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A GRAPH STRUCTURE OVER THE CATEGORY OF SETS AND
PARTIAL FUNCTIONS

by Yoshihiro MIZOGUCHI
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ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

VOL. XXXIV-1 (1993)

R6sum6. En 1984 Raoult a propose une formulation des
r64critures des graphes utilisant des sommes fibr6es dans la

cat6gorie des graphes et des fonctions partielles. Cette note

generalise sa m4thode et propose une structure alg4brique de
graphe pour introduire un cadre plus general pour les r66critures
de graphes et donner une demonstration simple du th6or6me
d’existence de sommes fibr6es a 1’aide du calcul relationnel.

1 Introduction

There are many researches about graph grammars and graph rewritings us-
ing the category theory. The structure of a directed graph is a function
from the set E of edges to the product set V x V of the source vertices set
and destination vertices set. Ehrig[4] characterized the graph grammar and
rewriting rules using two pushout squares and pushout complements in the
category of graphs. As the category of graphs is considered as a functor
category over the category of sets and functions, it becomes a topos and
has various useful properties. The existence theorem of pushout comple-
ments in a topos including the category of graph was generally proved by
Kawahara[7].

L6we and Ehrig[3, 11] also formulated graph rewritings using a single
pushout in the category of graphs based on sets and partial functions.

Raoult and Kennaway’s approach[13, 9] was different from Ehrig’s for-
malization of graph rewritings. The graph structure in [13] is a function
from a vertex set V to the set V* of finite strings of vertices and Raoult
defined graph rewritings by a single pushout square using partial functions.

This paper generalizes Raoult’s method. For an endofunctor on the cat-
egory Pfn of sets and partial functions we consider a graph structure as a
function V -&#x3E; TV from a vertex set V to TV, where T is an endofunctor
on Pfn. That is, we treat the coalgebras over Pfn. In the case TV = V*

the structure is the same as Raoult’s one. We prove an existence theorem
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of pushouts in our general settings avoiding many kind of conditional checks
and case divisions by using the relational calculus. The relational calcu-

lus, a theory of binary relations, has been originally applied to the area of
topology and homological algebra[l, 2, 5]. Recently it has been used in the
area of computer science for representing the notion of nondeterminism in
automata theory [6], the theory of assertion semantics of programs[8] and
characterization of pushouts in the theory of graph grammars[7].

Our main result on the existence theorem of pushouts produces a mod-
ification of Raoult’s result [13, Proposition 5] which lacked a condition. A
counter example to his result is given.

2 Preliminary

In this section, we recall some relational notations and properties of the
category Pfn of sets and partial functions.

Let A, B and C be sets. When a is a subset of A X B, we call a a relation
from A to B and denote it by a : A -&#x3E; B. For relations a : A - B and

B : B - C, we define a composite relation a(3 : A -&#x3E; C by a B = {(a, c) E
A X Cl(a, b) E a, (b, c) E (3 for some b E B}. For relation a : A - B, we
define the inverse relation ab #: B - A by ab = ((b, a) E B x Al (a, b) E a}.
We identify a function f : A - B with a relation ((a, f(a)) E A x Bla E A}
(the graph of f). The unique function from a set X to one point set 1 = {*}
is denoted by HX : X - 1. We define a subset dom(a) of A for a relation
a : i A - B by dom(a) = {a E Al(a, *) E aHA} and a relation d(a) : A - A
by d( f ) = ((a, a) E A X Ala E dom(a)}. For two relations a,(3 : A - B,
a U (3 and a n (3 denote the set union and intersection, respectively.

A partial function is a relation f : A 2013B satisfying f # f C idB and
denote it by f : A - B, where idB : B - B is a identity function of B. A
partial function f : A - B is a (total) function if it satisfies idA C f f #.

Lemma 2.1 Let a, a’ : A - B, and (3, (3’ : B - C be relations.
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Lemma 2.2 Let f : A - B, g : A - B, h : B - C be partial functions.

(1) f is a total function if and only if filB = QA -

Proposition 2.3 (Law of Puppe-Calenko) If a : A - B, B : B - C
and q : A - C are relations, then a B n y C a(Q n a#y).

Fact 2.4 The category Pfn has pushouts.
Let

be a pushout square in Pfn. For any functions x : B - S, y : C -&#x3E; S

satisfying f x = gy, there exists a unique function t : D - S such that
ht = x and ht = y, where t = hüx u kÜy.

Lemma 2.5 For the pushout square in Fact 2.4,

3 Graphs over Pfn

In this section, we introduce an abstract definition of a category which rep-
resents graphs and graph homomorphisms. Graph rewritings are defined
by using a single pushout in the category. We prove a necessary and suffi-
cient condition for existence of pushouts. Some concrete categories of graphs
including Raoult’s[13] definition are shown.

Let T : Pfn -&#x3E; Pfn be an endofunctor. A graph constructed by T is a
pair (A, a) of a set A and a total function a : A -&#x3E; T A. A graph morphism
f : (A, a) -&#x3E; (B, b) is a partial function f : A - B satisfying f b = d( f )aT f .
The graph category G(T) is the category of graphs and graph morphisms
associated with T.
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Lemma 3.1 Let T : Pfn -&#x3E; Pfn be a functor, a : A -&#x3E; T A, b : B -&#x3E; T B

and c : C -&#x3E; TC total functions and f : A - B and g : B -&#x3E; C partial
functions. If fb= d( f )aT f and gc = d(g)bTg then fgc = d(fg)aT(fg).
That is G(T) is in fact a category.

Proof. It follows from a simple relational computation:

Choosing a suitable functor T, we consider the several kinds of graph
structures.

Example 3.2 (Kleene functor) We define the Kleene functor * : Pfn -&#x3E;
Pfn as follows. Let A, B be sets and f : A -&#x3E; B a partial function. *A = A*
is the set of finite strings over A. We define * f (= f* ) : A* -&#x3E; B* as follows:

An object of G(*) can be seen as a kind of directed graph and a morphism
of G(*) is a node-mapping which preserves out-edges but not in-edges. The
category G(* ) is equivalent to what is considered by Raoult[13].

Example 3.3 ( Powerset functor) We define the power set functor P :
Pfn -&#x3E; Pfn as follows. Let A, B be sets and f : A -&#x3E; B a partial function.
P(A) is the set of all subsets of A and P f : P(A) -&#x3E; P(B) is defined by
P f (X ) - f (X ), for all X C A. An object of G(P) is a kind of directed
graph in which the out-edges of a node are not orderd and there cannot be
multiple edges between the same nodes.

Example 3.4 A set NA of functions from A to the set N = {o, 1,...}
of natural numbers is defined by NA = {f : A -&#x3E; NlExEAf(a) is finite.}.
We define the functor W : Set Set as follows. Let A, B be sets and
f : A - B a partial function. W(A) = NA and W f : NA -&#x3E; NB is defined
as Wf (a)(y) -&#x3E; E{a(x)lf(x) = y, x E A}, (a E NA, y E B). An objects of
G(W) are a type of edge-weighted directed graph.
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We can treat labeled graph structure choosing a functor like next two
examples.

Example 3.5 (L-labeled Kleene functor) We fix a set L of labels for
edges. We define a functor (L x -)* : Pfn -&#x3E; Pfn as follows. For a set

A, (L x A)* is the set of finite strings of pairs of a label and an element of
A. Other definition of the functor is similar to Example 3.2. An object of
G((L x -)*) is similar to the closed term hypergraph of Kennaway [10].

Example 3.6 (L-labeled powerset functor) We similarly define a func-
tor P(L x -) : Pfn - Pfn like Example 3.3 and Example 3.5.

Theorem 3.7 Let f : (A, a) - (B, b) and g : (A, a) -&#x3E; (C, c) be morphisms
in G(T). If the square f

is a pushout in Pfn, then there exists a unique-partial function

such that hd = d(h)bTh, kd = d(k)cTk. When that is so, the square (2)

is a pushout in G(T) if and only if b = (hObTh) u (k#cTk) and b is a total

function.

Proof. We first show f d(h)bT h = gd(k)cTk.
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Since the square (1) is a pushout in Pfn, there exist a unique partial function
d : D -&#x3E; TD such that hd = d(h)bTh and hd - d(k)cTk, where d =
(hObTh) u (k#cTk), by Fact 2.4. Assume the square (2) is a pushout. Graph
morphisms h and k satisfys hb = d(h)bT h and hb = d(k)cTk. Since h#d(h)=
ha, k#d(k) = k# and (h#hUk#k) = idD, we have b = (h#hUk#k)d = (hUbTh)U
(kbcTkl. Conversely, assume 6 = (hObTh) U (k#cTk). is a total function. Let
(S, s) be an object in G(T), and x: B -&#x3E; S, y : C -&#x3E; S morphisms in G(T)
satisfying f x = gy. Since the square (1) is a pushout in Pfn, there exist
a unique partial function t : D -&#x3E; S such that ht = x and ht = y, where
t = hUx U kUy, by Fact 2.4. We only need to show that t is a graph morphism.
Since h#xHs = hOd(h)d(x)flB = h#d(x)hHD and k#yHs = k#d(y)kHD, we
have d(t) = hod(x)h U kld(y)k. Since

and k’d(y)k6Tt = koys, we obtain d(t)btt = hoxs u k#ys = ts. That is t is

a graph morphism. So the square (2) is a pushout in G(T).

Corollary 3.8 Let f : ( A, a) -&#x3E; (B, b) and g : (A, a) - (C, c) be morphisms
in G(T). If the square f

is a pushout in Pfn, then the following conditions are equivalent:

is a total function.
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if and only if kf2D C cTkf2TD- So we have shown that (2) and (3) are
equivalent.

Next we show the equivalence of (3) and (1). Assume hQD C bThS2TD
and kf2D C cTkHTD. Since hbh U k#k = idD by Lemma 2.5, we have f2D
C (hOhS2D) U (kOkS2D) C (h#bThHTD) u (k#cTkHTD) C df2TD. This means
d is a total function. Conversely, assume d is a total function. Since hd =

d(h)bTh means d(h) = d(h) n d(bTh), we have d(h) C d(bTh). Similaly
d(k) C d(cTk).

We note that if T=P,T=W and T=P(Lx-), then Tf :TA-&#x3E;TB
is a total function for any partial function f : A -&#x3E; B. This property is very
convenient for existence of pushouts.

Corollary 3.9 The categories G(P), G(W) and G(P(L x- )) have pushouts.

4 Observations

In this section, we provide the proof of Raoult’s Proposition 5 in a view
point of our framework.

Let f : A -&#x3E; B and g : A -&#x3E; C be partial functions. We define a relation

r(f,g) : A -&#x3E; 1 by r(f,g) = ula : A - 11ffüa = a and gg0a = a}, that is
r(f,g) is the maximum relation satisfying f f#r(f,g) = r(f,g) and gg#r(f,g) =
r(f,g).

be a pushout in (

Proof. It is obvious ff#fhHD = fhHD and gg0f hf2D = f hf2D. Asuume a
relation a : A -&#x3E; 1 satisfies ff# a = a and gg0a = a . Since f0a : B -&#x3E; 1 and

gaa : C -&#x3E; 1 are partial functions and D is a pushout, there exist a unique
function B : D -&#x3E; 1 such that hB = f#a and k# = g"a hold. We obtain
fhHD D ff# a = a. So fhHD is the maximum relation.
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Lemma 4.2 Under the situation of Theorem 3.7, consider the functor T =
* . Then following five conditions are equivalent:

where

Proof. Since d( f )aT f = f b and d(f)f = f , we have b# f#fhHB = (Tf)#a#
fhHB. This means b( f (A’)) = T f (a(A’)). So (1) and (3) are equivalent. (3)
and (5) are equivalent by (Tf)-1(dom(h)*) = (A’)*. Similarly, (2),(4) and
(5) are equivalent, because of r(f,g) = gkHD.

Using the last lemma, condition (2) in Corollary 3.8 is replaced to the
form in the next proposition. The next proposition which was originally
proved by Raoult [13, Proposition 5] is a special case of Theorem 3.7.

Proposition 4.3 Let the square

is a pushout in Pfn. A commutative diagram

in G(*) is a pushout in G(*) if and only if the following conditions (1), (2)
and (3) hold:

and
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where

The next example is a counter example of Raoult’s Proposition 5[13]
which lack a condition (3) of Proposition 4.3.

Example 4.4 Let A = {x1 -&#x3E; x2, x3}, B = {y1 - y2} and C = fz, - z2}
be graphs. Define graph morphisms f : A - B and g : A -&#x3E; C by f (x1 ) = yl,
f (x2) = f (x3) - y2, g(x1) = zi and 9(X2) = z2. The value of 9(X3) is

undefined(cf. Figure 1). It is easy to check A’ = {x1}. and the condition in
Proposition 4.3(3) does not hold. Consider the pushout

in the category Pfn. Since D is a one point set, h and k are not graph
morphisms.
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