A 2-categorical approach to change of base and geometric morphisms I
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 32 (1991) no. 1, pp. 47-95.
@article{CTGDC_1991__32_1_47_0,
     author = {Carboni, A. and Kelly, G. M. and Wood, R. J.},
     title = {A $2$-categorical approach to change of base and geometric morphisms {I}},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {47--95},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {32},
     number = {1},
     year = {1991},
     mrnumber = {1130402},
     zbl = {0747.18008},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_1991__32_1_47_0/}
}
TY  - JOUR
AU  - Carboni, A.
AU  - Kelly, G. M.
AU  - Wood, R. J.
TI  - A $2$-categorical approach to change of base and geometric morphisms I
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 1991
SP  - 47
EP  - 95
VL  - 32
IS  - 1
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://archive.numdam.org/item/CTGDC_1991__32_1_47_0/
LA  - en
ID  - CTGDC_1991__32_1_47_0
ER  - 
%0 Journal Article
%A Carboni, A.
%A Kelly, G. M.
%A Wood, R. J.
%T A $2$-categorical approach to change of base and geometric morphisms I
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 1991
%P 47-95
%V 32
%N 1
%I Dunod éditeur, publié avec le concours du CNRS
%U http://archive.numdam.org/item/CTGDC_1991__32_1_47_0/
%G en
%F CTGDC_1991__32_1_47_0
Carboni, A.; Kelly, G. M.; Wood, R. J. A $2$-categorical approach to change of base and geometric morphisms I. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 32 (1991) no. 1, pp. 47-95. http://archive.numdam.org/item/CTGDC_1991__32_1_47_0/

[1] J. Bénabou, Introduction to bicategories, Lecture Notes in Math. 47, Springer (1967), 1-77. | MR

[2] R. Betti and A.J. Power, On local adjointness of distributive bicategories, Boll. Unione Mat. Italiana (7) 2-B (1988), 931-947. | MR | Zbl

[3] A. Carboni, S. Kasangian and R. Street, Bicategories of spans and relations, J. Pure Appl. Algebra 33 (1984), 259-267. | MR | Zbl

[4] A. Carboni, G.M. Kelly and R.J. Wood, A 2-categorical approach to geometric morphisms I, University of Sydney Research Report 89-19 (October 1989).

[5] A. Carboni and R. Street, Order ideals in categories, Pacific J. Math. 124 (1986), 275-288. | MR | Zbl

[6] A. Carboni and R.F.C. Walters, Cartesian bicategories I, J. Pure Appl. Algebra 49 (1987), 11-32. | MR | Zbl

[7] S. Eilenberg and G.M. Kelly, Closed categories, in Proc. Conf. on Categorical Algebra (La Jolla 1965), Springer (1966), 421-562. | MR | Zbl

[8] J.W. Gray, Formal category theory: adjointness for 2-categories, Lecture Notes in Math. 391, Springer (1974). | MR | Zbl

[9] J.W. Gray, Closed categories, lax limits and homotopy limits, J. Pure Appl. Algebra 19 (1980), 127-158. | MR | Zbl

[10] C.B. Jay, Local adjunctions, J. Pure Appl. Algebra 53 (1988), 227-238. | MR | Zbl

[11] A. Joyal and R. Street, Braided monoidal categories, Macquarie Math Reports 860081, Nov. 1986.

[12] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Memoirs Amer. Math. Soc. 51 (1984), No. 309. | MR | Zbl

[13] G.M. Kelly, Monomorphisms, epimorphisms, and pull-backs, J. Austral. Math. Soc. 9 (1969), 124-142. | MR | Zbl

[14] G.M. Kelly, Doctrinal adjunction, Lecture Notes in Math. 420, Springer (1974), 257-280. | MR | Zbl

[15] G.M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series 64, Cambridge Univ. Press (1982). | MR | Zbl

[16] G.M. Kelly and R. Street, Review of the elements of 2-categories, Lecture Notes in Math. 420, Springer (1974), 75-103. | MR | Zbl

[17] F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rend. del Sem. Mat. e Fis. di Milano 43 (1973), 135-166. | MR | Zbl

[18] A.M. Ptits, Applications of sup-lattice enriched category theory to sheaf theory, Proc. London Math. Soc. 57 (1988), 433-480. | MR | Zbl

[19] R. Rosebrugh and R.J. Wood, Cofibrations in the bicategory of topoi, J. Pure Appl. Algebra 32 (1984), 71-94. | MR | Zbl

[20] R. Rosebrugh and R.J. Wood, Proarrows and cofibrations, J. Pure Appl. Algebra 53 (1988), 271-296. | MR | Zbl

[21] R.F.C. Walters, Sheaves and Cauchy-complete categories, Cahiers Top. Geom. Diff. Cat. XXII (1981), 283-286. | Numdam | MR | Zbl

[22] R.F.C. Walters, Sheaves on sites as Cauchy-complete categories, J. Pure Appl. Algebra 24 (1982), 95-102. | MR | Zbl

[23] R.J. Wood, Abstract proarrows I, Cahiers Top. Geom. Diff. Cat. XXIII (1982), 279-290. | Numdam | MR | Zbl

[24] R.J. Wood, Proarrows Ii, Cahiers Top. Geom. Diff. Cat. XXVI (1985), 135-168. | Numdam | MR | Zbl