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ON PRIESTLEY DUALS OF PRODUCTS

by V. KOUBEK and J. SICHLER

CAHIERS DE TOPOLOGIE

ET GÉOA1ÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXXII-3 (1991)

RÉSUMÉ. Cet article presente les espaces de Priestley re-

presentant les produits et les produits fibres de

(0.1 )-tr’eillis distributifs et de double p-algebres.

1. INTRODUCTION

The well-known Priestley duality [9], a contravariant equivalence of the category
P of compact totally order disconnected spaces to the category D of distributive
(0, I)-lattices, has become an essential tool for structural and categorical investiga-
tions of varieties of algebras with reducts in D. Its applications produced a fairly
extensive list of subcategories of D representing such varieties, and also led to cata-
logues of Priestley duals of numerous algebraic concepts, such as those by Priestley
[11], or Davey and Duffus [5].

Since any variety V of algebras with reducts in D is closed under the formation
of Cartesian products, a category P(V) contravariantly equivalent to V is closed
under coproducts, and a natural question of characterizing these coproducts arises.
A straightforward argument shows that the Priestley dual P(Kj of a product

K = II{Ki h 6 Il contains a copy of the sum Q = E{P(ki) li ~ I} of Priestley
duals P(Ki ) of its components as a dense ordered subspace. While always totally
order disconnected, the ordered topological space Q need not be compact, in which
case P(K) must be a proper compactification of Q which is, up to an isomorphism,
the ’maximal’ compactification M(Q) of Q.

Since the Priestley dual M(Q) of a product K of Boolean algebras Ki is the
unordered Stone-Cech compactification QQ of Q, one may be tempted to conjecture
that 8Q is also the underlying space of the dual M(Q) of the product K = H IKi 
i E I} of a set {Ki i E Il of distributive (0, 1 )-lattices. This, however, is false. In
general, any transitive extension of the order of Q compatible with the topology of
,QQ is only a preorder on QQ B Q, and hence needs to be factored out to obtain the
Priestley dual M(Q) of K.
An alternate approach is adopted here. We say that an object P of P is a

Priestley compactification of an ordered topological space Q whenever Q is a dense
order subspace of P, characterize these compactifications, and then investigate the
special case in which Q is a sum of Priestley spaces. We show that Priestley com-
pactifications of these sums represent weak direct products (in 3.5), characterize
the Priestley dual M(Q) of the full direct product, and also collections of lattices
for which BQ is the underlying space of M(Q). We also describe Priestley duals of
ultraproducts. This and all other results are presented in Section 3.

The support of the NSERC is gratefully acknowledged by both authors.
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2. PRIESTLEY SPACES

First we review the essentials of Priestley’s duality for distributive (0,1)-lattices
and distributive double p-algebras.
A triple (X, T,) is called an ordered topological space whenever (X, t) is a topo-

logical space and (X, ) is a poset. For any Z C X define

A set Z C X is decreasina if (Z] = Z, increasing if [Z) = Z, and clopen if it is both
closed and open in (X, r). A convex set is an intersection of a decreasing set and
an increasing one.
An ordered topological space (X, T, ) is totally order disconnected whenever x A

y in X implies the existence of a clopen decreasing set Y C X such that y E Y
and x £ Y. A totally order disconnected ordered topological space is called a
Priestley space if and only if it is compact.
To any distributive (0, l)-lattice, Priestley [9] assigns an ordered topological space

P(L) = (X, t, ) in which X is the set of all prime filters of L, x  y if and only if
y C z C L, and the topology T has an open subbasis

Every S E S is clopen and, consequently, (X, t) has an open basis formed by clopen
convex sets. The space P(L) is compact and totally order disconnected, [9]. For any
(0, I)-homomorphism f : L -&#x3E; L’ of distributive (0, l)-lattices L, L’, the inverse
image mapping f -1: P(L’) - P(L) is continuous and order preserving. Setting
P( f ) = f -1 thus gives rise to a contravariant functor P : D --&#x3E; P of the category
D of all (0, 1 )-homomorphisms of distributive (0, 1 )-lattices into the category P of
all continuous order preserving mappings of Priestley spaces.

Inclusion ordered clopen decreasing subsets of a Priestley space P = (X, T, )
form a distributive (0, I)-lattice D(P), and the inverse image map g-1 : D(P) -
D(P’) of a P-morphism g : P’ --&#x3E; P is a lattice (0, l)-homomorphism. Thus

D(g) = g-1 completes a definition of a contravariant functor D : P --&#x3E; D.

The functors P and D determine Priestlev’s dualitv as follows.

THEOREM 2.1 (PRIESTLEY [9], [10]). The composite functors P o D : P --&#x3E; P

and D o P : D --&#x3E; D are naturally equivalent to the respective identity functors of
their domains.
A D-morphism f : L --&#x3E; L’ is surjective if and only if P (f) is a homeomorphism

and order isomorphism of P(L’) onto a closed order subspace of P(L), and f is
one-to-one if and only if P( f ) : P(L’) - P(L) is surjective..

For a Priestley space (X, r, ), let Max (X) and Min(X ) respectively denote the
set of all elements which are maximal or minimal in (X, ), and let Ext (X) =
Maz(X)UMin(X) be the set of all extremal members of (X, ). For any Y C X,
set Max (Y) = [Y) n Maz(X), Min(Y) = (Y] n Min(X) and Ext(Y) = Max (Y) u
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Mira(Y). In any Priestley space, the sets Max (x) = Max ( {x}) and Min (x) =
Min ({fx1}) are nonvoid for every z E X .

Recall that a distributive (0, l)-lattice L is a distributive double p-algebra pro-
vided that for every E L it contains a largest element x* such that A x* = 0,
and a smallest element x+ satisfying x V x+ = 1. Homomorphisms of these algebras
are all D-morphisms preserving the two unary operations thus defined. Following
is a well-known characterization of Priestley duals of distributive double p-algebras,
[11].
THEOREM 2.2. Let f : L --&#x3E; L’ be a D-morphism and let g = P (f) : P(L’) --
P(L) be its Priestley dual. Then:

(1) L is a distributive double p-aIgebra if and only if (Y] is clopen for every clopen
increasing subset Y of P(L) and [Z) is clopen for every clopen decreasing
set Z;

(2) a mapping f is a double p-aIgebra homomorphism ifand only if g(Max (x)) =
Maz(g(z)) and g(Min(x)) = Min(g(x)) for every element x of P(L’). D

A Priestley space satisfying 2. 2(1) is called a dp-space, and a continuous order
preserving mapping g for which 2.2(2) holds is a dp-map.
. Elements a and b of a poset (X,  ) are connected whenever there exists a finite
sequence a = xo, x1, ... , Zn = b such that xi - 1 is comparable to xi for each i E
{I, ... , n}. Classes of the resulting equivalence are called order components of
(X, ). Since Max (x) # O # Min (x) for every element z of a Priestley space
P = (X, r, ), a subset Y of X is a component of P if and only if Ext(Y) is a
component of the subposet Ext (X) of X .
The proposition below summarizes some useful properties of Priestley spaces.

PROPOSITION 2.3. Let P = (X, r, ) be a Priestley space and let cT denote the
r-clos ure of T C X . Then:

(1) for any closed disjoint subsets Y and Z there exists a clopen A C X such
that Z C A and Y C X B A; if, in addition, Y n (Z] = 0 then A may be
chosen to be decreasing; consequently,

(2) the sets (Y] and [Y) are closed whenever Y C X is closed; hence
(3) a union U of order components of P is closed if Max (U) or Min(U) is closed;
(4) c(T] C (cT] and c[T) C [cT) for any T C X;
(5) the Boolean algebra C(P) of all clopen subsets of P is generated by the

lattice D(P) of all clopen decreasing subsets of P;
(6) if D(P) is a double p-algebra, then Max (X) and Min (X) are closed sets.D

According to 2.1, congruences of a distributive (0,1)-lattice L are in one-to-one
correspondence to closed order subspaces of P(L), see also [11]: clopen decreasing
subsets A, B represent 0-congruent elements of L exactly when A n Z = B n Z
for the closed subposet Z of P(L) corresponding to the congruence 0. A closed
subset Z of a dp-space P(L) corresponds to a congruence of a distributibe double
p-algebra L if and only if Ext(Z) g Z, that is, when Z is a closed c-set [4] or [8].
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Let P = (X, T,:5) be a Priestley space. By 2.3(5), every T-clopen A C X can be
written in the form A = U{A; Bi I i E {1, ... , n}}, where A=, B; C X are clopen
and decreasing for all i E {1, ... , n}; since Ai n Bi is T-clopen and decreasing, we
may assume that Ai g Bi for every i = 1, ... , n. In other words, every A E C(P)
is the union of finitely many clopen convex sets Ci = A; B Bi with Ai ç Bi. Let

Gen(A) denote the least number of clopen convex sets whose union is A. The
final ir’orrip(P) = sup{Gen(A)l A e C(P)} will be called the complexity of the

Priestley space P. We say that the Boolean algebra C(P) of all clopen sets of P is
uniformly generated whenever Cornp(P) is finite.

It seems clear that the complexity of P will depend on the length of chains
contained in P. Let A E C(P). A chain x0  x1  ...  z2k of P is a
characteristic chain of A whenever

(1) xj E A if and only if j is even, and
(2) the length of any chain of P satisfying (1) is at most 2k.
Any A E C(P) possesses a characteristic chain, and all characteristic chains of A

have equal length, say 2k. Since no convex subset of A may contain two distinct
elements of a characteristic chain, it follows that Gen(A) &#x3E; k + 1.

For any A E C(P), let T= 11 (A) consist of all t E X such that t = z; in
some characteristic chain zo  x1  ...  X2k of A. Clearly, the sets To, ... , T2k
are pairwise disjoint. We claim that every T; is closed. To see this, note that
T; n (Tj] # 0 if and only if i  j, in which case Ti g (Tj] and Tj 9 (Ti). But then
2.3(4) implies that cT; C c (Tj] C (cTj] and cTj g [cTi) and, because A is clopen,
cTi C A for all even i, while cT; C X B A when i is odd. Therefore, for every
t E c11 there is a characteristic chain zo  x1  ...  Z2k of A with :l:i = t and,
consequently, each T; is closed.

LEMMA 2.4. If P = (X, r, ) is a Priestley space and A E C(P) has a characteristic
chain of length 2k, then Gen(A) = k + 1.

PROOF: We proceed by induction on k.
If k = 0, then T0 (A) = A, the clopen set A is convex, and Gen(A) = 1 follows

trivially.
Let k &#x3E; 1 and suppose that any clopen B whose characteristic chains have the

length 2k - 2 can be written in the form B = U{Di liE {0, ... , k - 1}}, where Di
is clopen convex and T2i(B) g Di for all i E {0, ... , k - 11. Since the sets 1j(A),
[Tj(A)), (Tj(A)] are closed for j E {0, ... , 2k} and because Tj(A) n [T2k (A)) = 0
for all j  2k, by 2.3(1), we obtain a clopen increasing set I such that U{Tj(A)l 
j  2k} C X B A and T2k (A) C I. Characteristic chains of the clopen set A B I are
of length 2k - 2, and T2i(A) C T2i(A B I) for all i E 10, ... , k - 11. By the induction
hypothesis, there exist clopen convex sets Do, ... , Dk-1 such that T2i (A B I ) g Di
and A B I = U {Di l i E {0, ... , k - 11). Characteristic chains of the clopen set
A B Do are of length 2k - 2, and the induction hypothesis provides clopen convex sets
Co, ... , Ck-1 such that T2i (ABD0) C Ci and A B D0 = U{Ci l i E {0, ... , k - 1}}.
The sets Eo = Do and Ei+1 = Ci for i E {0,... ,k - 1} are clopen and convex,
and A = U{Ej l j E {0, ... , k}}. From T2i+2(A) g T2i (A B Do) it follows that
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T2j (A) C Ej for all j E {0,... , kl. This shows that Gen(A)  k + 1. D
LEMMA 2.5. Any chain of length 2k in a Priestley space P is a characteristic chain
of some A E C(P).
PROOF: Let zo  x1  ...  z2k be a chain in P. Since P is totally order
disconnected, for every i E {0,... , 2k - 11 there exists a clopen decreasing set
Ai such that xi E Ai and xi+1 £ Ai. Define A-I = 0 and A2k = P. Then

Ci = A2t B A2s-1 is clopen and convex, and Zo  Xl  ...  z2k is a characteristic
chain of A = U{Ci i E {0,..., k}}. D
COROLLARY 2.6. The Boolean algebra C(P) of all clopen sets of a Priestley space
P = (X, t, ) is uniformly generated if and only if the poset (X, ) has a finite
height..

REMARK 2.7. Adams and Beazer [1] show that chains of a Priestley space P = P(L)
have at most n elements if and only if for any chain a0  a1  ... an-1 of elements
of the distributive (0,1)-lattice L there exist a’0 a’1,..., a’ n-1 E L such that

Hence C(P) is uniformly generated if and only if the lattice L = D(P) satisfies the
Adams-Beazer condition for some finite n.

Let Con(L) denote the congruence lattice of a distributive (0, I)-lattice L. A
congruence ’11 of L is compact if IF  V{G i E I} holds in Con (L) only when ’11 
V{Gj l j E JI for some finite J C I. The lattice Con(L) is distributive, complete,
and each of its members is a join of compact congruences. The least congruence
0(a, b) E Con(L) containing the pair {a, b} ç L of distinct elements of L is compact
and, because compact elements form a join semilattice, any join V{8(aj,bj)lJ =
1, ... , n) of finitely many principal congruences 8(aj, bj) is compact.
Let K C P(L) be the closed set representing a compact congruence W of L, and

let (Ui i E I} be an open covering of P(L) B K. Then P(L) B U; represents a
Oi E Con(L) for each i E I and K Z n {P (L) Ui i E II, that is, ’11  V{Gi I
i E I}. From the compactness of ’1’ we obtain that P(L) B K C UlUj I i E J}
for some finite J C I, so that P(L) B K is compact and hence closed. This shows
that compact congruences of L are represented by clopen subsets of P(L). Since

the set P(L) B K is closed, it represents the complement ’1" of ’11 in Con(L). Hence
all compact members of Con(L) are complemented, see also Hashimoto [7].

Since Con(L) is dually isomorphic to the inclusion ordered poset of all closed sub-
sets of P(L), any subset of P(L) representing a complemented member of Con(L)
must be clopen.

For clopen decreasing sets A C B C P(L), let O = O (A, B) E Con(L) be
represented by the clopen convex set B B A; thus (U, V) E O if and only if U n (B B
A) = Vn(BBA). Then (0, A) E 4) and (B, P(L)) E 4), so that 8(0, A)v8(B, 1) O in
Con (L) . On the other hand, for any (U, V) e 4l we obtain (UUA) n B = (V U A) f1 B,
that is, (UUA, V U A) E 8 (B,1); from (U, U U A), (V, V U A) E 0(0, A) it then follows
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that (U, V) E 0(0, A) V 8(B, 1). Therefore 0(0, A) V 8(B,1) = O and, consequently,
8(A, B)V4, = 0(0, 1) is the unit of Con(L). Hence 8(A, B) A O = (8(A, B)1B8(0, A))V
(8(A, B) V 8(B, 1)). If (U, V) E 8(A, B) A 8(0, A) or (U, V) E 8(A, B) V 8(B, 1), then
U = V (see Gritzer [6], p.89). This shows that O (A, B) is the complement 8(A, B)’
of the principal congruence 8(A, B) for any A C B.

Let ’11 E Con(L) be the congruence represented by a clopen set K C P(L). Then
the clopen set P(L) B K can be written as P(L) B K = U {Bj B Aj l i = 1, ... , n}
with clopen decreasing Aj ç Bj g P(L). If Oj E Con(L) denotes the congruence
represented by the clopen convex set Bj B Aj for j = 1, ... n, then ’11’ = A14kj lj =
1, ... ,n}, so that W = V {O’j l j = 1 , ... , n} = V {8(Aj, Bj) Ij = 1, ... , n] is a
join of finitely many principal congruences. This completes the proof of the claim
below.

PROPOSITION 2.8. Let K C P(L) be a closed set representing y E Con(L), that
is, let ’11 consist of all (U, V) E L2 with U rl K = V n K. Then the folloyving are
equivalent:

(1) y is a compact congruence;
(2) IF has a complement in Con(L);
(3) y is a join of finitely many principal congruences;
(4) K is clopen.

Moreover, a compact * E Con(L) is a join of at most n principal congruences if
and only if n &#x3E; Gen(P(L) B K). D

3. PRIESTLEY COMPACTIFICATIONS AND PRIESTLEY DUALS OF PRODUCTS

DEFINITION 3.1. Let P = (X, t, ) and Q = (Y, m, ) be ordered topological spaces.
We say that P is a Priestley comDactification of Q whenever P is a Priestley space
containing Q as a dense ordered subspace, that is, whenever

(1) (Y, v) is a dense subspace of (X, r), and
(2) the partial orders  and  coincide on Y.

Thus every Priestley space is its own Priestley compactification.
For any ordered topological space Q = (Y, v, ::5), let C(Q) denote the Boolean

algebra of all v-clopen subsets of Y, and let D(Q) be the (0, 1 )-sublattice of C(Q)
formed by all decreasing members of C(Q). We say that a (0, 1)-sublattice L of
C(Q), creates the order of Q provided

yo « yl if and only if yi E A implies yo E A for all A E L.

Thus any sublattice L C C (Q) creating the order of Q is, in fact, a sublattice of
D(Q), and the Boolean algebra B(L) = [L]C(Q) generated within C(Q) by L is an
open basis of a topology v in which Q = (Y, v, ::5) is totally order disconnected.

In particular, if Q is a Priestley space, then B(D(Q)) = C(Q) by 2.3(5) and,
since Q is totally order disconnected, D(Q) creates the order of Q.
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LEMMA 3.2. Let P = (X,t,) be a Priestley compactification of an ordered topo-
logical space Q = (Y, v, ), and let p : C(P) -&#x3E; C(Q) be the mapping defined by
Sp(V) = Y n V for every V E C(P). Then p is an embedding of the Boolean algebra
C(P) into C(Q), and the (0,1)-sublattice L = Sp(D(P)) of D(Q) has the following
properties:

(1) P is the Priestley space P(L) of L,
(2) L C D(Q) creates the order of Q, and
(3) members of B(L) = [L]c(Q) form an open basis of Q.

PROOF: The mapping is one-to-one on C(P) because Q is dense in P. It is also
clear that p preserves all Boolean operations. Since - coincides with the restriction
of  to Q, it follows that p maps D(P) isomorphically onto a (0, l)-sublattice L of
D(Q); thus, by 2.1, the Priestley space P is, in fact, the Priestley dual P(L) of L.

If y0 A y1 in Q, then yo f yl in P and, because the latter space is totally order
disconnected, for some A E D(P) we have yl E A and yo E X B A. But then

cp(A) E L C D(Q) is such that yi E cp (A) and yo E Y B cp(A). Therefore L creates
the order of Q.
To prove (3), assume that G C Y is v-closed and y E Y B G. Then there exists

a r-closed F C X such that G = Y n F. Since jyj is T-closed, 2.3(1) implies
the existence of an A E C(P) with F C A and y E X B A. Hence B = cp(A) is
v-clopen, G C B and y E Y B B. But B E B(L) because D(P) generates C(P) and
L = Sp(D(P)). Points and closed subsets of Q are thus separated by members of
B(L), so that B(L) is an open basis of Q. D

Let Q = (Y, v, -) be an ordered topological space and let L be a (0, l)-sublattice
of C(Q) such that L creates the order of Q and B(L) is an open basis of Q.

Next we aim to prove a converse of Lemma 3.2 by showing that the Priestley dual
P(L) of any such L C C(Q) is a Priestley compactification of Q.

Let e : L --i B(L) denote the inclusion homomorphism of L into the Boolean
algebra B(L) g C(Q) generated by L, and let F(B(L)) be the set of all prime filters
of B(L). If a is the topology on F(B(L)) whose open basis is formed by all sets

then (F(B(L»,o-) = P(B(L)) is the Stone space of B(L).
For every prime filter y of L there exists a unique prime filter x E F (B (L)) such

that y = L rl z, so that the P-morphism P(e) : P(B(L)) -&#x3E; P(L) dual to the
inclusion e : L --&#x3E; B(L) is a continuous bijection, and hence a homeomorphism, of
P(B(L)) onto the (unordered) underlying compact Hausdorff space of P(L). For

any x0, x1 E F (B(L)) set x0  x1 exactly when x1n L C x0 n L. Then  is a partial
order under which (F(B(L)), o-, ) becomes an ordered space homeomorphic and
also order isomorphic to the Priestley space P(L) of L. We need only show that
Q = (Y, v1, -) is a dense ordered subspace of (F(B(L)), 0", )

For any B E B(L) we have cl(F(B(L)) B B) = {x E F(B(L)) l B £ x} because
each z E F(B(L)) is a prime filter of B(L). It follows that cl(B) U cl(Y B B) =
F(B(L)) and cl(B) rl cl(Y B B) = 0, so that cl(B) is o--clopen for every B E B(L).
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Let A E L and al E cl(A). If x0  al then A E al g zo, that is, zo E cl(A), so
that cl (A) is decreasing for every A E L.

For every y E Y define p(y) = {B E B(L) y E Bl. Since p(y) is a prime filter
of B(Lj, this defines a mapping p : Y -&#x3E; F(B(L)). Since L creates the order - of
Q, p (y1) n L C p(yo) n L if and only if y0 -&#x3E; yl . This shows that p is one-to-one and
that p(yo)  p(ylj is equivalent to yo « y1 for all yo, y1 E Y.

Since p(y) E cl(B) if and only if y E B, it follows that cl (B) rl p(Y) = p(B)
and hence also p-1 (cl(B)) = B for all B E B(L). Thus p is continuous. In fact,
since B(L) is an open basis of v, the mapping p is a homeomorphism of Q onto the
ordered subspace p(Y) of (F(B(L)), o-, ).

Let A # 0 be a-open. Since {cl(B) B E B(L)l is an open basis of (F(B(L)), tT, 
), there exists a B E B(L) for which cl(B) is a nonvoid subset of A. But then

p(B) = p(Y) rl cl(B) C p(Y) rl A is nonvoid, by the definition of cl(B). Thus p(Y)
is dense in (F(B(L)), CT, ).
To conclude the proof, we identify Q with its homeomorphic and order isomorphic

copy p(Y) dense in (F(B(L)), o-, ) = P(L).
Observe that if L C D(Q) creates the order of Q and if B(L) forms an open basis

of Q, then these two properties are inherited by any (0, I)-sublattice K of D(Q)
containing L and, in particular, by the lattice D(Q) itself. In conjunction with 3.2,
these observations yield the result below.

THEOREM 3.3. Let Q = (Y, v, -) be an ordered topological space. Then:

(1) a Priestley compactification of Q exists if and only if D(Q) creates the order
- of Q and B(D(Q)) is an open basis of v;

(2) an ordered topological space P is a Priestley compactification of Q if and
only if P = P(L) for some (0, l)-sublattice L of D(Q) such that L creates
the order - of Q and B(L) is an open basis of v. D

Thus, for example, the Stone-Cech compactification I3Q is a Priestley compact-
ification for any infinite discrete antichain Q; in fact, its Priestley compactifica-
tions are exactly its (unordered) compactifications. On the other hand, for the
naturally ordered discrete set N of all positive integers, the only (0,1)-sublattice
L C D(N) creating the order of N is that consisting of 0, N and all initial segments
{1,2,... n} g N. Hence the one-point compactification of N by a largest element
is the only Priestley compactification of N.

Returning to general considerations, we now assume that Q = (Y, v, -) has a
Priestley compactification P(L) dual to a (0, l)-sublattice L of D(Q). It follows
that the Priestley space

is a Priestley compactification of Q as well. Next we show that M(Q) is the ’largest’
Priestley compactification of Q.
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THEOREM 3.4. Let P(L) be a Priestley compactification of Q = (Y, v, -), and let
P(K) be the Priestley dual of a distributive (0,1)-lattice K. If g : Q --&#x3E; P(K) is
a continuous order preserving mapping, then:

(1) there is a unique P-morphism P(f) = g’ : M(Q) --+ P(K) extending g;
(2) g extends to a P-morphism g" : P(L) --&#x3E; P(K) if and only if f (K) g L,

in which case g’ = g" o P(eL ) with the inclusion (0, I)-homomorphism eL :
L --&#x3E; D(Q).

Moreover, M(Q) is an ordered Stone-Cech compactification of Q if and only if D(Q)
generates C(Q).
PROOF: If g: Q -&#x3E; P(K) is a continuous order preserving mapping, then g-1(A) E
D(Q) for any clopen decreasing subset A of P(K). From D(P(K)) = K it fol-
lows that the restriction f : K -&#x3E; D(Q) of g-1 to D(P(K)) is a lattice (0, 1)-
homomorphism. The P-morphism P( f ) : M(Q) -&#x3E; P(K) satisfies P(1)-1(A) rl
Y = g-l(A) for all A E D(P(K)); since P(K) is totally order disconnected, this is
possible only when the restriction of P( f ) to Y coincides with g. In other words,
the P-morphism g’ = P( f ) extends g. Since Q is dense in M(Q), the extension g’
of g is unique.
Now g’ = g" ogL for some continuous order preserving maps gL : M(Q) -&#x3E; P(L)

and g" : P(L) -&#x3E; P(K) if and only if f (K) g L. If this is the case then, since Q
is dense in P(L), the P-morphism gL is surjective and, in fact, gL = P(eL) for the
inclusion (0, l)-homomorphism eL : L -&#x3E; D(Q). This demonstrates (1) and (2).
The unordered reduct Qo = (Y, v) of Q is a completely regular - Tl-space. Its

Stone-Cech compactification I3Qo is thus one of its Priestley compactifications and,
consequently, the identity mapping idy of Y extends to a continuous mapping
h : M(Qo) -&#x3E; I3Qo. Since M(Q0) compactifies Qo, there is also a continuous
h’ : QQO -&#x3E; M(Qo) extending idy and, because Y is dense in either space, h
is a homeomorphism with the inverse h’. Thus M(Qo) = (F(C(Q)),B) with the
Stone-Cech topology a.
The inclusion mapping of Qo into M(Q) is continuous and order preserving,

and Qo is dense in M(Q). Hence there exists a unique continuous extension k :
M(Qo) -&#x3E; M(Q) of idy. The mapping k is one-to-one if and only if F(B(D(Q») =
F(C(Q)); since k is surjective, it is a homeomorphism if and only if C(Q) is gener-
ated by D(Q). Therefore the B-compactification of Qo can be partially ordered to
become a Priestley compactification of Q if and only if the lattice D(Q) generates
C(Q). D
Next we turn our attention to Priestley duals of products.
Let Qi = (Yi, mi, -i) be nonvoid Priestley spaces for all i Elf. 0, and denote

Q = E{Qi l i E I} = (Y, m, -) their sum; that is, the partial order - is the union of
all -i and the collection of all v;-open sets forms an open basis of v. Since A E D(Q)
if and only if A n Yi E D(Qi ) for all i E I and because each Qi is a Priestley space,
the lattice D(Q) creates the order of Q and the Boolean algebra B(D(Q)) forms an
open basis of Q. Thus the Priestley compactification M(Q) of Q exists, by 3.3(1).
The sum g : Q -&#x3E; P(K) of any collection of P-morphisms gi : Qi --&#x3E; P(K) with
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i E I is a continuous order preserving mapping and hence, by 3.4(1), it extends

uniquely to a P-morphism g’ : M(Q) --&#x3E; P(Q). This, of course, means that M(Q)
is dual to the product II{D(Qi)l liE I} of the nontrivial distributive (0,1)-lattices
D(Qi). In particular, Qi is a closed order subspace of M(Q) = P(II[ID(Qi) i E I})
for every i E I.

We show that Priestley compactifications of the sum Q = E{Q,i i E I} are
Priestley spaces of certain subdirect products of lattices D (Qi ). For example, if I is
infinite then a one-point compactification Q U {03BC} of Q such that u &#x3E; y for all y E Q
is the Priestley space of the lower weak direct product L of all D(Qi) with i E I -
that is, the (0, 1)-sublattice L C K = HID(Qi) I i E I} consisting of the unit 1 E K
and of all K G K for which ii E Il K, (i) &#x3E; 01 is finite. On the other hand, if I is
finite then the only Priestley compactification of the sum Q is the Priestley dual
Q = E {Qi i E I) of the product TT {D(Qi) l i E I}.

Let K; - P(Qi) be a distributive (0, l)-lattice with more than one element for
each i E 1 0, and let L be a (0, I)-sublattice of the product K = II{Ki * 6 I}.
For any J C I, let TTJ E Con(L) consist of all pairs (k, A’) E L2 such that A(i) =
k’(j) for all j E J. We say that L is a weak direct product of the set {Ki l i E I} if
and only if, for every finite subset J of I, the congruence 1r J is complemented and
L/TT = ][If Ki I i E J}.

PROPOSITION 3.5. A Priestley space P(L) is a Priestley compactification of the
sum Q = Ef Qi i E I} if and only if L is a wealr direct product of {Ki i E I}.

PROOF: If P(L) is a Priestley compactification of Q = E {Qi i E I}, then there is
a surjective P-morphism h : M(Q) -&#x3E; P(L) extending the identity mapping of Q
onto itself, by 3.4; therefore Qi = h(Q;) is compact and hence closed in P(L) for
every i E I. But then Qi U c(QB Q; ) = c(Q) = P(L) because Q g P(L) is dense.
Furthermore, since Q is a subspace of P(L) and because Q; is open in Q, it follows
that Qi n c(Q B Qi) = 0 in P(L). Thus Qi g P(L) is clopen for every i E I, and so is
Q. = Uf Qj I i E JI for every finite J C I. By 2.8, the congruence 1r J represented
by Qj has a complement, while L/TTJ = Hf Kj I i E JI follows from the fact that
Qj is a closed order subspace of P(L).

Conversely, let L be a (0, 1)-sublattice of K such that L/1rJ == TT {Kj l i E J}
and TT J E Con(L) is complemented for every finite J C I. In particular, L/TT{i}=
K; = D(Q; ) for each i E I. By 2.1, there exists an order isomorphism and home-
omorphism g; : Qi -&#x3E; P(L) for each i E I and, consequently, a continuous order
preserving joint extension g : Q -&#x3E; P(L) of all gi : Qi -&#x3E; P(L). For distinct

a, j E I, the hypothesis gives L/TT{i,j}= K; x Kj which implies that 9 maps the
sum Qi + Qj onto its order copy in P(L). Therefore g is an order isomorphism of Q
into P(L). Since TT{i} E Con(L) has a complement, the set g(Qi) g P(L) is clopen
by 2.8, and hence the copy g(Q) of Q is a subspace of P(L). By 3.4, there exists a
P-morphism h : M(Q) -&#x3E; P(L) extending g; the mapping h is surjective because
L is a (0,1)-sublattice of D(M(Q)) = HIKI liE I}, see 2.1. But then the copy

g(Q) g P(L) of Q is dense in P(L) because Q is dense in M(Q). Altogether, g(Q)
is a dense subspace of P(L) that is order isomorphic to Q. D
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REMARK 3.6. If L is a weak direct product of {Ki l iE Il then, for any finite
subset J of I, the complement TT’J of TTJ E Con(L) is the congruence 1rIBJ. To

see this, select a j E I and note that V xs - 1 E Con(L) for any i E I B {j}
because Qi n Qj = O in P(L). From the distributivity of Con(L) it then follows
that 1ri &#x3E; TT’j for each i # j, and hence also A {TTi I i 0 j} &#x3E; 1rj. On the other hand,
A {TTi l i # j} A TTj = 0 E Con(L) because L is a sublattice of II{Ki liE I}, so that
Afri I i 0 j} TT’j because Con(L) is distributive.
PROPOSITION 3.7. Let Qi = P(K;) be the Priestley space of a nontrivial distribu-
tive (0, 1)-lattice Ki for each i E I # 0, and let Q = E {Qi i E I}. Then the Priest-
ley dual M(Q) of the product K = HIKI liE Il is an ordered B-compactification
of Q if and only if the chain lengths of all but finitely many component spaces Qi
are uniformly bounded by a finite cardinal n.

PROOF: Let J C I be finite and let all chains of every Qi with i E IB J have length
at most n. To prove that QQ is the underlying space of M(Q), in view of the last
claim in 3.4 we need only show that the Boolean algebra C(Q) of all clopen sets is
generated by D(Q).

Let C E C(Q) be arbitrary. Since Qi is a Priestley space and because C fl Qi E
C(Qi), for every i E I there exists an integer ni such that C n Qi = U{Ak,i B Bk,i I
k = 1,... nil with Ak,i, Bk,i E D(Qi), by 2.3(5). From 2.6 it follows that there
exist sets Ak,i, Bk,i E D(Qi) such that ni  mo for all i E 1B J and a finite mo. If
ml = max{nj l j E J} and m &#x3E; max{mo, ml }, we may write C rl Qi = U{Ak,i B
Bk,i l k = 1, ... , ml. Set Ak = U{Ak,i i E I} and Bk = U{Bk,i i E I}. Then
Ak, Bk are clopen decreasing for k = 1, ... , m and C = U{Ak B Bk I k = 1, ... , m}.
Therefore D(Q) generates C(Q), as claimed.

Conversely, if the order condition fails, then there exists a one-to-one countably
infinite sequence i(l), i(2), ... such that Qi(n) contains a chain of length 2n for
n = 1, 2, .... By 2.5 and 2.4, there exist Ci(n) E C( Qi(n» such that Ci(n) =
U{Ak B Bkl k = 1, ... , m} for some Ak, Bk E D(Qi(n)) only when m &#x3E; n + 1. Since
Q = E{Qi i E I}, the set C = U{Ci(n) l n = 1,2,...} is clopen in Q, yet lies
outside the Boolean algebra generated by D(Q).D

REMARK 3.8. Adams and Beazer [2] show that the congruences of a distributive
(0, l)-lattice L are (n + l)-permutable if and only if all chains of P(L) have at
most n elements. Hence 3.7 can be reformulated as follows: the Priestley dual of a
product Hf Ki i E I} is an ordered B-Compactification of E{P(Ki) l i E I} if and
only if there exists some finite n such that all but finitely many lattices Ki have
(n + 1)-permutable congruences.
REMARK 3.9. Since any product of distributive double p-algebras is a distributive
double p-algebra, the Priestley compactification M(Q) of the sum Q = E{P(Ki) 
i E I} of dp-spaces is the dual of the double p-algebra K = II{Ki l i E I}, and
the inclusion Qi -&#x3E; M(Q) is a dp-map for every i E I. Therefore 3.7 remains
valid in the category of all dp-maps between dp-spaces. According to Beazer [3],
a distributive double p-algebra L has n-permutable congruences if and only if any
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chain in its dp-space P(L) has at most n + 1 elements, and the claim below follows
immediately.
COROLLARY 3.10. Let Qi = P(K; ) be the Priestley space of a nontrivial dis-
tributive double p-algebra Ki for each i E I # 0, and let Q = E {Qi i E I}.
Then the Priestley dual M(Q) of the product K = II{Ki i E I} is an ordered
B-compactification of Q if and only if the chain lengths of all but finitely many
component spaces Q¡ are uniformly bounded by a finite cardinal n. This is the case
exactly when all but finitely many algebras Ki have n-permutable congruences. D
To describe Priestley duals of ultraproducts, let Qi = P(Ki ) be the Priestley dual

of a nontrivial distributive (0, 1)-lattice or a double p-algebra K; for i E I # 0, and
let M(Q), where Q = E {Q,i (i E I}, be the Priestley dual of K = II{Ki l iE I}.

. Since Qi g Q g M(Q) is clopen in M(Q) for every i E I, the mapping e :
Q -&#x3E;BI into the unordered Stone-Cech compactification 131 of the discrete space
I defined by e (q) = i for all q E Qi is continuous and order preserving, and satisfies
e(Ext(p)) = Ext(e(p)) for all p E M(Q). Since I is dense in 131, from 3.4 we obtain
the existence of a continuous surjective extension h : M(Q) --&#x3E; 131 of e; the D-
morphism 1b = D(h) embeds the Boolean algebra 21 canonically into K. Of course,
h(Ext(p)) = Ext(h(p)) follows from the fact that 131 is unordered.

For any ultrafilter u on I, let Ou: K -&#x3E; K/0u denote the canonical surjective
homomorphism from K to the ultraproduct K/8u. Thus Ou (k) = Ou ( 1(,’) if and only
if Let be a decomposition
such that it. is one-to-one and Eu is surjective. For any A E 21 exactly one of the
sets k-1 {0}, k -1 {1} belongs to u, so that eu maps 2, onto the two-element Boolean
algebra 2 = 10, 11, and fu(Å) = 1 if and only if k-1{1} E u. Furthermore, these
four morphisms form a pushout. To see this, let 0 : K -&#x3E; L and o : 2 - L satisfy
0 o y = it o eu and let It, x’ E K be such that E (k, It’) E u. If k E 21 is given by

in

, so that This shows

that 8u is contained in the kernel of 0. Hence q5 = q6’ o q6. for some D-morphism
. But then O’ o 03BCu = JL follows from the fact that c. is surjective, and the four
D-morphisms in l/Ju oo = it. o c. do, indeed, constitute a pushout. Therefore the
diagram formed by their Priestley duals is a pullback in which P(Eu ): {1} --+ 131
is given by P(Eu) (1) = u. Thus the closed order subspace h-1{u} of M(Q) is the
Priestley dual P(K/8u) of the ultraproduct K/8u.

This concludes the proof of the claim below.

PROPOSITION 3.11. Let fKi i E I} be a nonvoid set of nontrivial distributive
(0, 1)-lattices or double p-algebras, and let h : P(K) -&#x3E; BI be the Priestley dual
of the canonical embedding e : 2, --&#x3E; K of the Boolean algebra 2/ into the product
K = II {Ki li E I}. Then, for any ultrafilter u on I, the closed order subspace
h-1 {u} g P(K) is the Priestley dual P(K/8u ) of the ultraproduct K/8u. D

It is clear that Proposition 3.11 applies also to all varieties of distributive (0,1)-
lattices with operators - such as varieties of p-algebras and of (double) Heyting
algebras.
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REMARK 3.12. It is easily verified that D-morphisms (or double p-algebra homo-
morphisms) Spi : L --&#x3E; .K; determine a subdirect product L of lattices (or double
p-algebras) Ki with i E I if and and only if each P(p;) is a homeomorphism and an
order isomorphism (and a dp-map) onto a closed order subspace (or a closed c-set)
of P(L), and the union of images of all P (cpi) is dense in P(L).
EXAMPLES AND OBSERVATIONS. While there are many minimal weak direct prod-
ucts of distributive lattices, there is only one minimal weak direct product in the
category of distributive double p-algebras. We use Priestley compactifications to
illustrate these points.

For instance, if Q is the sum of infinitely many two-element chains Qi = 10i, 1i}
with i E I, then its one-point compactification R = QUfwl in which [w)nQi = {1i}
for each i E I is the dual of a minimal weak direct product of three-element chains
D(Qi), by 3.3 and 3.5. Yet any singleton {1i} is a clopen increasing set for which
(1i] = {1i, 0i,w} is not open; hence, according to 2.2 (1), the Priestley space R is
not the dual of any distributive double p-algebra.

For an example of another kind, consider the two-point extension S = Q U Iz, u}
of the sum Q as above, in which x  s  u for all 8 E S, while {z} compactifies
Min(Q) and Jul compactifies Maa(Q). Then S is the dual of a double Stone

algebra, and also a minimal Priestley compactification of Q. No insertion of Q; into
S is a dp-map, however; as a result, R is not the dual of a weak direct product of
three-element double Stone algebras D(Qi).

These two examples indicate that dp-spaces of weak direct products of distributive
double p-algebras must satisfy additional requirements.
Assume that Q = E{Qi (iE I} is the sum of arbitrary nontrivial dp-spaces Qi

and that L is a weak direct product of algebras Ki - D(Qi) in the category of
distributive double p-algebras. Then, as in 3.5 and 3.6, Q is dense in P(L) and
the order subspaces Qi and P(L) B Qi = c(Q B Qi) form a clopen decomposition of
P(L) for each i E I. Since these sets also represent distributive double p-algebra
congruences, it follows that Qi and P(L) B Qi are clopen c-sets.

If p E P(L) satisfies p  q for some q E Qi then there exists an m E Max (Qi) g
Max(P(L)) such that p  m. But then Min(p) g Min(m). Since m belongs to
the c-set Qi, we have Min(p) g Min(Qi) and then, because P(L) B Qi is a c-set,
we conclude that p E Q; . Together with a dual argument, this shows that Q is a
union of order components of P(L), and explains the findings of the two preceding
examples.

Observe that the set is a closed union of order

components of P(L).
Let Q U fvl be the one-point compactification of Q in which v is incomparable

to any member of Q. It is easily seen that Q U fvl = P(Lo) is the Priestley dual of
a distributive double p-algebra Lo g II{Ki i E I} which consists of all A satisfying
A(i) = 0 for all but finitely many i E I or A(i) = 1 for all but finitely many i E I.

Since the mapping h : P(L) -&#x3E; P(Lo) defined by h(q) = q for all q E Q and
h(p) = v for all p E P(L)B Q is, clearly, a dp-map, this shows that Lo is the unique
minimal weak direct product in the class of all distributive double p-algebras.
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