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EXPONENTIABLE EMBEDDINGS IN

TOTALLY REFLECTIVE SUBCATEGORIES OF TOP

by F. CA GLIARI and S. MANTOVANI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXXI- 4 (1990)

ReSUMe. Dans une sous-cat6gorie P de Top , P différente
de Sing, Sing 1 , les plongements exponentiables sont les

complements des monomorphismes r6guliers. Si P C Haus,
ce sont aussi des plongements exponentiables dans Top.
L’inverse peut etre faux (meme pour P C Haus), mais seu-
lement si P n’est pas totalement reflective par rapport aux
complements de monomorphismes r6guliers dans P. Ceci

donne une caracterisation des plongements exponentiables
dans certaines sous-catégories usuelles de Top, par exem-
p 1 e Haus, Tycb, Reg, Bool.

INTRODUCTION.

In [6] Dyckhoff studied the reflective subcategories of

Top which are totally reflective with respect to open embed-

dings, and he characterized them by means of Pasynkov’s partial
product E13L In [7] Dyckhoff and Tholen showed that results in
[6] can be obtained as an application of a general characteriza-
tion of subcategories which are totally reflective with respect to
a class of exponentiable embeddings in Top (which coincide with
locally closed embeddings [12]),

We will show in two steps that the notion of open em-

bedding is not always the proper one to describe total reflecti-

vity.
First of all, if P is totally reflective with respect to a

class S C Mor(P) of locally closed embeddings, then S consists

of exponentiable embeddings of P (Proposition 1.3).
But every exponentiable embedding of P must be a P-do-

minion open embedding of P, that is a complement of a regular
monomorphism in P (Proposition 1.2). So S must be contained in

the class of P-dominion open embeddings, which is contained in
the class of open embeddings only if P C Haus, and even when
it is so, the two classes do not always coincide.
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Our aim is to find conditions on P under which exponen-
tiable embeddings in P are exactly the P-dominion open embed-
dings in order to find a characterization of the exponentiable
embeddings. When P c Haus, P-dominion open embeddings in P
are open embeddings ctilu then exponentiable in Top. This fact

allows us to use results of 173 to show that exponentiable
embeddings in P are exactly the P-dominion open embeddings,
provided that P is totally reflective with respect to P-dominion
open embeddings. Furthermore, we give a characterization of
such epireflective subcategories of Top, which allows us to

show that some epireflective subcategories of Top, which are

not totally reflective with respect to open embeddings, are ne-

vertheless totally reflective with respect to P-dominion open
embeddings. This improves results given in [1]. As a final result
we are able to give a complete description of exponentiable em-
beddings in Haus, Reg, Tych, Bool, Q(Tych), Q(Bool) and in

every disconnectedness of Haus, Reg, Tycb.
Finally, we provide an example of a category P c Haus in

which the class of exponentiable embeddings is strictly contai-
ned in the class of P-dominion open embeddings.

We refer the reader to 181 for standard notations and de-
finitions not explicitly given here.

We are very grateful to the referee for his useful com-
ments and suggestions.

1. PRELIMINARIBS.

Let C be a category with finite products. We recall some
definitions and results from [3,7,12,14]:

(a) Let f: Q-&#x3E;U, s: U-&#x3E;X be morphisms of C. A pullback
complement of the composable pair ( f, s) is a pullback square

such that for every pullback square
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and any morphism h: V-&#x3E;Q with fh = g, there is a unique
h’: Z-P with f’ h’ = g’ and s’h - h’t :

By a partial product of an object Y over a monomorphism
s: U-X we will call the pullback complement of the pair
(xu,s), where nu is the projection of YxU over U. (For the

general definition, see [7].)

(b) A morphism s: U-X of C is said to be evponentiable
if it is exponentiable as an object of the comma category C/X.

(b) 1 C has all pullback complements over s (that is, for every
f in C composable with s, there exists the pullback complement
of the pair (f,s)) if and only if s is an exponentiable monomor-
phism.

(b) 2 Exponentiable embeddings in Top are the locally closed

embeddings, whose class will be denoted by LC (see 1121).

(c) Let P be a full and replete reflective subcategory of

Top with reflector r: Top-P and with reflection morphism rX:
X-&#x3E; rX, for each X. Let S be a class of morphisms in Top. The
subcategory P is said to be totally reflective with respect to S
if for all s: U-&#x3E; rX in S the pullback s*(rx) or rx is uniquely
P-extendable (see [7]).

Notice that if P is epireflective, and S a class of embed-

dings, P is totally reflective with respect to S if and only if the
restriction of every reflection morphism to S-subspaces is still a

reflection morphism.

Let A, X be topological spaces and P a subcategory of Top:
(d) Let A be a subspace of X. Denote, by KPX (A) the Sal-

bany’s closure operator of A in X (see [14]), that is:

(The Salbany’s definition is analogous to the Isbell’s definition
of dominion, given in 191 in cartegories of algebras.)
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(e) The following properties of Kp can be easily verified:
Given ACUCX, then

is a continuous map,

(f) A subspace A of X is said to be P-dominion closed in
X if KPX (A) = A.

A is P-dominion closed if and only if A= Ker( f,g), whe-
re f, g: X-&#x3E;P, with P E P. It follows that KPX (A) is a P-dominion
closed subspace of X and it is the smallest one containing A.

(g) A subspace A of X is said to be P-dominion open in X
if XBA is P-dominion closed.

Denote by Op the class of P-dominion open embeddings
of Top . Notice that, if P c Haus, Op is contained in the class
of open embeddings (and then in LC), since regular monomor-
phisms in P are closed embeddings.

(h) REMARK. It follows from the definition of a P-domi-
nion open embedding that Op is stable under pullbacks in Top.

(k) Let P be a reflective subcategory of Top, X a topological
space and r: X-&#x3E;rX the reflection map, then

1.1. PROPOSITION. Let P be a reflective subcategory of Top and
let rx: X-&#x3E; rX be a reflection map. Then a subspace U of X is

P-dominion open in X if and only if there is a P-dominion open
in rX such that (rx)-1 (V) = LI . In particular V = rx( LI) when P is

ppireflective.
PROOF. Suppose U P-dominion open, that is XBU=Ker(f,g),
where f,g:X-&#x3E;P E P. If f’ , g’: rX-&#x3E;P are the P-reflections of f
and g, respectively, and V = XBKer( f’,g’) , using the definition of

equalizer it is easy to see that (rX)-1(V) = LI.
The converse follows from (v) and (i) of (e).

1.2. PROPOSITION. Let P be a reflective subca tegory of Top dif-
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ferent from S’ing and SlnK1 (the subcategories of topological
spaces which have, respectively, at most one point and exactly
one point): if s: U-X is an exponentiable embedding in P, then
s is in O p.
PROOF. Let Y be a space in P with at least two different

points, say y1, y2. Since s is exponentiable in P, the partial
product P( s,Y) exists in P (by 2.1 of [7]) and it is the pullback
complement of p1: UxY-&#x3E;U along s . Consider the pullback p 1 of
the first projection 7t1: Xxy-&#x3E;X along s. By the universal pro-

perty of the pullback complement, there is a unique k : Xxy-P
which makes the diagram

commute.

It can be easily proved, by the universal property of the

pullback complement, that k({x)xY) is a singleton when x E XBU,
while k is injective on s"(UxY) . If i1, 12 : X-&#x3E;XxY are the em-

beddings of X into X x {y1} and X x {y2} respectively, then for

f=kii, g=ki2 we have XBLI = Ker(f,g), proving that s is in Op.

1.3. PROPOSITION. Let P be a reflective subcategory of Top,
differen t from 8mB and Sing,. Let S c Mor P be a class of locally
closed embeddings stable under pullbacks in P and P be totally
reflective with respect to S. Then every s in S is exponentiable
in P and is contained in Op .
PROOF. From 3.1 of [7] (which works using the stability of S

under pullbacks in P) P is closed under partial products (over
S). This implies that P admits partial products over S, because
it is reflective, and then by 2.1 of [7], every s in S is an expo-
nentiable embedding in P ; the result then follows from 1.2.

2. TOTAL REFLECTIVITY WITH RESPECT TO DOMINION OPEN
EMBEDDINGS.

In this section we look for necessary and sufficient con-
ditions under which an epireflective subcategory P of Top , con-
tained in Haus., is totally reflective with respect to the largest
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possible class of locally closed embeddings, in this case Op.
From now on, let P be an epireflective subcategory of Top

contained in Haus. First of all, the hypothesis of total reflecti-
vity with respect to Op (which is a class of open embeddings
for P C Haus) allows us to use 1.3 to obtain the converse of
1.2.

2.1. THEOREM. Let P be totally’ reflective with respect to O p.
Then s: U-X is an evponentiable embedding in P if and onl)’ if s
is in OpnMorP .

2.2. THEOREM. Let P be an epireflective subcategory’ of Top.
The following are equivalent:
(1) P is totally reflective with respect to O p.
(2) (a) O p is closed under composition
and (b) P is closed under pull back complements of monomor-

phisms over Op, i.e., under amalgamations over Op. In
other words, if s: U-&#x3E;X, f: Q - U, f is a monomorphlsm,
X, Q are objects in P and s is in O p, then the pull back
complement of f over s is in P.

(3) P is closed under pullback complements over O p.
PROOF. For P = Sing all the equivalences are trivial.
(1) =&#x3E; (3): Let f : Q-&#x3E;U, s:U-&#x3E;X be morphisms of P with s in Op,

and 

the pullback complement of the pair ( f, s) . We have to show
that P is in P. Corresponding to the reflection rP: P - rP, there
exists a map h’ : rP-&#x3E; X such that h’rP = f’ . Consider now the

pullback h:H-U of h’ along s . We get a morphism k:Q-&#x3E;H
making the following diagram commute:
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Since s" is in Op, by (h), and H is in P, k is the reflection of

Q in P, by total epireflectivity. But Q is in P, so k is a homeo-

morphism. By the universal property of the pullback comple-
ment, corresponding to k-1, there is a map z: t-P-&#x3E; P such that

z rP = idp . Since rP is an epimorphism, so P is in P.
(3)=&#x3E;(1): P is closed under partial products along Op, since we

are dealing with monomorphisms (see (k) ). The result then fol-
lows from 3.1 of 171.

(1)=&#x3E;(2)(a): Let il:Q"-X and i2:Q-&#x3E;Q’ be in Op. Then, if we de-
note by ri the restriction of rx to ij for y =&#x3E;1,2, the following
diagram

is such that the bottom square is a pullback square and s 1 is in

Op by I.I. By total reflectivity, r1 is uniquely P-extendable and
its codomain is in P, so ri = rQ’. So also the top square is a

pullback square and s2 is in Op, again by 1.1. From 2.1, it fol-
lows that s 1 and s2 are in the class of exponentiable embed-
dings in P, which is closed under composition (see 1121). By 1.2,
s 1 s2 is then in Op. Since the outward diagram is a pullback
and Op is stable under pullbacks, we have that i1i2 is in Op.
(3)=&#x3E;(2)(b): is trivial.

(2)=&#x3E; (1): Let X be a topological space. We need to show that if
s: U- rX is in Op, the pullback s*(rx) = rx of rX along s

coincides with rv. Since U is in P, there is a morphism f:
rV-&#x3E;U such that rvf = rx . We want to show that f is a mono-

morphism (and then a bimorphism). Let x, y be two points of V
such that rx (x) = rx (j,). The points must be in the same P-

quasicomponent of X, that is KPX({x}) = KPX({y}) (see (k»’ By (e),
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As V = ( rx)-1(U) , VBKPN({x}) is P-dominion open in V, which is

P-dominion open in X by (h). Then, by (2) (a), VBKPV({x}) is P-
dominion open in X. So XB(VBKVP((x))) is P-dominion closed in

X and contains x. Hence it must contain KPX ({x}) by (f). Conse-

quently KPX({x}) = KPV({x}) and, by the same argument,

thus f is a monomorphisms.
Consider the pullback complement P of f over s. By the

universal property, there is a morphism k: X-+P such that the

following diagram commutes:

since the pullback complement of a monomorphism is a mono-

morphism, f’ is mono. Moreover, since P E P by (2) (b), there is a

morphism k’: rX-P such that k’rX = k and so fk’=idrx. This

implies that, since f’ ic a monomorphism, it is an isomorphism,
and then f is an isomorphism too; thus rx = rv.

2.3. REMARX. If P is not contained in Haus, the proof of the

implication (2) =&#x3E;(1) still works when we substitute Op by
OpnLC.

2.4. COROLLARY. If P is totally reflective with respect to 0 p
and (X, t) is a topological space, then P-dominion open subspa-
ces of X form a topology (coarser than T ).

PROOF. Op is stable under pullbacks by (h) and closed under

composition by (2) (a) of Theorem 2.2, so Op is closed under fi-
nite intersections. The other axioms for a topology on X are

trivially verified.

2.5. CoROLLARY. Let P be quotient reflective in Top. Then P is

totally reflective with respect to Op if and only if O p is closed
under composition.
PROOF. (2)(b) of Theorem 2.2 is trivially verified, since the pull-
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back complement f’: p-&#x3E; X of a monomorphism f is a monomor-

phism. Thus the corollary follows 2.2.

2.6. RB . It can be easily proved that in Top the P-reflec-
tion is hereditary with respect to Op if and only if P is totally
epireflective with respect to Op.

As a consequence, Theorem 2.2 characterizes the reflective

subcategories of Top whose P-reflections are hereditary with

respect to Op.

2.7. COROLLARY. Let P be as in 2.2 and let Q(P) denote the

quotient reflective hull of P in Top. If P is totally reflective
ivith respect to O p, then Q(P) is totally reflective with respect
to Op.
PROOF. This follows from KP = KQ(P) (see [3]).

2.8. REMARK. We recall (see 131) that the Salbany’s closure

operators KP are in a bijective correspondence with the quotient
reflective subcategories of Top:

KP= KP if and only if Q(P) = Q(P’) -

Salbany showed that these operators are algebraic closure ope-
nators and in [2] there is an example of a category P whose
operator Kp is not a Kuratowski operator. Nevertheless, the

question of when these operators are topological is still open.
Corollary 2.4 implies the following:

2.9. COROLLARY. If Q(P) is totally reflective with respect to

Op, then KP is a Kuratowski closure operator.

EXAMPLES. For P = Hau, Reg, Tych, Bool it is proved in 161
that P is totally reflective with respect to open embeddings.
Consequently, by 1.2 open embeddings in P are in Op (and vice

versa, since P C HsuB). Then P is totally reflective with respect
to Op.

2.10. COROLLARY. For P = Q(Reg), Q(Tych), Q(Bool) = Q(D2),
P is totally reflective with respect to Op, but not with respect
to open embeddings,.
PROOF. The first assertion follows from 2.7 and the previous
observation. The latter one follows from the fact that the class
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of all regular monomorphisms in these categories is strictly
contained in the class of closed embeddings (see [1]),

2.11. COROLLARY. The cateeorv, Ury of Urvsohn spaces (a space
is Urysohn if any two distinct points have disjoint closed neigh-
borhoods) is totally reflective with respect to Oury.
PROOF. One can easily check that Corollary 2.3 applies to Ujry-
dominion open embeddings, which are characterized by Schroeder
in [15L

2.12. REMARK. If we consider a strongly rigid Hausdorff space
R, the reflective hull of R in Top is not totally reflective with

respect to open embeddings (this is essentially the example gi-
ven by Kennison in 1101 to give a negative answer to Dyckoff’s
conjecture in 161). But even the epireflective hull and the quo-
tient reflective hull of R (whose reflection maps are surjective
and therefore dense) are not totally reflective with respect to

P-dominion open embeddings, as these are not closed under

composition (see [2]).

3. EXPONENTIABLE EMBBDDINGS IN TOTALLY REFLECTIVE
SUBCATEGORIES OF Top .

In the last part of Section 2 we have given examples of

subcategories of Top totally reflective with respect to Op. So
we are able to apply Theorem 2.1 in order to obtain a characte-
rization of exponentiable embeddings in these categories, which
are nothing more than P-dominion open embeddings inside P.

The following characterizations are then obtained describ-

ing P-dominion open embeddings inside P by means of Theorem
1.1 and the nature of regular monomorphisms of P given in 121.

3.1. In Haus, Reg, Tych, Bool, exponentiable embeddings are

exactly the open embeddings.

3.2. In any disconnectedness of Haus, Reg, Tych, e.g. in the

category of totally disconnected Hausdorff spaces, exponentiable
embeddings are exactly the open embeddings.
PROOF. This follows from 2.1, 3.1 and Remark 2.5 of [4].
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3.3. In Q(7Jrch) exponentiable embeddings are the embeddings
whose image is a union of cozero subsets of the codomain.

3.4. In Q(Bool) exponentiable embeddings are the embeddings
whose image is a union of clopen subsets of the codomain.

3.5. In Ilry exponentiable embeddings are the embeddings whose
image contains a closed neighborhood of each of its points (see
[15]).

3.6. REMARK. We are going to show the existence of a category
P contained in Hsus in which the class of exponentiable embed-
dings is strictly contained in On. This implies that P is not to-

tally reflective with respect to OP. This fact will show that the
condition (2) (a) of Theorem 2.2, which is satisfied by P, is not

sufficient for the total reflectivity with respect to Op (if P is
not quotient reflective).

The spaces involved in this example are:

R,: the real line with the standard topology;
IR2: the real line with the topology whose base is formed by

la,bl and la,b[nQ, for all a, b E IR.

3.7. LEMMA. Every continuous map from IRt to IR2 is constant.

PROOF. Let f:IR., -4lR2 be continuous and consider A = Q n f(IR1) .
If A has more than one point, then f-1(A) is an open subset of

IR, which is the disjoint countable union of closed sets and this
is impossible. So A is empty or A = (a ) . In any case f(IR1) is
contained in a totally disconnected space and f must be con-

stant.

3.8. LEMMA. C(IR2,IRI) coincides with C(IR 1,IR 1), the Tych-reflec-
tion of (R2 is IR1.
PROOF. Suppose f:IR2-&#x3E;IR1 continuous. We will prove that

f:IR-&#x3E;IR1 is continuous and then, since IR, is a cogenerator of

Tych, this will prove the lemma. If x is irrational, f is conti-
nuous in x, since the set of symmetric neighborhoods of x is a

base at A for lR 1 as well as for IR2. If x is rational, then for

every e &#x3E; 0 there is a 8 &#x3E; 0 such that

Thus, since in IR2 the closure of ] x-8, x+8 [n Q is [ x-8, x+Sl and
f preserves the adherence,
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this means f : IR1-&#x3E;IR1 continuous.

3.9. LEMMA. If f: IR1xIR2-&#x3E;IR, is continuous, then f : IR1xiR1-&#x3E;IR1 is

continuous.

PROOF. Similar to the proof of Lemma 3.8 considering the two
cases in which the second coordinate is rational and irrational.

Consider now the epireflective hull P of IR1xIR2 in Top
(which is contained in Q(7Ych)) and the following spaces: R,xR,,
IR1x IR2, the subspace A = ] 0,1[x]0,1[ of IR1xlRt, and the subspace
B=]0,1[x]0,1[ of IR 1x IR2. The inclusion open map s:A-&#x3E;IR1xIR1 is
a P-dominion open embedding, since A is a cozero set in IRtxIR1
and we have (see 131):

We will now show s is not exponentiable in P. Suppose,
to the contrary, that s is exponentiable in P. There then exists
the pullback complement of the pair ( i, s) , where i: B-&#x3E;A denotes
the identity map:

We will prove that X is not in P.

PROOF. Since i is a bijection, k is a bijection too (by properties of
pullback complement). Let a be a real number and ja the inclusion:
IR 1x {a}-&#x3E;IR1xIR1; consider the following pullback

where C may be the empty set or a copy of ]0,1[x{a}, when a

is in 10,11. In any case there is a unique t:C-&#x3E;B such that i t = a

and so there is an embedding a: IR1x {a}-&#x3E; X by the universal pro-
perty of the pullback complement
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By Lemma 3.7, for any f: X-&#x3E;IR2 the composition map faa is

constant, as a varies in the real numbers.
In a similar way we can prove that fO’b is constant, for

the embedding 8’b of f blxlRl in X, for any b not belonging to

10,11. Since k is a bijection, this means that f must be constant
on X.

So the initial topology induced on X by C(X,IR.1) and

C(X,IR2) coincides with the topology induced by the C(X,IR1) alo-

ne ; thus the topology on X should be completely regular, in ca-
se X E P. But this is not, since X contains as a subspace a copy
of IR2; in fact h: B-&#x3E;X is an embedding and B is homeomorphic
to IR1xIR2 .

P satisfies (2) (a) of Theorem 2.2, since Tych c P c Q(Tych)
and then

and Tych and Q( Tych) satisfy (2) (a) .
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