univer-
sal surjective morphism of a quantale Q onto a locale L(Q). In
the special case where Q is two-sided (i. e., a &#x26;t  a and r &#x26;a  a
for all a E Q), L(Q) is the set of semiprime elements of Q, where
c is semiprime iff c &#x26; c  a implies c s a . Also, the surjective
morphism r: Q -&#x3E; L(Q) is given by

r(a) = i nf { b E L( Q) I a s b ) .

This construction generalizes the well-known map
Idl ( R) -&#x3E; R Idl ( R)

which takes an ideal of a commutative ring R with unit to its

radical, where RIdl(R) denotes the locale of radical ideals of R.
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The goal of this paper is to study the locale obtained by
applying the results of [11] to the quantale Q of ideals of a

sheaf of rings 0 on a locale L. In this case, we get a locale

L(Q) over L which is the externalization (using the isomorphism
[9] between the category of internal locales in the topos Sh(L)
of sheaves on L and the category of locales over L) of the
internal locale of "radical ideals of 0 ", in the sense of Tierney
1131. Before continuing, we present a brief account of the rele-
vance of this internal locale.

In U3], Tierney considers several constructions of the

spectrum of a ringed topos (Fs, R) , i.e., a right adjoint to the

forgetful functor from local ringed toposes to ringed toposes.
The existence of such an adjoint for Grothendieck toposes was
first established by Hakim [5]. Tierney’s constructions include
one based on the internal locale of radical ideals of R, and
another using "forcing topologies". Although the latter provides
the most elegant presentation of the adjunction, the former is
sometimes useful for calculations. For an additional reference on
the spectrum of a ringed topos, the reader should consult 171.

We begin (§1) by recalling the properties we will need to
study sheaves of ideals. In Sections. 2 and 3. we consider the lo-
cale L(Q) obtained as above, when Q is the quantale of ideals of
a sheaf of rings. We conclude the paper (§4) with a description
of the ringed spaces obtained by iterating the construction of
the Zariski spectrum of a commutative ring with unit.

1. PRELIMINARIES.

In this section, we recall some basic properties of ideals
of a sheaf of rings. The reader should note that an ordinary
ring can be viewed as a sheaf on a one point space and that the
constructions we describe reduce to the usual ones in this case.

We cannot offer any references for much of what follows,
as most of it can be attributed to folklore. However, most of
our terminology and operations on ideals come from Grothen-
dieck 141.

Throughout this paper 0 will denote a sheaf of commuta-
tive rings with unit on a locale L. If a E L, then the unit ele-
ment of O(a) will be denoted b) 1 a . We will often write 1 for
the unit element of 0(-z), where i denotes the top element of L.
Of course, 1a = 1|a.

A presheaf of ideals of 0 is a presheaf I on L such that
I(a) is an ideal of O(a), for all a E L. If, in addition, I is a sheaf,
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then I is called a sheaf of ideals or simply an ideal of 0. The
set of ideals of 0 will be denoted by Idl(O). Of course, an

ideal I is just an internal ideal of the ring 0 in Sh(L) .

Given {Ia} C Idl (O), let nIce be defined on a E L by (nIa) (a ) =
ni,,(a). Then it is not difficult to show that n lac is a sheaf of
ideals. Thus, Idl(O) is a complete lattice with inf = n . Note that
0 is the top element of Idl(O).

Recall that the sheafification f of a presheaf of ideals I
is given by re I (a) iff there is a cover lail of a such that

rla.el(ai)’ for all i. Moreover, if I is a presheaf of ideals, then

Now, if {Ia}CIdl(O), then a |-&#x3E;EIa(a) is a presheaf, but need not
be a sheaf. Thus, unlike in the ordinary ring case, the sup of a

family of ideals is not given by their sum. However, we can

consider the sheafification of EIa, which will be denoted by EIa.
Clearly. EIa, is the smallest ideal of 0 containing Ia, for all l a,

and so we obtain sup(Ia).
For the quantale structure, suppose I and J are ideals of

O. Then their sheaf product is defined by

the usual ideal product in O(a). Note that the presheaf IJ can

also be defined as above, if I and J are just presheaves of
ideals. 

LEMMA 1.1. If I and J are presheaves of ideals, then I&#x26;J = I-J.
PROOF. Since I C I , for all I, it follows that IJ C I J C I &#x26; J. Thus
I J C I &#x26;j. For the reverse containment, it suffices to show that

IJCIJ. Suppose r EI(a) and S E J (a), for some aEL. Then

r|aj E I(ai) , for some cover (all of a , and s|bj E J( bj), for some
cover {bj} of a . Thus, (ai, /B b j} covers a and 

Hence rs E IJ(a), as desired. ·

PROPOSITION 1.2. Idl(O) is a tvvo-sided quaiitale.
PROOF. Clearly, &#x26; is associative. To see that I&#x26;- preserves
sups, let {Ja} C Idl(O). Since I&#x26;Ja C I&#x26;(EJa}, for all a, it follows
that E(I&#x26;Ja) C I&#x26; (EJa). But, I&#x26; (EJa) is the sheafification of

KEJJ, by Lemma 1.1, and I(EJx)=E(ljx). Thus
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Similarly. -&#x26;I I preserves sups. Therefore, Idl(O) is a quantale.
Since O(a) is a ring with unit. for all a. it easily follows that
Idl(O) is two-sided. ·

We conclude this section with a description of the "prin-
cipal ideals" of 0, which turn out to be "generators" of Idl(O).
If r E 0(a). then the principal presheaf ideal Or is defined by

Note that if I E Idl( O). then 61- c I iff r E I(a), or equivalently,

Thus.

Recall also that a subset B of a complete lattice Q is

said to generate Q if every a E Q can be written a = sup a; , for
some {aj} C B. Using the above properties of Or. it is not dif-
ficult to show that if B generates L. then Idl(O) is generated by

{Or r E O(b), for some b E B}.

It will be useful to have a description of products of

principal ideals.

PROPOSITION 1.3. 7f r E O( a ) and s E O( b) , then

Or &#x26; Os = Or|o s|c. where c = a A b.
PROOF. C learly. Ur Os = Orlcsl c. Applying Lemma 1.1, the de-
sired result follows..

2. SEMIPRIME IDEALS OF A SHEAF OF RINGS.

In the previous section, we saw that Idl(O) is a two-sided

quantale. Following [11]. we obtain a locale by considering only
the "semiprime" elements.

An ideal I of 0 is said to be seiniprime if J&#x26;J C I implies
J C I. As in the ordinary ring case, it is not difficult to show
that I is semiprime iff J&#x26;KCI implies J nK C I. The set of semi-
prime ideals of 0 will be denoted by SIdl(OL

Thus, as in [11], SIdI(U) is a locale and we obtain a uni-

versal surjective morphism rad: Idl(O) -&#x3E; SIdl(O) onto a locale.
This map is given by
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Note that SIdl(O) is closed under intersections and so the meet
of two semiprime ideals is just their intersection. Thus, since

rad preserves the multiplicative structure of the quantales, it

follows that

for all ideals I and J.

Before considering the relationship between SIdl(O) and
the internal locale of radical ideals of 0, we introduce some
notation. If I E Idl (O) and r E O(a), for some a E L, then

Since I is a sheaf, one easily shows that if b  a, then b  [[r E I]]
iff r|b E I(b).

PROPOSITION 2.1. SIdl (O) is a locale over- L. via the map p:
SIdl(O) -&#x3E; L whose inverse and direct images are given respective-
ly° bi-. - -

PROOF. Clearly, p* preserves c. For binary meets, applying Pro-
position 1.3 and a remark above, we get

A straightforward calculation shows that p* is left adjoint to

p*.

Now we give a characterization of semiprime ideals of 0.
Recall I that an ideal 1 I of 0 i s internalli- radical if r2 E I =9 ]- E I
holds in Sh(L), i.e., if r2 E I(a), for some a, then there is a cover

tai) of a such that r|aj E I(ai) for all i. Since I is a sheaf, it

easily follows that r E I(a). Thus. I is internally radical iff I(a)
is a radical ideal of O(a ), for all a E L.

PROPOSITION 2.2. The following are equivalent for an ideal I of
O:

(1) I is a semiprime ideal of 0.
(2) I(a) is a radical ideal of O(a) for all a E L.

(3) I is internally radical.

PROOF. By the above remark, it suffices to show that I is se-

miprime iff I(a) is a radical ideal of O(a), for all a E L.

Suppose I is semiprime and r 2EI(a). for some a E L. Then
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Or2CI and so C)r&#x26;6r c I, by Proposition 1.3. Thus, C7r c I,
since I is semiprime, and hence r E I(a). Therefore, I(a) is a ra-

dical ideal of 0(a).

Conversely, suppose that I(a) is radical, for all a, and
that J &#x26; J C I. Then, for each a, we have

and so

since I is radical. Therefore, I is semiprime. ·

COROLLARY 2.3. The locale morphism p: Sldl(O) - L is the ex-
ternalization of the internal locale in Sh(L) of radical ideals of
O.

PROOF. By Proposition 2.2, Sldl(O) is the locale of global sec-

tions of the internal locale RIdl(O) of radical ideals of O. It is

not difficult to show that p arises from the unique morphism
RIdl(O) -&#x3E; 0 of internal locales in Sh(L)..

We can use Proposition 2.2 to obtain a description of the
morphism rad: Idl(O) -&#x3E; SIdl(O). As in the ordinary ring case, we
can relate this map to the usual "radical" of an ideal.

PROPOSITION 2.4. The ideal rad(I) is the sheafification of VI,
where 

for all a E L .

PROOF. Let K denote the sheafification of Cl. First, we show
that K is semiprime. By Proposition 2.2, it suffices to show that
K(a) is a radical ideal of O(a), for all l a E L. If rrleK(a), then
there is a cover (ai) } of a such that

Since r n 1,.. = (rla.)n. it follows that rlai E VI(ai). for all i, and

so r E K(a). Next, we show that if I c J and J is semiprime, then
K c J. Since J(a) is a radical and I(a) C J(a), for all l a, we have

But, then Cl C J and J is a sheaf, and so K C J, as desired. 8

In Section 1, we noted that if B generates L, then Idl (O)
is generated by 

, for some

Since rad is a sup-preserving surjection. it follows that

, for some
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is a generating set for SIdl (O).

We conclude this section with an example which we will

use in the next section. In [1], Banaschewski and Bhutani give
an example of a sheaf of Boolean algebras (on a locale L) the
lattice of ideals of which is isomorphic to L. Since every Boo-
lean algebra can be viewed as a Boolean ring, this construction

is relevant to the present setting.
Recall that if a E L, then the down-segment of a is the

set I(a) = {b eLl b  a}. It is not difficult to see that I(a) is a

locale.

EXAMPLE 2.5. Let IL denote the sheaf of rings on L defined as
follows. If a E L, then

IL(a ) = {b E L I b is complemented in 4, (a)).

Then, as in [1], IL is a sheaf of Boolean algebras whose ideal
lattice is isomorphic to L. Since every ideal of a Boolean ring is

semiprime and the algebra ideals agree with the ring ideals, it

follows that Idl (IL) = SIdl(IL) = L, as locales. Briefly, the iso-

morphism is obtained showing that every ideal I of IL is of the
form 

rr ’n

Example 2.5 says that every locale can be expressed as

the spectrum of a ringed locale, i.e., a locale L together with a
sheaf of rings on L. This relates to Hochster’s characterization
[6] of spectral spaces. However, in [61, he also showed that the
functor Spec from the category of commutative rings with unit
to the category of topological spaces cannot be inverted functo-
rially. This is not the case in the present situation. The assign-
ment L |-&#x3E; (L, IL) is easily seen to define a functor from the

category Loc of locales to the category RLoc of ringed locales,
whose morphisms (L,O) - (L’,O’) are pairs (f, p), where f: L-&#x3E;L’
is a morphism of locales and cp: O’- f.( 0) is a homomorphism.
Moreover. using the isomorphism L.::: SIdl (IL). we see that this
functor provides a right (pseudo)inverse to SIdI: R.Loc -&#x3E; Loc. In
some sense, Hochster could not invert Spec functorially because
the category of rings is too small. 

3. PRIME IDEALS OF A SHEAF OF RINGS.

In this section, we consider some properties of the locale
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Sldl(o). In particular, we consider conditions under which this
locale is spatial.

Recall that an element p of a locale L is prime if p :1= c

and a ^ b  p implies a  p or b s p. This is the usual definition
of a prime element of a lattice. If L is the locale Q(X) of open
subsets of a topological space X, then it is not difficult to

show that an open set U is prime iff XBU is an irreducible
closed subset of X. Moreover, a locale L is spatial (i.e., isomor-
phic to Q(X) for some space X) iff for every a E L,

a = inf {p E L a s p and p is prime}.

Translating to the present section, we see that SIdl(O) is

spatial iff every semiprime ideal is an intersection of primes,
where a semiprime ideal P is prime iff IfIJ C P implies I C P or

J C P. Thus, we would like to consider prime elements of the
locale Sldl(O). However, there are several other notions of

prime in this context. Since we are concerned with the locale
SIdl(O) here and not the corresponding internal locale, we con-
sider only external notions of prime. For a treatment of internal
primes in a localic topos, we refer the reader to [3].

Recall that an ideal P of 0 is called pr-irne if P:I= 0, and

I&#x26;JCP implies I C P or J C P. Since I&#x26;JCP = InJ c P, for any

semiprime ideal P, it follows that the two external definitions
of prime agree.

THBORBM 3.1. Suppose B generates L and P is an ideal of O.
Then P is prime iff the following conditions hold:

(1) P( a ) is a prime ideal of O( a ) or P( a ) = O(a) for all a E B
(2) If a, b E B, P(a) * 0(a), a  b, r e O(b), and r|a E P(a), then

r E P( b)r E 

(3) [[1 E P]] is a prime element of L.
PROOF. Suppose P is a prime ideal of 0. If a E B and P(a ) # O(a),
then to see that P(a) is prime, let r, s E O( a ) and r s e P(a). Then
Ors CP and Ors=Or&#x26;Os by Proposition 1.3. Thus, Or&#x26; Os C P,
and so Or c P or C) s c P. Hence, rEP(a) or s E P(a), as desired.
For (2), suppose a, b E B, a  b, and P(a ) # O(a). Assume r E O(b)
and r|a E P(a). Since Õr&#x26;Õ1a= Or|a, by Proposition 1.3, it follows

that Or&#x26;OlaCP(a). Thus, OrCP or Ola C P, since P is prime.
But, 1a%P(a). since P(a) # O(a), and so 01aSl P. Thus, or c P
and we have r E P( b) , as desired. For [3], suppose

Then we can cover c with (ci) c B such that 1ci E P(ci). Since P is
a sheaf, it follows that 1o E P(c). Thus, 
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and it follows that 61,CP or O1b CP, i.e., 1a E P(a) or 1b E P(b).
Clearly, [[1 E P]] #r, since P#O. Therefore, [[1 E P]] is a prime ele-
ment of T.

Conversely, suppose P satisfies (1), (2), (3). Since t # [[1 e P ]], it

follows that P # O. Suppose I&#x26;J C P and I C1 P. Then there exists

r E I(a)BP(a) for some aEB. Note that a[[1EP], since P(a)t0(a).
To show that JCP, let beB and suppose S E J(b). If P(b)=O(b),
then S eP(b). So, assume P(b)#O(b), and let c = a A b. Since

applying (3), we know that c  [[1 E P ]], and so P(d)#O(d), for
some d E B such that d s c. Since r E P(a) and d s a , using (2),
we get that rl d 9 P(d). But, rid sid E I( d)J( d) C P( d) and P(d) is

prime. Thus, 51 d E P( d) . Since d s b, we can apply (2) again to

conclude that s E P( b). Thus, J( b) C P( b). Therefore, P is a prime
ideal of O.

Note that condition (2) could have been equivalently stated
as: if a s b and P(a) * O(a), then P( b) is the inverse image of
P(a) under the restriction map O(b)-&#x3E;O(a). Condition (3) comes

from the work of Borceux, Pedicchio and Rossi [2] on sheaves
of Boolean algebras.

Next we turn to the relationship between prime and semi-
prime ideals of O. Of course, every prime ideal is semiprime. As
in the ordinary ring case, we have the following result.

LEMMA 3.2. If I is a semiprime ideal of a sheaf of rings on a
spatial locale L, a E L, and r E O(a)BI(a), then rEP(a), for some
prime ideal P con talning I .

PROOF. Suppose I is semiprime and rE 0(a)BI(a). Then aE[[r E I]],
and so a  p, for some prime p E L such that [[r E I]]  p. We will 1
use Zorn’s Lemma to obtain the desired prime ideal P.

Consider the set S of ideals J of 0 such that I C J and

[[rn E J ]]  p for all l n. Since I is semiprime, we know that I(b) is
a radical ideal of O( b). for all b E L. Thus,

Hence, for all n. and

a chain in S, consider Note that J is the sheafification

Clearly. then , for some n.

Since J is the sheafification of there is a cover I bi) of
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such that

But, [[rn E J]]  p implies that bj$p, for some y. Since

rn|bjEUJi(bj). we know that rn|bjEJi(bj) for some i. Thus, b j s
[[rnEJi]], and since Ji E S, [rneJjll  p, contradicting the fact

that bj  p. Hence J E S, as desired. Therefore, S has a maximal
element, call it P. To see that P is prime, suppose that J &#x26; K C P,
J C P and K C1. P. Let J’ and K’ denote the sheafification of J+P
and K+P, respectively. Then J’ E S and K’ES, since P is maximal.

Thus, there exist m and n such that

Since p is prime, we see that

However,

since J &#x26; K c P. Thus, and since P E S, it follows

that contradicting the_fact that d  p. There-
fore, P is a prime ideal of 0, 1 c P, and for all n.

It remains to show that r E P(a). If r E P(a), then a s [[r E P s p,
contradicting the fact that a f p. This completes the proof. 8

PROPOSITION 3.3. If 0 is a sheaf of rings on a spatial locale
then an ideal I of 0 is semipr-ime iff I is an intersection of pri-
me ideals of O.

PROOF. Clearly, any intersection of prime ideals is semiprime.
The converse follows easily from the above lemma. 0

Combining this proposition with the description of the
universal surjective quantale map rad: Idl(O) -&#x3E;&#x3E; SIdl(O) given at
the beginning of Section 2, we obtain the following corollat-y.

COROLLARY 3.4. If 0 is a sheaf of rings on a spatial locale L
and I is an ideal of o. then

Next, we use Proposition 3.3 to consider spatial locales.

THEOREM 3.5. Let L be a locale. Then Sldl(O) is spatial, for all
sheaves of rings 0 on L. iff L is spatial.
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PROOF. If L is spatial and 0 is a sheaf of rings on L, then
SIdl(O) is spatial by Proposition 3.3. Conversely, if SIdl(O) is

spatial, for all sheaves 0, then taking 0 to be the sheaf IL, de-
fined in Example 2.5, we see that L is spatial, since L = SIdl (IL).

We conclude this section with a characterization of maxi-
mal ideals of 0 analogous to Theorem 3.1. Although we will not
be considering maximal ideals in the remainder of this article,
we include the following theorem for completeness.

THEOREM 3.6. Let M be an ideal of a sheaf of rings O on a
locale L. Then M is maximal iff the following conditions hold:

(1) If r E 0(a)BM(a) for some a E L, then there is a cover (ai)
of a such that M(ai)+O(ai)r|ai = 0(ai) for all i.

(2) ql E M is a maximal element of L.
PROOF. Suppose M is a maximal ideal of 0 and rE 0(a)BM(a),
for some a E L. Let I denote the sheafification of M + Or . Since

M C I and M is maximal, it follows that I = O. Thus, 1a E I(a) and
so there exists a cover {ai} of a with 1ai E M(ai) + O(ai)r|ai, for
all i, proving (1). 

For (2), suppose [[1 E M]]b and b#r. for some b E L. Let I

denote the sheafification of M + O1b. We claim that I t- 0. Sup-
pose 1=0, then 1 E I(r), and so there is a cover (ti) of t such
that 1tj E M(tj) + O1b(tj). Then tj  b for all j, for if tj  b for

some j, we wou,ld have

(since [[1 E M]]  b), and

But, then r = sup ( tj)  b. contrary to the assumption that bti.
Since M C I and M is maximal, it follows that M = I, and so

lb E M( b) . Thus, b = [[1 E M]], i.e., [1 E M TI is maximal.
Conversely, suppose that M satisfies (1) and (2) and M C I,

where I is an ideal of O. Then [[1 E M]]  [[1 E I]]. We claim that

Suppose I Since M C 1. there is an a in L with

M(a)tl(a). Choose r E I(a)BM(a). By (1), there is a cover {ai} of
a with M(ai)+O(ai)r|=O(ai) for all i. But. M(ai)CI(ai) and

r|aiE(ai), since r E I(a). and hence

Thus, for all i. and so
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contradicting the fact that M(a) # O(a). Hence, [
Since [[1 E M]] is maximal, by (2), it follows
have 1=0. Therefore, M is maximal. ·

4. THE ITBRATBD SPECTRUM OF A RING.

In this section, we consider the Zariski spectrum of a

ring. Since the locale (or topos) in question is spatial and our
construction preserves spatial locales, we shall consider this

spectrum as a ringed space, rather than a ringed locale or to-

pos. In particular, we give an explicit description of the spec-
trum of this ringed space, showing that it satisfies the appro-
priate universal property for ringed spaces.

Let R be a commutative ring with unit and consider the
structure sheaf Z of the Zariski spectrum Spec(R). Recall that
the points of Spec(R) are prime ideals of R and basic opens are
sets of the form

Moreover, Z( D( f ) ) = R[f-1]. We shall identify the locale of open
subsets of Spec(R) with the locale RIdl(R) of radical ideals of R.

Consider the locale SIdl(Z) of semiprime ideals of Z. We
know that SIdl(Z) is generated by the ideals of the form
rad (Zr), where r E Z (D( f ) ) = R[f-1]. Of course, we need only
consider those r which are elements of R. We also know that
Sldl(Z) is spatial and its points are prime ideals of Z.

We claim that prime ideals of Z correspond to pairs p - q
of prime ideals of R. First, if P is a prime ideal of Z , let

p = P((1)) , and q = [[1 E P]] = sup{D(f)|P(D(f)) = R( f-1) l,
considered as radical ideals of R. Then, by Theorem 3.1, P(D(1»
and [[1 E P]] are prime elements of RIdl(R), i.e., p and q are pri-
me ideals of R. Note that f E q iff P(D(f)) = R[f-1]. Clearly,
p c q for if f E p, then f|D(f) E P(D(f)), and so P(D(f))=R[f-1].
Next, we show that

If f E q , we know that P(D(f)) = R[f-1]. Suppose that fg q. Then
p[f-1] C P(D( f)) , since a E p implies a|D(f) E P(D(f)). Now if

a/fn E P(D(f)), then
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since P(D(f)) is prime in R[f-1]. But P(O(f)) # R[f-1] since f E q,
and so 1/fn E P(D(f)). Thus, a|D(f) E P(D(f). Applying Theorem
3.1 (2), we see that a E P( D(f)) = p. Therefore, P(D(f)) C p[f-1],
as desired.

It remains to show that every pair p-cq of prime ideals
of R gives rise to a prime ideal of Z. Given such a pair, we de-
fine P(D(f)) as in (*). Since P clearly satisfies the conditions of
Theorem 3.1, it suffices to show that P is a sheaf. Since Z is a

sheaf, we need only show that if

then a/fnep(f-1].Since fØq and D(f) = sup{D(fi)}, it follows
that fi E q, for some i. Clearly, fi 9 p, since pcq. Writing
fim = rif, for some m &#x3E; 0 and ri E R, we see that

and so arf e p, since f i A p. But, ri E p, since rif = fim and
fim E p. Thus, aep, and it follows that a/fn E p[f-1], as de-
sired.

Thus, we obtain a space Spec(Z) whose points are pairs
p c q of prime ideals of R. Since SIdl(Z) is generated by the ra-
dicals of certain principal ideals, as remarked above, we see that

Spec(Z) has a base consisting of open sets of the form

where r, f E R. Consider the sheaf of rings Z’ defined on Spec(Z)
as follows. Let Z’( D( r, f)) = R[r-1,f-1]. If D( r, f) = D( s,g) , then it
is not difficult to show that D( rf) = D( sg) in Spec(R), and so

RC(rf)-1] is canonically isomorphic to R[(sg)-1]. Thus,
R[r-1, f-1] is canonically isomorphic to R[s-1, g-1], and as in the

ordinary ring case we get a sheaf of rings on Spec(Z). More-
over, it is not difficult to show that the stalk of Z’ over a

point p C q is isomorphic to the localization Rp of R at p. The-
refore, (Spec(Z ), Z’ ) is a local ringed space.

Recall that a rrlor-phism (X, O) -&#x3E; (X’, O’) of ringed spaces
is a pair (h, p), where h: X-X’ is a continuous map and

9: O’-&#x3E; h*(O) is a homomorphism. Such a pair is called a mor-

phism of local ringed spaces if the stalks of the ringed spaces
are local rings and the inverse images of the homomorphisms on
the stalks, induced by cp, preserve the maximal ideals. Let RSp
and LRSp denote the categories of ringed spaces and local rin-

ged spaces, respectively.
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One way to define the spectrum of a ringed space is as

the right adjoint to the inclusion of RSp in LRSp [5]. Thus, the
spectrum of (Spec(R), Z) is a local ringed space (X,O) together
with a morphism (X,O)-&#x3E;(Spec(R),Z) of ringed spaces such that

any other morphism from a local ringed space into (Spec(R),Z)
factors uniquely through (X,O) via a morphism of local ringed
spaces.

PROPOSITION 4.1. (Spec(Z),Z’) is the spectrum of (Spec(R),Z).
PROOF. Define p:Spec(Z)-&#x3E;Spec(R) by p(pCq)=q. T’hen

p-1(D(f)) =D(f,f), and so p is continuous. Let Y:Z-&#x3E; p*(Z ’) be
the homomorphism which induces the canonical homomorphism
Rq -&#x3E; Rp on the stalks corresponding to the points pgq and

p(p C q) = q.
For the universal property, suppose (X,O) is a local ringed

space and 

is a morphism. First, we define h: X-&#x3E;Spec(Z). Given x E X, let

q=h(x) and p=px-1(mx)nR, where px: Rq -&#x3E;Ox is the map indu-
ced on the stalks and in, is the unique maximal ideal of q, -
Consider h(x) to be the point pCq of Spec(Z). Clearly, p o h = h.
To see that h is continuous. let 1)(rf) be a basic open of

Spec(Z). Then

and it is not difficult to show that the latter set is open in X.

Next, we define p : Z -&#x3E;h*(O) to be the hon1omorphisnl Such that
the corresponding map on stalks is defined as follows. If B E X.
then the map y : Rq -&#x3E; Ox factors through RI’ since

p = px-1(mx)nR, where h(x) is the point p r q. Thus. we get a

map lp,: Rp -&#x3E; Ox which is clearly a local homolllorphism and

(p,Y) o (h. p) = (h, p), as desired. To complete the proof one checks
that (h, p) is the unique such map.

Iterating the above construction. we get (Specn(R),Zn), the
nth-spectrum of R. The points of Specn(R) are chains

p1C ... C pn of prime ideals of R. basic opens are of the form

where f1, ... , fn E R, and

As above we see that (Specn (R), Zn) is the spectrum of

(Specn-1(R), Zn-1).
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We conclude with a remark about the Pierce spectrum 1121
(Specp(R), E) of R. It is possible to go through a construction
similar to that above and show that the spectrum of (Specp(R),
E) is the Zariski spectrum of R. However, Chris Mulvey has

pointed out that this result is not surprising, for the Zariski

spectrum factors through the Pierce spectrum of a ring R, and
so the spectra of R and (Specp(R). E? can be seen to agree via

their universal properties.
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