CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

F. J. KORKES T. PORTER

Nilpotent crossed modules and pro-C completions

Cahiers de topologie et géométrie différentielle catégoriques, tome 31, nº 4 (1990), p. 277-282

http://www.numdam.org/item?id=CTGDC_1990_31_4_277_0

© Andrée C. Ehresmann et les auteurs, 1990, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

NILPOTENT CROSSED MODULES AND Pro-C COMPLETIONS

by F.J. KORKES and T. PORTER

RÉSUMÉ. Cet article donne deux résultats sur les pro-C complétions de groupes simpliciaux, où C est une souscatégorie pleine de la catégorie des groupes finis; on étudie leurs relations avec les pro-C complétions de modules croisés et les actions nilpotentes.

In a earlier paper [2], we have considered the algebraic problem of studying the pro-C completion of a crossed module and gave a "cofinality condition" that guaranteed that the pro-Ccompletion of the crossed module could be performed levelwise, i.e., by completing the two groups making up the crossed module individually.

It is a result of MacLane and Whitehead that certain equivalence classes of crossed modules correspond via an equivalence of categories with homotopy 2-types. i.e., with homotopy types that have zero homotopy groups above level 2. Any connected homotopy type, X, can be represented by a simplicial group G(X), and any simplicial group G gives rise to a reduced simplicial set W(G), so that these two functors, G and W, give an equivalence on homotopy categories. The work of Bousfield and Kan [1] on *p*-profinite completions of homotopy types includes the possible use of this adjointness to define such a completion functor algebraically. They also study nilpotent actions and nilpotent fibrations and the interplay of these ideas with their completion processes.

In this paper we investigate the connection between pro-C completions of crossed modules, levelwise constructions of pro-C completion of simplicial groups and nilpotent actions.

1. PRELIMINARIES.

In what follows C will denote a non-trivial full subcategory of the category of finite groups. This category is assumed to be closed under the formation of subgroups. quotients and finite products. For any group G we let $\Omega(G)$ be the directed set of normal subgroups N of G such that $G/N \in C$. With this notation the group theoretic pro-C completion of G is given by

$$G = Lim G/N$$

where the inverse limit is taken over the normal subgroups $N \in \Omega(G)$.

A crossed module consists of two groups C and G, an action of G on C and a homomorphism $\partial: C \rightarrow G$ satisfying the two conditions:

CM1) for all
$$c \in C$$
 and $g \in G$,
 $\partial(\mathcal{E}_C) = g \partial(c) g^{-1}$,
CM2) for all $c_1, c_2 \in C$
 $\partial(c_1) c_2 = c_1 c_2 c_1^{-1}$.

Morphisms of crossed modules are pairs of homomorphisms preserving the action and giving a commutative square in the obvious way.

A crossed module is said to be a pro-C crossed module if both groups are pro-C groups, that is inverse limits of groups in C, and the action and homomorphism are continuous in the inverse limit topology. Morphisms between two pro-C crossed modules are continuous morphisms of the algebraic crossed modules underlying them.

There is an obvious forgetful functor from the category of pro-C crossed modules to that of crossed modules, and in [2] we showed that that functor had a left adjoint which is a pro-C completion functor. This completion functor is not just the group theoretic pro-C completion of the two groups. The "bottom" group (G in the above) is sent to its pro-C completion, but the "top" group on which G acts does not, in general, go to its pro-C completion. This does happen, however, if the crossed module satisfies the following cofinality condition:

Let $\Omega_{\mathbf{G}}(\mathbf{C})$ be the directed subset of $\Omega(\mathbf{C})$ given by those $N \in \Omega(\mathbf{C})$ which are G-equivariant. We say $(\mathbf{C}, \mathbf{G}, \partial)$ satisfies the cofinality condition if $\Omega_{\mathbf{G}}(\mathbf{C})$ is a cofinal subset of $\Omega(\mathbf{C})$.

We will also need some facts about simplicial groups. We recall that given a simplicial group $G_{.}$, the *Moore complex* (NG, ∂) of $G_{.}$ is the chain complex defined by

$$(NG)_n = \bigcap \{ Ker \, d_i^n \mid i \neq 0 \}$$

with $\partial_n: \mathrm{NG}_n \to \mathrm{NG}_{n-1}$ given by $\partial_n = d_0^n$ restricted to (NG)_n. The

image of ∂_{n+1} is normal in G_n and the homotopy groups of G_n can be calculated using this complex (NG, ∂); in fact,

$$\pi_n(\mathbf{G}_{\cdot}) \approx \bigcap_{i=0}^n \operatorname{Ker} d_i^n / (d_0^{n+1} (\bigcap_{i=1}^{n+1} \operatorname{Ker} d_i^{n+1})).$$

From G. we can also form a crossed module

$$\partial: (\mathrm{NG}_1/d_0\mathrm{NG}_2) \to \mathrm{G}_0,$$

in which the "boundary" map ∂ is induced by that of the Moore complex. We will denote this crossed module by $M(G_{.,1})$ as it represents the 2-type of G. The cokernel of this crossed module is $\pi_0(G_{.})$ and the kernel is $\pi_1(G_{.})$ as is easily seen from the quoted facts about the Moore complex.

Given a simplicial group G, its pro-C completion will be taken to be the pro-C simplicial group obtained by applying the group theoretical pro-C completion in each dimension. (Although this ties in with the definition of Bousfield and Kan, see [1] page 109, the reader should be warned that it does not necessarily coincide with the Artin-Mazur type completion which aims to pro-C complete the homotopy groups rather than an algebraic model of the homotopy type. The two definitions will coincide in the presence of finiteness conditions.)

Finally we recall (again cf. [1]) the notion of a nilpotent action of a group G on a group C. An action of G on C is said to be *nilpotent* if there is a finite sequence

$$C = C_1 \supset \cdots \supset C_i \supset \cdots \supset C_n = \{e\}$$

of subgroups of C such that for each j

(i) C_i is closed under the action of G,

(ii) C_{j+1} is normal in C_j and C_j/C_{j+1} is abelian, and (iii) the induced G-action on C_j/C_{j+1} is trivial. We will say that the G-nilpotent length of C in this case is less than or equal to n (denoted $\lambda_G \leq n$).

2. pro-C COMPLETIONS OF SIMPLICIAL GROUPS AND OF CROSSED MODULES.

Bousfield and Kan proved ([1] page 113): "the homotopy type of $R_{\infty}X$ in dimensions $\leq k$ " depends only on" the homotopy type of X in dimensions $\leq k$ ". Here R_{∞} is a completion functor and we will only be looking at this for the case of a pro-*C* completion. For k=1, as the 1-type of X is determined by the fundamental group, this is clear and relatively uninteresting. The next simplest case of this is given by the 2-type and thus, by Mac Lane and Whitehead, by a crossed module. One way of assigning a crossed module to a 2-type is via simplicial groups and the M(-,i) construction recalled earlier.

Our situation is not identical with that studied by Bousfield and Kan but we can view their result in a different light representing the 2-type by a crossed module, so it is natural to ask what is the exact relationship between the representing crossed module $M(\hat{G}_{.,1})$ of the 2-type of the pro-C completion of a simplicial group G., and $M(G_{.,1})^{\sim}$, the crossed module pro-Ccompletion of $M(G_{.,1})$ as introduced by us in [2]. The answer is as nice as it could be.

PROPOSITION. There is a natural isomorphism

 $M(G_{.,1})^{\sim} \approx M(\hat{G}_{.,1}).$

PROOF. The nerve functor

$E: CMod \rightarrow Simp.Groups$

is defined as follows: If $M = (C,G,\partial)$ is a crossed module, then E(M) is the simplicial group given as the nerve of the associated cat¹-group, which is an internal category in the category of groups (see Loday [3]). In dimension 0, E(M) is just G, in dimension 1, it is $C \rtimes G$, and in higher dimensions it is a multiple semi-direct product with many copies of C.

This simplicial group has Moore complex isomorphic to

 $\cdots \rightarrow 0 \rightarrow 0 \rightarrow \cdots \rightarrow C \rightarrow G,$

i.e., essentially giving us back M. Now let T_{11} be the full (reflexive) subcategory of the category Simp.Groups defined by the condition that G is in it if and only if the Moore complex of G has trivial terms in dimensions 2 and above, i.e., $N(G)_i = \{1\}$ for each $i \ge 2$. The reflector t_{11} : Simp.Groups $\rightarrow T_{11}$ is defined by the condition that $N(t_{11}G)$ is the same as the truncation of N(G) given by:

N(G) o	in dimension 0,
$N(G)_{1}/d_{0}N(G)_{2}$	in dimension 1,
1	in dimensions≥2.

One easily checks that $t_{1J}G$ is isomorphic to EM(G,1) and that M(-,1) and E set up an equivalence of categories between CMod and T_{1J}. Of course a similar thing happens with pro-*C* crossed modules and a reflexive subcategory of pro-*C* simplicial groups.

(The notation we will use for the various categories will, it is hoped, be self explanatory.)

Suppose that G is a (discrete/abstract) simplicial group and M is a pro-C crossed module, then

Simp.Groups (G, U(EM)) \approx Simp. pro- $C(\hat{G}, EM)$

since EM is a simplicial pro-C group. This set is itself naturally isomorphic to $T_{11}^{C}(\hat{f}_{11}, EM)$. Since

 $M(t_{11}^{G}(\hat{G}),1) \approx M(\hat{G},1),$

this gives a natural isomorphism

Simp.Groups (G., U(EM)) \approx pro-C.CMod(M(\hat{G} ,1), M).

The forgetful functor U: pro- $C \rightarrow$ Groups, or more exactly its simplicial and crossed modules extensions, satisfies $UE \approx EU$, so one also has

Simp.Groups (G, U(E M)) \approx Simp.Groups (G, E(U M)) \approx CMod(M(G, 1), U M)) \approx pro-C.CMod(M(G, 1)^{, M)).

We thus have that there is a natural isomorphism

 $M(G_{.,1})^{\sim} \approx M(\hat{G}_{.,1})$

as required.

This clarifies and extends Bousfield and Kan's result in the case k=2, since for a reduced homotopy type X, the pro-Ccompletion WGX of X has a 2-type represented by M(GX.1) which is isomorphic to the pro-C completion of the crossed module M(GX.1), that represents the 2-type of X.

3. NILPOTENT CROSSED MODULES, COFINALITY CONDITIONS AND pro-C COMPLETIONS.

Crossed modules occur in the work of Loday [3], linked closely to the study of fibrations: if $p: E \rightarrow B$ is a fibration with connected fibre F then the induced map from $\pi_1(F)$ to $\pi_1(E)$ makes $(\pi_1(F), \pi_1(E), p_*)$ into a crossed module. The preservation of certain crossed module structures by termwise pro-C completion is thus reminiscent of the preservation of nilpotent fibrations by completions as exemplified by the nilpotent fibration lemma of Bousfield and Kan [1], and suggests there should be a link between nilpotent actions and cofinality conditions. The link is the following:

PROPOSITION. If $M = (C,G,\partial)$ is a crossed module in which the action of G on C is nilpotent, then M satisfies the cofinality

condition and hence M^{\sim} is isomorphic to $(\hat{C},\hat{G},\hat{\delta})$.

PROOF. The proof is by induction on the G-nilpotent length of C. First we note that if $W \triangleleft C$ is such that C/W is in C, it is sufficient to prove that $\cap^{g} W = V$, say, is such that C/V is in C. If $\lambda_G = 1$, the group C is trivial. If $\lambda_G(C) = 2$, then the group C is abelian with trivial G-action. In neither case is there any difficulty.

Next suppose we have that the conclusion holds provided that $\lambda_{\mathbf{G}}(\mathbf{C}) \leq n$, more precisely we assume that if W is normal in C and C/W $\in C$, then $V = \bigcap^{g} W$ is also such that C/V is in C. Now if C is such that $\lambda_{C}(C) = n$, there is a sequence

$$C = C_1 \supset \cdots \supset C_i \supset \cdots \supset C_n = \{e\}$$

as in the definition of Section 1. Taking the normal subgroup C_2 we get a short exact sequence

$$1 \rightarrow C_2 \rightarrow C_1 \xrightarrow{p} C_1/C_2 \rightarrow 1$$

in which $\lambda_{\mathbf{G}}(\mathbf{C}_2) \leq n$ and $\mathbf{C}_1/\mathbf{C}_2$ is abelian with trivial G-action.

Now suppose $W \triangleleft C$ is such that $W/C \in C$. For any $g \in G$, $p({}^{g}W) = p(W)$, since the G-action on C_1/C_2 is trivial. Moreover

$$^{g}W\cap C_{2} = ^{g}(W\cap C_{2}),$$

since C_2 is closed under the G-action. Thus setting $V = \bigcap^{g} W$, we get

$$p(\mathbf{V}) = p(\mathbf{W})$$
 and $\mathbf{V} \cap \mathbf{C}_2 = {}^{g}(\mathbf{W} \cap \mathbf{C}_2)$.

As $C_2/C_2 \cap W \in C$, we apply the induction hypothesis to conclude that $\tilde{C}_2/\tilde{C}_2 \cap V \in C$. Similarly the quotient of C_1/C_2 by p(V) is in C as it is the same as that by p(W). The group C/V is thus part of an exact sequence, the other groups of which are in C, hence it also is in C as required.

BIBLIOGRAPHY.

- 1. BOUSFIELD, A.K. & KAN, D.M., Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972).
- 2. KORKES, F. J. & PORTER, T., pro-C completions of crossed modules, Proc. Edin. Math. Soc. 33 (1990), 39-51.
- 3. LODAY, J.L., Spaces with finitely many homotopy groups, J. Pure & Appl. Algebra 24 (1982), 179-202.

F. J. KORKES:	T. PORTER:
DEPARTMENT OF MATHEMATICS	SCHOOL OF MATHEMATICS
COLLEGE OF SCIENCE	UNIVERSITY COLLEGE OF
BASRAH UNIVERSITY	NORTH WALES
BASRAH.	BANGOR LL57 1UT. U.K.