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PARITY COMPLEXES 

by Ross STREET

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXXII-4 (1991) 

Résumé On construit un module pratique de la n-cat6gorie libre
engendr6e par certains polytopes orient6s de manure ad6quate. Pour
faire la construction tout ce qui est n6cessaire du polytope est
l’ensemble gradu6 de faces et le classement par signe des (m-D-faces de
chaque m-face. Le concept de complexe parité fait abstraction de cette
structure.

La description de la n-cat6gorie libre engendr6e par un
complexe parité est simple mais la preuve qu’elle est une n-catégorie et
qu’elle est libre entraine de longues inductions. On considère les
produits et les joints des complexes parités. Comme applications, les
objets fondamentaux,de la cohomologie g6ndrale non-abélienne et ceux
de la théorie de descente se sont précisés pour la premiere fois.

Introduction

Parity complexes are a new combinatorial structure introduced here in
order to provide a uniform treatment of the diagrams in all dimensions that
appear in descent theory and in the theory of homotopy types.

The particular sequence of these diagrams arising from the simplexes
was treated in [Sll. The modification of that work needed to deal with cubes
was done in part by [AS], and a beautifully geometric treatment of cubes with
a derived treatment of simplexes appeared in [A]. A different treatment of
simplexes was given by with a view to an abstraction to general pasting
diagrams. Such an abstraction was accomplished by [J], but the axioms there
are rather complicated.

The calculations of [S1] led me to conjecture (in Montreal, 1985) that
the decision to make all the odd faces part o the source and the even faces
part of the target uniquely determined the cocycle conditions of higher-order
non-abelian cohomology. This provided one motivation for the concept of
parity complex.

Apart from the simplexes and cubes there were the diagrams arising in
descent. J.W. Duskin proposed (about 1981) that there should be a descent w -
category associated with each cosim licial w-category and drew the diagrams
in low dimensions. The first step in ealing with a class of diagrams is to find
a suitable notation. For simplexes and cubes we had a good notation. On
looking at the descent diagrams, I realized (early 1987) that they were
simply products of simplexes with "globs"; these latter form a very easy class



316

of diagrams to treat. I gave a talk in the Sydney Category Seminar outlining a
program to investigate these matterg. The next week Mi Johnson pointed
out that my description of the product in that lecture was too simplistic. I
should have realized this since I discussed the associated chain complex in
the same lecture, and ute iezoor product of the chain cump!exes Is associated
to the correct product. Johnson’s lectures on pasting schemes (now appearing in
his PhD thesis [J]) provided the first successful abstraction from the simplex
example, and strongly influenced this work. His goal to capture the general
pastable diagrams of higher-order categories is more ambitious than the goals
outlined here.

These considerations led me to try to abstract the constructions of [Sl]
from simplexes to a structure in which "negative" and "positive" faces were
given. The abstraction arose purely from the desire to deal with products of
examples already understood. However, the resultant concept of parity
complex is an accessible multi-dimensional generalization of loop-free graph;
the free w-category generalizes the category of paths in the graph.

The first section gives the definition of parity complex and the
straight-forward roof that simplexes provide an example. A different proof
will be obtain later from the fact that simplexes are iterated cones;
however, presentation of this example in the first section should give readers
a feeling for the axioms and convince them that the hard part of the work of
[Sl] is included in our general theory and not in verifying the axioms. Duality
is explained. Also, the chain complex of free abelian groups associated to each
parity complex is described.

The second section introduces the notion of movement which captures
the idea of passage from one part of the parity complex to another by
replacement of negative faces by positive faces. Composition and
decomposition of moves is examined in preparation for the construction of the
free w-category on a parity complex. The details of this construction appear in
the third section and its universal property is given in the fourth section.

The fifth section describes the product and join of parity complexes.
These require some extra conditions in order to work well. The final section
describes the descent o-category of a cosimplicial .-category and the special
case, sought by John E. Roberts [R1], of cohomology with coefficients in an ta-
category. The connection with homotopy types will be pursued elsewhere.

Added September 1991. This paper is a slight modification of a Macquarie
Mathematics Report IS2]. Soon after that Report was written, John Power
pointed out that the parity complexes axiomatized there were not general
enough to cover all the pasting diagrams one would like to include, even for 3-
categories. The pasting schemes of [J] were better in this respect. We were
especially encouraged by the applications of the work foreshadowed by
Kapranov-Voevodsky [KV1], [KV2 . However, in May 1990, Vaughan Pratt
(through his interest in concurrency in computer science [P]) and Michael
Johnson came up with a series of examples to show the real limitations of my
axioms (even for the 3-cube). This meant that the Report was m error. They
also had examples to show that the relation 4 was not generally anti-
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symmetric. I had observed that the relation  (which contains ) was in
fact a total order for snmplexes, cubes, and other examples. Since antisymmetry
of a was an indispensable tool in both [J] and [S2], I put aside my revision of
[S2].

In mid 1990, Ronnie Brown (Bangor) informed me that Richard Steiner
(Glasgow) had some new results in this area. I did some work on the approach
of [ASn] but was not able to use it to overcome the problems we were
experiencing. Also, John Power (Edinburgh) was able to extend to arbitrary
dimensions his geometric approach to pasting [Pw].

Richard Steiner visited Macquarie University for the month of August.
This provided the motivation for again concentrating in depth on the subject.
Johnson, Steiner and I came to the condusion that we should settle for the time
being on the case of antisymmetry of the relation .4 (a fortiori of the relation
).

I returned to a revision and correction of IS2] and was amazed to find
that I could simply eliminate the offending axioms! The present paper is
therefore a minor modification of the original Report. The resultant notion of
parity complex is still not as general as one would like (since it assumes 
antisymmetric), but we do obtain the cubes and the full descent ta-category.

I am grateful to Samuel Eilenberg, Michael Johnson, John Power,
Vaughan Pratt, Richard Steiner for their various contributions to this work
which certainly go well beyond the points mentioned above.

§1. Definitions, and the simplex example
Definition A parity complex is a graded set

together with, for each element xeC£ (n &#x3E; 0), two disjoint non-empty finite
subsets x-, x+cCn-1 subject to Axioms 1, 2 and 3 which appear below after
some simple terminology is introduced.

Elements of x- are called negative faces of x, and those of x+ are

called positive faces of x . It is also appropriate to think of x as the name of
a rule which allows the replacement of x by x+.

Symbols £, ’1 , C will be used to denote signs - or + when either is
intended.

Each subset S c C is graded via Sn = S n Cn . The n-skeleton of S c
C is defined by

Call S n-dimensional when it is equal to its n-skeleton. The complement of S



318

in C is denoted by -iS. Let S - denote the set of elements of C which occur

as negative faces of some xeS, and similarly for S+. In symbols,

Also let S+ denote the set of negative faces of elements of S which are not
positive faces of any element of S. So 

also, let

Write S1 T when (S-nT-) u ( S +nT+) = 0. In such notation we identify a
singleton S = (x) with its element.

Definition A subset S c C is called well formed when So has at most one
element, and, for all x, yeSn (n &#x3E; 0), if x # y then xly .

Write x  y when x+ny-=O. This implies x =y since x-, x + were
assumed disjoint. For any S c C, let as denote the preorder obtained on S
as the reflexive transitive closure of the relation  on S. Put  = C. In

general, as is contained in, but not equal to, the restriction of  to S.
Whenever order properties of a subset S of C are referred to in this work, it
will be implicitly understood that the order as is intended.

Axiom 1

Axiom 2 x- and x+ are both well formed.

Axiom 3 (a) x  y  x implies x = y .

Example A A 1-dimensional parity complex is precisely a directed graph
with no circuits.

Example B The w-glob is the parity complex G defined by
and

Example C The w-simplex is the parity complex A described as follows.
Let An, denote the set of (n+1 )-element subsets of the set N of natural

numbers 0, 1, 2, .... Each x E An is written as (xo, x1’ ... , xn) where xo 
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xi  ...  Xn. Let xa i denote the set obtained from x by deleting xi . Take
ac- to be the set of xd i with i odd and x + to be the set of xa i with i even.

The facial identities
for

immediately imply the following characterizations

which make Axiom 1 clear.

Now consider Axiom 2. To see that x- is well formed, take y, z E x-

with y= z and ya1 = zdk. By symmetry we may suppose i:g k. Then yi = xi,
zk = xk+1 ; so y = x g , z=xdk+1. So i , k+1 are odd. So i+k is odd. So y 1 z .
A similar argument applies to x+.

For Axiom 3 take x  y in An. Observe that xo S yo . If xo = yo then

y ao  x d0 . Similarly, if x. = y. then xan a y a.. Using the last sentence with
a simple induction on n , we see that x  y a x implies x = y . This gives (a).
For (b), suppose x = zai , y = z8; . If i is odd and j is even then z at  x  y

 zd0, so (z0, z2, z3, ... , Zn+1)  (Z1, z2, zw ... , Zzt+t), which implies, by
repeated last-element reznoval, that zo  zi contrary to zo * z, . If i is even

and j is odd then zd n+1  x  y  zdn for n odd, and zar  x a y  zOn +1 for
n even; each of these implies, by repeated first-element removal, that zn =
Zn+1, a contradiction.

Example D This non-example is basically given (for other reasons) by Power
[Pw], and shows that there are reasonable structures which do not satisfy our
Axiom 3. Put

We describe the faces of elements xE C by writing Put

and
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Notice that CE f + n b-, nE b+ n c- ; vEc+nd- BE d+Qf -; hence f  b  c  d
 f, so Axiom 3 (a) does not hold. Axiom 3 (b) does not hold either.

Proposition 1.1
and

Proof uer-n x++ implies there are vEx-, wE X+ such that u E v-, new+.

So wv with vex- wex+ contradicts Axiom 3(b). This gives the first
equality; the second is similar. So the unions in Axiom 1 are disjoint; the other
equalities now follow.qed

To each parity complex C there is an associated chain complex F of
free abelian group, Take Fn to be the free abel ian group on the set Cn . For

xECn we interpret x-e F. as the formal sum of its elements. Define d : F.
- F 1B-1 to be the homomorphism such that d(x) = x+ - x-. Our Axioms ensure
that

Proposition 1.2 thtn

Proof y E u- n x- + implies y EW+, were So w  u a v E x+, wEX- contrary
to Axiom 3(b).qed

This is an appropriate point to mention duality. For each subset K of
N not containing 0, t h e K -dual CIC o f C consists of the same graded set as
C but with x- and x+ interchanged when xeo for neK. We write xK for

x as an element of CK, so that, for xECn, xIC- is x-K when ne K, and
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xK- is x;K when neK. As the axioms for a parity complex are self-dual,
the K-dual of a parity complex is a parity complex. Consequently, once a
proposition is proved for all parity complexes, the dual propositions
automatically hold.

Proposition 1.3 If x+ is a subset of a well-forrned S c C then x+ is a

segment of S .

Proof Suppose w  u 4s v with w, v E x+, so that there is y E w+ n tr. By
Proposition 1.2, u- n x-+ = 0. So y K x-+. Now y E w+ c x++. By Axiom I,
y E x+-. So y E z- where z E x+. So y E u-n z-. But u, z E S well formed.

So u = z E x+.qed

§2. Movement

This section introduces the calculus of movement (which we might
have called "replacement" or "surgery" ). For these results, none of the axioms
is required.

Definition Suppose S, M, P are subsets of C. Say S moves M t o P when
and

Denote this by s : M - P.

Observe that any S moves S* to S+. Observe also that M and S
determine P ; also S and P determine M. However, there need be no P to
which a given S moves a given M.

Proposition 2.1 For subsets S, M of C, there exists a subset P such that S
moves M to P if and only if

a nd

Proof If P exists then

and

Conversely, if the two conditions hold, define P as we are forced to, and
calculate

Proposition 2.2 S uppose S moves A to B a nd X c A h a s S+QX = 0.

If Yn S- = Yn S+ = 0 then S moves (A u Y)n X to (B u Y)n,X.
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Proof Using one direction of Proposition 2.1, we obtain
and

and using the other direction yields that S moves (A u Y) n X to

Proposition 2.3 (Composition of moves) Suppose S moves M to P
and T moves P to Q. If S-n T+ =0 then SuT moves M to Q.

Proof

and, since the disjointness condition is self dual, the other half is dual.qed

Proposition 2.4 (Decomposition of moves) Suppose S = TuZ moves
M t o P with Zt c P. If T 1 Z then there exists N such that T moves M
to N and Z moves N to P.

Proof Since Z* c P and P nZ-c Pn S -= 0, the dual of Proposition 2.1

yields Z : N - P and N = (PuZ-)n-iZ+. The disjointness hypotheses

imply T£ = S£ n,Z£. Then

By Proposition 2.1, T moves M to I

where the penultimate step uses Z - C S -=S +US+C MUS + and M n Z + C

MQS + =O. qed
Observe that, if S is well formed and is a disjoint union of T and Z,

then we have T 1 Z as required in the hypothesis of the above proposition.
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§3. The (o-category of a parity complex

Definitions A cell of a parity complex C is a pair (M, P) of non-empty
well-formed finite subsets M, P of C such that M and P both move M to
P. The set of cells is denoted by O(C). The n-source and n-ta rget of (M , P)
are defined by

An ordered pair of cells (M, P), (N, Q) is called n-composable when

in which case their n-composite is defined by

The goal of this section is to show that this defines an w-category
O(C). It is clear that we do obtain an w-category N(C) of unrestricted pairs
(M , P) of finite subsets of C using the above formulas for source, target and

composition; the axioms for an m-category [Sl] are immediate. That D(C) is

closed under the source and target operations is clear. So all that remains is to
show that O(C ) is closed under the compositions.

Call (M,P)E0(C) an n-cell when MuP is n-dimensional. This is the
same as the requirement that the cell is equal to its n-source (and/or its n-
target). Then we have M. = Pn .

Movement in an n-cell (M , P)

Call S c C receptive when, for all xEC and {E,N} = f-,+),
if xEnQXnn C S and Sn xee = O then SQXne = O.

A cell (M, P) is called receptive when both M and P are receptive. We
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shall eventually show that all cells are receptive. First we shall relate

receptivity to movement.

Proposition 3.1 If x+ moves M to P and M is receptive then x- moves
M to P.

Proof Since x+ moves M to something, we have x +* c M and M n x++ =O
(Proposition 2.1). By Proposition 1.1, x-* = x--QQ+- = x ++C M. Since M is
receptive, MQX-+ = 0. Hence, by Proposition 2.1, x- moves M to

This leads us to the following technical lemma.

Lemma 3.2 Suppose C is a parity complex in which all cells are receptive
and suppose (M, P) is an n-cell of C. Suppose X c Cn+t is finite and well
formed with Xt c M. ( = P. ). Put Y = (MnUX-)nX+. Then:

(a) Xt is a segment of Mn ;
is a cell and

is a cell.

Proof Let m be the cardinality of X. The proof involves three steps.

Step 1. (b) implies (c).

All movement conditions are covered by (b) except for ’X moves Y to
N§"; but this follows from the definition of Y and the calculation:

Wellformedness is covered by (b) and the wellformedness of X.

Step 2. (b) f o r m = 1 implies (a) a n d (b) in general.

The proof is by induction on m. By hypothesis and Proposition 1.3, we
can assume m &#x3E; 1. Let x be a maximal element of X. Then x+c Xt c Mn
and x+ is well formed (Axiom 2), so (b) for m = 1 gives us a cell
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and x-nMn = O. Since X is wellformed, so is Z = Xn r fx) and also

By induction, Zt is a segment of Nn,

is a cell for and

Now we prove (b). By maximality of
So

So is a cell.

We still need to show X- nMn = 0. But

Hence

Now we prove (a). Suppose  X+- is not a segment of M n . Then there

exist u , v E X t and non-empty S c MnnX + = M1B n,X+ (using X- n Mn = 0)
such that {u , v}US is a maximal chain in Mn from u to v. Then S c

MnQx+ CNn. By Proposition 1.3, either u or v is not in x+ . Suppose v«
x+ . Then vE(X+ux-)Qx+=Z+ which is a segment of Nn; so uE Z+. So

uE x+ . Let s be the first element of S. Then u  s ; so

Since Mn is well fonned, x+- n s- = 0. So

So there exists we x- with w + n S-= 0 . So w  s su(V) in N n and w , v
E Z t contrary to the segment property of Z +. Hence we must have VEX+ and

u E x+. Then let s be the last element of S. Then s  v ; so O=S+QV-C
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s+ n x+ - . Since Ng is well formed, x++ n s+ = 0. So

So there exists wE x- with s+ n w- * 0. So u SU[u] s  w in N n and u , w

E Z + contrary to the segment property of Z t. So X* is a segment of Mn.

Step 3. (b) holds for m = 1.

Let x E Cn+1 be the element of X ; so we have x + C Mn and Y =

(MnUx-) n x+ = (Mn n x+) u x- . What we need to prove is that (M(n-1)UY,
P (n-1) u Y) is a cell and x n Mn = O . We do this by induction on n. For n =

0, M uP = M 0 is a singleton. So x+ = M0. By Axiom 2, Y = x- is a singleton,
so that (Y , Y) is certainly a 0-cell, and we have x- n Mo = 0 by Axiom 1.

So suppose n &#x3E; 0. By Proposition 1.3, x + is a segment of Mn, so we
can write Mn as a disjoint union

where S is an initial and T is a final segment. By Proposition 2.4, we have
A, B c Cl such that

Since ( M, P ) is a cell, tn-1 (M, P) = ( M (n-2) u P n-t ’ p(n-1» is an (n-1 )-cell to

which, by induction, we can apply Steps 1 and 2 because T satisfies the
conditions of the Lemma. This gives that (M(n-2) uBuT , P (n-t) uT) is an n-

cell, Tt is a segment of Pn-1, and T-nPn-1=Ø. Now (M(n-2)uB,P(n-2)uB)
is an (n-1 kell to which, by induction, we can apply Steps 1 and 2 because x+

satisfies the conditions of the Lemma. This gives that (M(n-2) uAUX+,
P(n-2) uBux+) is an n-cell, x-+ n x++ = x + t is a segment of B, and x +- n B

= 0. Now (M(n-2)UA, P(n-2)UA) is an (n-1 )-cell to which, by induction, we
can apply Steps 1 and 2 because S satisfies the conditions of the Lemma. So

(M(n-1) US, p(n-2) uAuS) is an n-cell and St is a segment of Ml.
In particular, A, B are well formed and receptive (since all cells are

receptive by hypothesis). By Proposition 3.1, x- moves A to B.
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We shall prove S- n x-+ = 0 by induction on the cardinality p of S.

For p = 0, it is clear, so suppose p &#x3E; 0. Assume it is false; so there is wE S,
vE x- with w- n v+=O. Let u be maximal in S with w .4s u. But vwu

and vE x’ imply u+ n x+- = 0 (dual of Proposition 1.2). By Proposition 2.2,
x+ moves A’= ( A Ur) nu+ to B’ = ( B ur ) n r u+. Since u is maximal in S,
u+ CA. So, by induction on n, (M(n-2) uA’, P(n-2) UA’) is a cell. By hypothesis
on C, we have that A’ is receptive. By Proposition 3.1, x - moves A’ to B’.

So x- +nu- c x-+Q A’)= 0. Hence w = u. So w E Snr{u} = S’ which moves

Mn-1 to A’. Since the cardinality of S’ is p-1, induction gives S’-n x-+ = 0.

But this contradicts wE S’, vEx- with w- n v+= 0. So S- n x-+ = 0 as

claimed.

That S 1 x- follows from the calculations:

Proposition 2.3 now gives S u x- : Ml - B. Now S is well formed as it

is a subset of Mn-1 and x- is well formed by Axiom 2; so SIK implies
S u x- is well formed.
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Dually, T+ n x- = 0, x- u T is well formed, and x- u T : A

- P n-1’
Since S is initial and T is final in the well formed set Mn, we

have S u T wpll formed and S- UT+ = O. By Proposition 2.3 and the
above, we have SUx U T = Y = ( Mn Ux-)Qrx+ is well formed and moves

Mn-1 to Pn-1. So (M(n-1)UY, P(n-1) UY) is a cell as required. Also

since x--nS-=x-nT-=O.qex

Proposition 3.3 All cells of all parity complexes are receptive.

Proof Since receptivity is a condition which applies dimension by dimension,
it suffices to prove this for parity complexes of finite dimension n. We prove
this by induction on n. For parity complexes of dimensions 0 and 1, receptivity
is an empty condition. For complexes of dimension 2, we only need to see that
singletons (a) are receptive. Suppose x--nx+-C{a} and (a) n x++ = 0. Now
x-n x;- is non-empty since it contains the negative faces of minimal elements
of x-. So (a) = x--nx+-; so a E x+-. So aEx-+; so {a} n x-+= 0. So, using
duality for the other condition, we have proved (a) receptive.

Now inductively suppose that all cells are receptive in parity
complexes of dimension n. Let C be a parity complex of dimension n+l. The
the n-skeleton D of C is a parity complex of dimension n and,, by induction,
the cells of D are receptive. Let (M, P) be an (n-1)-cell of C. We must

prove that Mn-1 = P n-l is receptive. Suppose r-nx+-c P n-1 and P n-1nx++ =
0. Now (M, P) is an (n-1)-cell of D and X = x-c D. is finite and well

formed with X’ = x- n x+-c Pn-1. So the dual of Lemma 3.2 applies to give
X + nP n-1 = 0. That is, x-+ nP n-1 = 0. Using duality for the other condition,
we have proved P-i recePtive.qed

Proposition 3.4 I f ( M, P ) is an n-cell of C a nd z r. C.. with z- c Pn-1
then

Proof. We prove it by induction on the cardinality of K. If Mn = Pr is

empty then the result is dear So suppose Mn is non-empty. Assume Mn- n z+
=O; so there is w E Mn with w- n z+ =O. So z  w. Let u be maximal in

K with w  u. Then u+ c p n-1. By Proposition 2.4, A = MnQr{u} moves
Mn-1 to B = (PUr) n r u+ . By Lemma 3.2, we have a cell (M(n-2)UBU{u}
P(n-1)U{u} ). So ( Mnr{u} , P(n-2)UBU(MnQr{u})) is an n-cell. Now z- c



329

p n-1 ",u+ c: B (since z- n u+ = 0 implies u  z which implies u  z  w  u,

contrary to Axiom 3 (a)). By induction, (MnQr (u)- n z+ = 0. By Lemma 3.2

(dual), z-cpl implies z+nP n-1 = O; so z+nu+ = O, so z+c-iul. Also z- c

B. So Lemma 3.2 (b) (dual) gives z+ n B = 0. So z +n ir = z+nu-n, u+ c z+ nB

= 0. So we have the contradiction

Proposition 3.5 Suppose (M, P), (N , Q) are n-cells with
a nd

Then, Mn- n Nn+= 0 and the (n-1)-composite (M, P) *n-1 (N, Q) is a cell.

Proof We prove this by induction on the cardinality q of Nn (= Qn). It is

clear for q = 0. Suppose q = 1, so that Nn = (z), say. Then z-c Nl = P n-1’ By
Proposition 3.4, M n’ n z+ = 0. By Lemma 3.2 (b), Mn + n z+ = Mn+ nrMn- n z+

CPn-1Qz+=O. By Proposition 2.1, Mn-Qz-CPn-1QMn-=O So Mnu (z) is

well formed. Proposition 2.3 gives flw (z) : Mn-1 - Ql. So the composite
(M, P)*n-1(N, Q) is a cell.

Now suppose q &#x3E; 1. Let z be a minimal element of Nn. Then z-c

Nn-1 = Pn-1. By Lemma 3.2 (b), putting

we obtain cells (N.t) u {z} , Q(n-2)UN’n-1U{Z} and ( N’, Q Ow-1) uN’n). By the

q = 1 case, ( M u{z}, P(n-2)U(N’)n-1U{z}] ) is a cell and Mn- n z+ = 0. By
induction since the cardinality of N’n is q-1, we obtain the cell

and But

z+) = O, so we have atl that is required.qed
Theorem 3.6 If C is any parity complex then a(C) is an w-category.
Furthermore, if (M,P), (N,Q) are n-composable cells then

for all

Proof Suppose (M,P), (N,Q) are both r-cells. For r n, the result is
trivial. We use induction on r-n which we now assume positive. By
Propositions 3.5 and 2.3, we see that s1B+1(M,P) .1B Sn+1(N ,Q) is an (n+1 )-cell,
and so are the other three expressions obtained by replacing either or both
s ’s by t ’s; moreover, (M ku Pk) ’n ( NkuQk) + =O for k = n+1. Define r-cells
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( M’ , P’ ), (N’,Q’) to agree with ( M, P), ( N , Q), respectively, in dimensions
n and &#x3E; n+1, while

M’ n+1= Mn+1 uN n+1’ P’ n+1 = P n+1 uNn+1= N’ n+1’ Q’ n+1= P n+1 UQn+1;
this uses PrnpnRitinn ’2 ’2 with X = 0. Then (M’,P’) llvT’ Q’) are (n+1)

composable. By induction, ( M’, P’ ) *n+1(N’,Q’) is a cell and (M’ku P’k) -n
( N’kU Q’k) + =O for all k &#x3E; n+1. Since

the result is proved.qed

4. Freeness of the to-category

Definition For each xeCp’ two subsets J1(x), TT(X)CC(p) are inductively
defined as follows. Put 

for

The pair (u(x) , x(x)) is denoted by (x).

Theorem 4.1 (Excision of extremals) Suppose (M , P) is an n-cell and

UE Mn ( = Pn ) is such that (M , P) = (u). Th en there exist n-cell s ( N , Q) ,
( L , R ) a n d m  n such that ( N , Q ), ( L , R ) are not m-cells and

Algorithm Since (M,P) # (u), there exists a largest m such that
for :

From the definition of A and TT, and from movement properies of a cell,
Mm+1= u(u)m+1 + Mm+1 QPm+1’ p m+1 = x(U)m+1 + Mm+1 "p m+1 .

So Mm+1 QPm+1 contains at least one element w, say. Let x be a minimal

element of Mm+1 which is less than w and let y be a maximal element of
Mm+1 which is greater than w. By Lemma 3.2 (a), either x or y is not in

u(u)m+1 . So either x or y is in Mm+1QPm+1. By minimality of x and

maximality of y, 
and

If xEMm+1QPm+1, by Lemma 3.2, we have cells ( N , Q ), ( L , R)
defined as follows, and they clearly have their m-composite equal to (M , P) :

If YEMm+1QP m+1’ by Lemma 3.2, we have cells (N , Q), ( L, R)
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defined as follows, and they too clearly have their m-composite equal to
(M,P):

Definition An element XECP is called relevant when x&#x3E; is a cell. This

amounts to saying that u(x)n and x(x). are well formed for 0 S n  p-1, and
for

Call (x) an atom when x is relevant.
All elements of dimension 0 and 1 are relevant. An element of

dimension 2 is relevant if and only if x-- n x+- and x-+ n x+ + are singletons.

Remark In many examples we find that it is easy to characterize the sets
lt(x) and TT(x) and to prove the following stronger forms of Axiom 1 and 2:

(Rl) u(x)- U K(x)+ = u(x)+ u x(x)- and p(xh n K(x)+ = ;L(x)+ m K(xh = 0;
(R2) u(x) and x(x) are well formed.

Then it follows that every element of C is relevant. Such an example is A.

To see this, define a subset u = (u0, ul, ... , un) of N to be alternating when
consecutive elements u i , ui+1 have opposite parity (that is, one is even and
one is odd). Call u negative alternating when uo is odd, positive
alternating when uo is even. Write xau for the result of deleting from xe A

those x r with rE u. Then it is easy to show [Sl; Proposition 3.11 that
u(x) = { xdu: u is negative alternating} and
K(x) = { xdu: u is positive alternating ),

and that (Rl ) and (R2) hold. Hence, every element of A is relevant.

Recall the concept of "free w-category" from [Sl; Section 4].

Theorem 4.2 The w-category O(C) is freely generated by the atoms.

Proof Define the rank of a cell (M,P) to be the cardinality of the sub-
parity complex of C generated by (M,P). Excision of extremals (Theorem
4.1) produces two cells of smaller rank than ( M, P). Repeated application of
that algorithm must therefore terminate. It can only terminate when each cell
in the decomposition has the form (x). Since the algorithm produces cells at
each stage, these final (x) must be atoms. Hence the atoms do generate.

Every decomposition of an n-cell (M, P) into atoms will include all
the (u) with UEMn (= Pn)’ and these will be the only n-cells in the
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decomposition which are not (n-1)-cells.
Consider the case where Mn = {u}. We shall examine the ambiguity in

a decomposition

This situation is depicted by the diagram below, where Qn-2 = AUu+UB
and Ln-2 = A u u’t u B with the unions disjoint.

The second sentence of Theorem 3.6 tells us that N n-t must contain all

XE Mn-1Qru- for which there is a yEu- with x a y; similarly for Rn-1 wi th
a reversed. These are the o n l y compulsory elements of these sets since, by a
sequence of processes represented by the diagram

or the similar diagram with x on the B side, one can transfer all the other
elements from Nn-1 to Rn-1 and vice versa. These processes only involve the
middle-four-interchange law for (n-1)-cells. Furthermore, there is a unique
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decomposition of (M, P), of the kind we are considering, such that the
cardinality of Nn-t is least: namely, the one for which Nn-1 consists of

precisely its compulsory elements.
Now consider a general n-cell (M, P) with Mr of cardinality greater

than 1. Then we have a decomposition of (M, P) as

... * n1((N,Q) *n-,2u&#x3E;*n-2(L,R))*n-1((N’,Q’)*n-2u’&#x3E;*n-2(L’,R’))*n-1((N’ .. 
in which, if u  u’, the order of u and u’ cannot be changed even with
alteration of the "whiskers" (N,Q ), (L,R), (N’, Q’), ( L’, R’). However, if

u-Qu’+= 0 then we either have the situation depicted in the diagram

in which
and

or the similar situation with u, u’ interchanged; so it is possible to

interchange u, u’ by appropriately altering the whiskers.
The only possible or de r changes in the decomposition are therefore

consequences of the n-category axioms. Freeness follows.qed

5. Product and join

Definition The prod uct C x D of two parity complexes C, D is given by

for xe CP, aEDq, eE f-, +), where E(p)E{-, +) is c for p even and is not e

for p odd. The usual rebr*keGng associativity bisection respects dimension,
and negative and positive faces. The product of parity complexes is not a
parity complex in general.

For xECp, aE Dq, put 0 = -(p) and 0=+(p). Then we have
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Proposition 5.1 The product of parity complexes satis f ies Axioms 1 and 2,
and Proposition 1.1.

Proof This is easily deduced from the above formulas and the corresponding
properties of the component parity complexes.qed

The above proposition suffices for the construction of the chain complex
associated with the product, and we have a canonical isomorphism of chain
complexes:

where we remind readers that the tensor-product boundary formula is
d(x O a) = dx0a + (-1)P xOda for xEFCp, aE FDq .

Remark If C, D satisfy (Rl) and (R2) of the Remark of Section 4 then so
does the product C x D. There are explicit formulas for J1(x, a), TT(x, a) in

terms of u(x), lt(a), x(x), TT(a). To express these, write Xr to denote xe {u, TT}
when r is even and to denote the other element of {u, TT} when r is odd.
Then

The product of two parity complexes need not satisfy Axiom 3. The
problem is with the preorder . To study this preorder on the product, we
shall introduce a larger relation  on the factor complexes.

In a parity complex C, write x  y when either yE x+ or xE y-. Let
.4 denote the reflexive transitive closure of the relation  .

Notice that x  y means there exists zEx+ny-, so this implies x - z

 y . Hence, x A y implies x 4 y . The relation  compares elements of the

same dimension, whereas « compares elements of all dimensions.
So clearly Axiom 3 (a) is implied by antisymmetry of  . Also, half of

Axiom 3 (b) is implied by antisymmetry of .4 . For, x  y, xE z+, ye z-

imply z - x a y - z, which, if .4 is antisymmetric, implies z = x = y
contrary to the difference of 1 between the dimensions of x and z. So x A y,
xE z+, ye zn imply + = n.

Duality was discussed at the end of Section 1. Antisymmetry of a is a
self-dual condition, whereas antisymmetry of .4 is by no means self-dual.
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There is a particular dual which is important here. Let od denote the set of
odd natural numbers. Then Cod is called the odd dual of C. Notice that

E (p)(q) = e(p+q) and, for xECp 

Proposition 5.3

Proof Take xeCp’ aE Dq , n = p+q. Then
and

It follows that the bijection (x , a)od - (ao d , xo d) respects negative and
positive faces.qed
Theorem 5.4 Suppose that the relation .4 is aiitisymmetric for each of the
parity complexes C, D and their odd duals. Then the product C x D and its

odd dual are parity complexes for which  is antisymmetric.

Proof By Proposition 5.1, C x D satisfies Axioms 1 and 2. Note that (x, a) 

( y, b) in C x D means either 

or

or

or

where xeCp, aE Dq. This implies x .4 y, and, if x = y then a -o b for p
even and b a for p odd. Consequent (x,a)  (y,b) (x, a) implies x .4

y « x. Since .4 is antisymmetric for C, we have x = y. But then a 4 b 

a; so a = b, since -4 is antisymmetric for C. So « is antisymmetric for
C x D. Hence C x D satisfies Axiom 3(a) and half of Axiom 3(b). Since -o is

antisymmetric for the odd duals of C, D, Proposition 5.3 now implies that .4
is antisymmetric for the odd dual of C x D. So, also, C x D satisfies the

other half of Axiom 3(b). So C x D is a parity complex; its odd dual is too by
Proposition 5.3.qed

Definition The join C. D of two parity complexes C, D is given by

in which the summands C and D are embedded as sub-parity complexes and
the elements (x,a)ECpx Dq are written as xa with
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and for
and for

where, for example, x+a = ( ya : yEx+} is taken to mean (a) when p = 0.
In particular, when D consists of a single element oo in dimension 0,

the join C · D is called the right cone of C and denoted by C&#x3E;. Also D. C

is the Ieft cone of C and denoted by C.

Another description of the join will allow us to make use of our
calculations with product. Define the suspension EC of C by

for and

interchange x and x+ for xECp, p &#x3E; 0 ,
for ’

Because of the last line, FC is never a parity complex; but it goes close when
C is. The main observation we wish to make is the identification

E (C.D) = EC x ED .
This essentially makes the following results about join consequences of the
corresponding results about product.

Proposition 5.6 and

Theorem 5.7 Suppose that the relation -o is antisymrnetric for each of the
parity complexes C, D and their odd duals. Then the join C. D and its odd

d ual are parity complexes for which .4 is antisymmetric. qed

The Reznark of this section also applies, with appropriate changes, to
join in plaae of product.

§6. Application to cubes and descent
The n-simplex AM is-the sub-parity complex of A (see Section 1

Example C) consisting of subsets of {0, 1, 2, ... , n ). Alternatively, we can
obtain AM from the one-point parity complex A[0] by repeated right coning,
calling the new point at each stage 1, 2, 3, ... , n, respectively, instead of - -
Then A is the union of the A [n], nE a The 1-simplex is also denoted by I

(it is the parity complex version of the "hxterval").
The n-cu be Q [n] is the product

of n copies of I. Just as for the simplexes, there is an w-cube Q which is
the union of the Q [n], nE 0). The elements are words x = xi x2 ... xn on the
three symbols -, 0, +. The dimension of an element is the number of 0’s
appearing in it. Let xai denote the word obtained from x by replacing the i-
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th 0 by - when i is odd and by + when i is even. Similarly, xd i+ is

defined by interchanging - and + in the last sentence. For xE Qp , define
xE = {xdie: 1 ip}.

Moreover, if x = x1 x2. ... xn E Q then lt(x) consists of those y = Y1 Y2 ...

ynE Q such that:

xr=0 implies yr=xr,
x r = 0 and y r = - imply dim(yi Y2 ... yr) is even, and
x r = 0 and Y r = + imply dim(Y1 Y2 ... yr) is odd.

Also, x(x) is given dually. It is clear from these descriptions that Q
satisfies conditions (Rl ) and (R2) of the Remark of Section 4.

We also recall the m-oob G from Section 1. This is a particularly
trivial parity complex with which to deal. There is an obvious bijection

a G) z G .

Corollary 6.1 A, Q , G and their odd duals are all parity complexes for
which -o is antisymmetric and all elements are rdmuat’..d

In fact, for each of the parity complexes of Corollary 6.1,  is a total

order. We now give two reasonable examples where .4 is not antisymmetric.

Example This example, indicated by the following diagram, is due to

Vaughan Pratt. Notice that f  1  vB xdf; so  is not

antisymmetric. There is a dual of this example for which -o is a total order.

Example This example, indicated by the following diagram, is due to
Michael Johnson. Here there is no dual which has .4 antisymmetric.
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Before discussing descent, we need to consider a certain countable limit
construction which yields an (o-category Aoo for each w-category A. The

elements of Aoo are sequences (u , v) = ( (un , vn) : neN ) in the set AxA

such that Sn-1(un) = Sn-1(vn) = un-I and tn-1(un) = tn-I(vn) = vl . Source and
target functions are given by

The composition functions are given by

where

and

There is a canonical w-functor A - Aoo which takes aE A to

If A is an n-category for some n then A - Aoo is an isomorphism. If A =

O(G) then Aoo contains one element oo which is not an n-cell for any n; and
A - A. is injective with 00 the only element not in the image.

Let w-Cat denote the category of (small) w-categories and o-functors.
For each w-category A, there is a canonical bijection

Since Aoo supports a functorial to-category structure, it follows that lXG) is

equipped with a canonical structure of co-w-category in the category (o-Cat
More generally:

Proposition 6.2 1 f C is a parity complex such that  is antisymmetric
for it and its odd dual then the w-category O(Cx G) admits a canonical co-

w-category structure in w-Cat.
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Let S denote the category of non-empty finite ordinals

and order-preserving functions. A cosimplicial w-category is a functor

A particular example is the cosimplicial woocategory A 0 G whose value on
the object [n] is 0(A[n] x G). This forms the basis for the general "descent’‘
construction which is therefore at the heart of the dichotomy between
simplexes and globs for higher-order categories.

Definition For any cosimplicial to-category E , the descent w-category of E
is defined to be the hom-set

with (o-category structure induced by the coa-category structures (Proposition
62) on each (A O G)[n] = 0(A[n] x G).

Suppose we have both a simplicial object R : S OP -E in a category
E and an m-category A in E- Then ’£( R , A) is a cosimplicial w-category

Definition The cohomology w-category of R with coefficients in A is
defined by

The w-categories O(Q[n] x G) are important in the theory of

homotopy types, but it is not the purpose of this paper to pursue these concepts
any further.

We conclude this paper with diagrams for the product of the 2-glob
and the 2-simplex, and for the 4-cube.
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