@article{CTGDC_1991__32_1_47_0, author = {Carboni, A. and Kelly, G. M. and Wood, R. J.}, title = {A $2$-categorical approach to change of base and geometric morphisms {I}}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {47--95}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {32}, number = {1}, year = {1991}, mrnumber = {1130402}, zbl = {0747.18008}, language = {en}, url = {http://archive.numdam.org/item/CTGDC_1991__32_1_47_0/} }
TY - JOUR AU - Carboni, A. AU - Kelly, G. M. AU - Wood, R. J. TI - A $2$-categorical approach to change of base and geometric morphisms I JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 1991 SP - 47 EP - 95 VL - 32 IS - 1 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://archive.numdam.org/item/CTGDC_1991__32_1_47_0/ LA - en ID - CTGDC_1991__32_1_47_0 ER -
%0 Journal Article %A Carboni, A. %A Kelly, G. M. %A Wood, R. J. %T A $2$-categorical approach to change of base and geometric morphisms I %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 1991 %P 47-95 %V 32 %N 1 %I Dunod éditeur, publié avec le concours du CNRS %U http://archive.numdam.org/item/CTGDC_1991__32_1_47_0/ %G en %F CTGDC_1991__32_1_47_0
Carboni, A.; Kelly, G. M.; Wood, R. J. A $2$-categorical approach to change of base and geometric morphisms I. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 32 (1991) no. 1, pp. 47-95. http://archive.numdam.org/item/CTGDC_1991__32_1_47_0/
[1] Introduction to bicategories, Lecture Notes in Math. 47, Springer (1967), 1-77. | MR
,[2] On local adjointness of distributive bicategories, Boll. Unione Mat. Italiana (7) 2-B (1988), 931-947. | MR | Zbl
and ,[3] Bicategories of spans and relations, J. Pure Appl. Algebra 33 (1984), 259-267. | MR | Zbl
, and ,[4] A 2-categorical approach to geometric morphisms I, University of Sydney Research Report 89-19 (October 1989).
, and ,[5] Order ideals in categories, Pacific J. Math. 124 (1986), 275-288. | MR | Zbl
and ,[6] Cartesian bicategories I, J. Pure Appl. Algebra 49 (1987), 11-32. | MR | Zbl
and ,[7] Closed categories, in Proc. Conf. on Categorical Algebra (La Jolla 1965), Springer (1966), 421-562. | MR | Zbl
and ,[8] Formal category theory: adjointness for 2-categories, Lecture Notes in Math. 391, Springer (1974). | MR | Zbl
,[9] Closed categories, lax limits and homotopy limits, J. Pure Appl. Algebra 19 (1980), 127-158. | MR | Zbl
,[10] Local adjunctions, J. Pure Appl. Algebra 53 (1988), 227-238. | MR | Zbl
,[11] Braided monoidal categories, Macquarie Math Reports 860081, Nov. 1986.
and ,[12] An extension of the Galois theory of Grothendieck, Memoirs Amer. Math. Soc. 51 (1984), No. 309. | MR | Zbl
and ,[13] Monomorphisms, epimorphisms, and pull-backs, J. Austral. Math. Soc. 9 (1969), 124-142. | MR | Zbl
,[14] Doctrinal adjunction, Lecture Notes in Math. 420, Springer (1974), 257-280. | MR | Zbl
,[15] Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series 64, Cambridge Univ. Press (1982). | MR | Zbl
,[16] Review of the elements of 2-categories, Lecture Notes in Math. 420, Springer (1974), 75-103. | MR | Zbl
and ,[17] Metric spaces, generalized logic, and closed categories, Rend. del Sem. Mat. e Fis. di Milano 43 (1973), 135-166. | MR | Zbl
,[18] Applications of sup-lattice enriched category theory to sheaf theory, Proc. London Math. Soc. 57 (1988), 433-480. | MR | Zbl
,[19] Cofibrations in the bicategory of topoi, J. Pure Appl. Algebra 32 (1984), 71-94. | MR | Zbl
and ,[20] Proarrows and cofibrations, J. Pure Appl. Algebra 53 (1988), 271-296. | MR | Zbl
and ,[21] Sheaves and Cauchy-complete categories, Cahiers Top. Geom. Diff. Cat. XXII (1981), 283-286. | Numdam | MR | Zbl
,[22] Sheaves on sites as Cauchy-complete categories, J. Pure Appl. Algebra 24 (1982), 95-102. | MR | Zbl
,[23] Abstract proarrows I, Cahiers Top. Geom. Diff. Cat. XXIII (1982), 279-290. | Numdam | MR | Zbl
,[24] Cahiers Top. Geom. Diff. Cat. XXVI (1985), 135-168. | Numdam | MR | Zbl
, ,