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LOCAL TO GLOBAL PROPERTIES IN THE
THEORY OF FIBRATIONS

by Peter I. BOOTH

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFF~‘RENTIELLE

CA TÉGORIQUES

VOL. XXXI V-2 ( 1993)

Resume A partir des r6sultats constat6s dans la communication fon-
damentale de Dold "Partitions of Unity in the Theory of Fibrations"
Ann. of Math. 1963, 223-255, nous tirons des conclusions générales au
niveau de fibrations enrichies, et ainsi i bien des theories individuelles
des fibrations. Quatre definitions raisonnables de fibrations enrichies
se montrent 6quivalentes. On discute des fibrations avec sections en
detail.

0 Introduction.

The results of [Do] concerning the covering homotopy property (CHP), the
weak covering homotopy property (WCHP) and fibre homotopy equivalence
(FHE) are basic to the theory of fibrations. Analagous results play equally
important roles in various parallel theories including those of sectioned fi-
brations (= ex-fibrations), principal fibrations, and equivariant fibrations of
various types.

In this paper we give a systematic procedure for developing Dold-type
results in theories of fibrations, presenting a technique that reduces ques-
tions in other theories to questions covered by the results of Dold’s paper.
Such theories are specified by the categories E of enriched topological spaces
in which their fibres are constrained to lie. For example Hurewicz fibrations
have fibres in the category T of spaces and maps, whilst for sectioned fi-
brations they are in ~"°, the category of pointed spaces (spaces with base
points) and pointed maps (base point preserving maps). If G is a topo-
logical monoid then principal G-fibrations have fibres in GT~~ , the category
whose objects are G-spaces that are G-homotopy equivalent to G and whose
morphisms are G-homotopy equivalences.

For each pair of objects P and Q in such a category £ we will use £(P, Q)
to denote the ’set of all E-maps from P to Q (see section 1). Given that the
niaps q: Y --~ B and r: Z --~ C have fibres that are enriched spaces, we
define and discuss (section 2) a functional space YO Z with underlying set
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UbeB,,,CC ~(~"~(~)~ ~(~))? and a functional projection gQ7’:yQZ -~ B x C
It is a result of [Mo2], and our theorem 3.4, that q satisfies a suitably defined
£-covering homotopy property (~CHP) if and only if qDq satisfies the CHP.
We give analogous results relating the EWCHP and the FFHE property to
the WCHP and the FHE property, respectively, i.e. theorems 4.6 and 5.2,
respectively. These are used to obtain generalizations, i.e. enriched versions,
of theorems concerning the CHP [Do, thm. 4.8], WCHP [Do, thms. 5.12
and 6.4] and FHE [Do, thms. 3.3, 6.1 and 6.3], in our chapters 3, 4, 5 and 6.
Our generalization of [Do, thm. 6.4], i.e. our theorem 6.3, asserts that four
potential definitions of the E-fibration concept are frequently equivalent.
This result allows great flexibility in applications, in particular it will be
very useful in a sequel to this paper [Bo2].

It is shown in section 7 that Hurewicz fibrations with closed cofibration
sections are examples of T°-fibrations, and hence covered by our theory;
section 8 gives a variety of other examples, including, of course, the basic
theories of Dold, Hurewicz and principal fibrations. The list of specific cases
that we discuss is, however, just a sample. Many sorts of diagrams of spaces
and/or G-spaces are objects for appropriate enriched categories and hence
generate associated theories of enriched fibrations.

We do not, of course, claim that our theory is comprehensive in the sense
of covering every conceivable theory of fibrations. Any effort to produce
such a theory would surely be a case of trying the impossible, for some
topologist would always be liable to introduce a theory that sat just outside
any such approach. Further, any attempted development along those lines
would entail a considerable complication of our basic ideas, something that
would certainly disguise the simplicity of the underlying concepts involved.
Our work should rather be viewed as a prototype for a minimal pattern of
argument, one that can be used to develop a treatment of the passage from
local to global properties for almost any notion of fibration or generalized
fibration. A case in point is the theory of equivariant fibrations. The author
prefers to develop the analagous equivariant theory elsewhere, rather than
including it here and thereby compromising on the straightforwardness of
the basic relationships presented.

The ECHP idea is, of course, the 0-fibration concept of [Ma]. Gener-
alized versions of [Do, thms. 3.3 and 4.8], and of [Do, thm. 6.3] for the
enriched CHP case, are given in [Ma], i.e. as theorems 1.5, 3.8 and 2.6 of
that memoir, respectively. They are derived by methods quite different from
ours. Some corresponding results for sectioned fibrations are developed in
[E].

We find it convenient, for the remainder of this paper, to work with
compactly-generated spaces or cg-spaces [V, section 5, example (ii)], i.e.

spaces having the final (= weak) topology relative to all incoming maps from
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compact Hausdorff spaces. Any space in T can be cg-i f ied, i.e. retopolo-
gized as a cg-space, by giving it this final topology. Colimits of cg-spaces,
such as quotients and topological sums, are themselves cg-spaces; limits such
as subspaces and product spaces, as well as function spaces, must be cg-ified
to ensure that they are spaces of this type. All spaces referred to in the pages
that follow should be assumed to be cg-spaces. In particular the categories
?~, To and G’7~ should be taken as containing only such spaces.

A space B will be said to be weak Hausdorff if the diagonal subset AB
~(b, b)~b E B} is closed in the (of course cg-ified) product space B x B. All
spaces denoted by B and used later should be assumed to be weak Hausdorff.
Hausdorff spaces are, of course, weak Hausdorff. Given a point c E B, the
continuity of the inclusion B -~ B x B, b --~ (b, c), where b E B, ensures
that {c} is closed in B, and so weak Hausdorff spaces are Ti.

Given spaces X, Y and Z, T (Y, Z) will denote the function space of maps
from Y to Z equipped with the (of course cg-ified) compact-open topology,
and we have the following exponential law [V, thm. 3.6].

(0.1) There is a bijective correspondence between maps f : X X Y - Z and
maps g: X -T (Y, Z), determined by the rule f (x, y) = g(x)(y), where
x E X and y E Y.

The author would like to thank the referee for making some precise and
detailed comments on the first draft of this paper.

1 Enriched spaces and enriched overspaces.

Throughout this paper we will make use of a category E, with objects that
will be known as enriched spaces or E-spaces, and morphisms as E-maps. An
E- homeomorphism is an isomorphism in E, i.e. an 6-map f : P - Q such
that there is an £-map g: Q - P with g, f = 1 p and f g = 1 Q .

A category of enriched spaces (E, U) will consist of a category E and
a faithful functor U: E --~ T, which satisfy the condition that if P is an
~-space and f’: UP - Q’ is a homeomorphism into a space Q’, then there
is a unique £-space Q and £-homeomorphism f : P - Q such that UQ = Q’
and U f = f’. ,

If f: P - Q is an ~-rna~ then tlae spaces U P and UQ and the 77tap

U,f : UP --~ UQ will in future be denoted by P, Q and f respectively. This

extends a fa,miliar convention that applies to G-maps between G-spac:EYs,
where G is a topological group.

Let P be an E-space. If ~t} is a singleton space (in practice t will belong
to the unit interval I) there are canonical homeomorphisms:
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so Pxftl and ~t} x P carry the structure of C-spaces that are E-homeomorphic
to P. It will sometimes be convenient for us to identify, i.e. fail to distinguish
between, such equivalent E-spaces.

Let f: P - Q and g: P - Q be E-maps. Then an ~-horrtotopy from f to
g is a homotopy F: P x I - Q such that Fo = f , Fl - g and, for each t E I ,
Ft : P -~ Q defined by Ft (x) = F(x, t) for all x E P, is an £-map. There is
an obvious associated concept of ~-ho~notopy equivalence.

Given a category.6 of enriched spaces, an enriched overspace, E-overspace
or £-space over B is a map p: X - B together with, for each b E B, an
associated structure of an £-space on the fibre X ~ b = p"~(6), for each b E B.
For example if P is a given ~-space and B is a space then the projection
xB: P x B -~ B is an £ -space over B, we will refer to it as a trivial E-

overspace.
If f : A - B is a map and q: Y -~ B is an £-overspaces then Y x B A will

denote the pullback space ~(y, a) E Y x Alq(y) = f (a)}, and qf : Y X B A -~ A
the projection map defined by q f ( y, a) = a, where ( y, a) E Y x B A. There
is an obvious E-overspace structure on gy, which will be referred to as the
~-averspace induced from q by f. The projection Y x B A ----~ Y will be
denoted by fq.

For example, if 7rB: C x B --~ B denotes the projection then the E-
overspace induced from q by ~rB can be identified with the £-overspace lc x
q: C x Y - C X B. If V is a subspace of B and YIV denotes q-1(Y) then
the restriction ~j(y~V):~V 2013~ V carries, in an obvious way, the structure
of an E-overspace and will be denoted by q~V . Clearly qlV can be identified
with the E-overspace induced from q by the inclusion V C B. In particular
taking V = fb}, where b E B, the fibre over b will be denoted by Ylb.

If p: X -~ A and q: Y - B are E-overspaces then an E-pairwise map
 f , g &#x3E; from p to q consists of maps f : X -~ Y and g: A -~ B such that
q f = gp, and with the property that, for each a E A, /~(X)a):~r~ 2013~ Ylg(a)
is an £-map. An E-pairwise map from the £-overspace p x 1: X x I --~ A x I
to q will be called an £ - pairwise hornotopy.

Taking A = B and fixing g to be 1B, the C-pairwise map concept reduces
to £-map over B. If f : X --~ Y is an E-map over B and V C B then the
restriction of f over V, f ~ V = f ~ ( X ~ V ) : X ~ Y --~ Y I V, is, clearly an [-map
over V. In particular taking V = ~b~, where b E B, f ~b = f ~(X (b): X ~b -~
Ylb is an E-map.

Taking A = B x I and fixing g to be the projection B x I -~ B, there is
an obvious associated idea of .6-homotopy over B, and hence of ~-homotopy
equivalence over B. The last concept will, however, be named £- fibres homo-
topy equivalence or EFHE.

Let p: X --~ B and q: Y - B be C-spaces over B. If f: X - Y is an
E-map over B, and a homeomorphism with the property that f -1 : Y -+ X
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is also an E-map over B, then f will be called an ~-homeomorp~his~n over l~.
We now give two fairly obvious technical results that will be used later.

(1.1) If p: X -~ A and q: Y - B are E-overspaces and  f , g &#x3E; is an E-

pairwise map from p to q, then there is an £-map ( f , p): X - Y x B A
over A defined by (f, p) (x) = ( f (x), p(x)), where x E X

(1.2) Let r: Z -~ C be an E-overspace and f : A --&#x3E; B and g: B --~ C be maps.
There is a homeomorphism h: Z xc A --~ (Z Xc B) XB A defined
by h(z, a) = (z, f (a), a), where (z, a) E Z x C A, that is also an E-

homeomorphism over A, i.e. from rg j&#x3E; to (r9) f.

Let us now consider the particular case where £ = ~. A T-space over B
is simply a space over B, i.e. a map into B. In the remainder of this paper
we adopt the convention of omitting-the pre,fix ~ in order to conform to
normal usage. For example a T-homotopy equivalence becomes a homotopy
equivalence, a T-homotopy over B a homotopy over B, denoted by ̂ _~B, and

the term TFHE is shortened to FHE.

2 Fibred mapping spaces.
If P and Q are E’-spaces then E(P, Q) will denote the set of all E-maps from
P to Q, topologized (when we so wish) by the (of course cg-ified) compact-
open topology. If P, Q and R and E-spaces and f: Q --~ R is an E-map then
the associated function

is continuous.

Given that q: Y - B and r: Z -~ C are E-overspaces, the fibred mapping
space or functional space YDZ has underlying set

and the functional projection qDr: YC~Z --~ B x C is defined by (q~r)( f ) =
(b, c), where f E C (Y I b, Zlc).

We present an auxilliary construction before topologizing YOZ. Let
Y+ = Y U fool be the disjoint union of the set Y with the point oo, with
the following topology: C C Y+ is closed if either C = Y+ or C is a closed
subset of Y.

Let b E B, c E C, and f : Y~b -~ Zlc be a given map. We define a

function j = ~ypZ: Y~Z --&#x3E; T(Y, Z+) by taking j( f )(y) = f (y) if y E ~’ ~b,
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and j( f )(y) = oo otherwise. We know that B is weak Hausdorff, so B is T1,
Ylb is closed and hence j( f ) E T(Y, Z+). Then YOZ will be given the initial
(i.e. strong) topology relative to j and qDr. Clearly qCl r is continuous.

For example if B and C are one-point spaces then Y and Z are C-spaces
and YC7Z = ~(Y, Z) carries the cg-ification of the compact-open topology.

Proposition 2.1 Let p: X -~ B, q: Y ~ C and r: Z -~ C be ~-overspaces.

(i) If f : Y -~ Z is an E-map over C then f # : X CJY --~ XOZ, defined
by f#(g) = (f Ic)g E ~(X ~ b, Z ~c), is a map over B x C 2vhere g E
£(Xlb, Ylc) with b E B and c E C.

(ii) The rule f - f# is functorial, i. e. (1 y) = lxoy and if h: Z -~ W is
another E-map over C then (hf)# = h#f#.

(iii) 7/’F:yx7-~ Z is an £ -homotopy over C then F* : (XDY) X I - X CJZ,
defined by F.(g,t)(x) = F(g(x), t), where 9 E ~(X ~b, Y~c) for some
b E B and c E C, t E I, x E X and p(x) - b, is a homotopy over
BxC.

Proof:

(i) Clearly f induces a map f +: Y+ --~ Z+, f +( y) _ f (y) is y E Y and
f +(oo) - oo, and hence a map f’:T(X,Y+) -~ T(X,Z+),f’(g) =
f+g, where 9 E T(X, Y+). Then jxozf# - j’jxOY and (pOr)f# _
pDq, so the expressions to the left of these two equalities are continu-
ous, and hence f# is continuous.

(ii) We prove only the second part. If b E B, c E C and g E ~(X ~b, Y ~c)
then (hf)#(g) = ((hf)lc)g = (hlc)(flc)g = ~~cf#(g) _ h#f#(g).

(iii) It is easily seen that F determines a homotopy F+: Y+ x I --~ Z+
defined by F+(y, t) = F(y, t) if y E Y and t E I, and F+(oo,t) = oo,
where t E I. The continuity of the homotopy F’: T(X, Y+) x I --~
T(X, Z+), defined by F’(g, t)(x) = F+(9(~), t), whe~re g E T(X, Y+), t E
I and x E X, follows easily using (0.1) twice. F. is clearly well defined
as a function and it is easily checked that (por)F. = x((pDq) x 1/),
where ~r : B x C x I --~ B x C denotes the projection, and that jxoz F* _
F’(jxoy X lj). So (pOr)F* and jxoL F* are continuous and hence F*
is continuous.

Theorem 2.2 (Fibred exponential law.) Let f : A -~ B and g: A ~ C
be maps, and q: Y --~ B and r: Z --~ C be ~-overs~aces. Then there is a

bijective correspondence bettveen:
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(i~ maps h: Y x B A -~ Z such that  h, g &#x3E; is an £ -pairwise map fro77i
q f to r, and

(ii~ maps h°: A ---~ YDZ such that (qOr)h° _ ( f, g): A --~ B x C,

defined by h(y, a) = hO( a )(y), where q(y) = f (a).

Proof: Given h as described in (i), it is clear that ho(a) E £(Ylf(a) x
~a~, Zlg(a)) = ~(Y~ f (a), Zig(a)), so ho is a well defined function and (qL~)r)h°
( f, g). The continuity of h° follows from the continuity of (qDr)h° = ( f, g)
and of j h°, so we only need verify the latter condition. Let us define

t: Y x A - Z+ by t(y, a) = h(y, a) if ( y, a) E Y x B A and oo otherwise. The
weak Hausdorffness of B ensures that Y XB A = (q x f )-1 (G1 B ) is closed in
Y X A, and so the continuity of h ensures that of l. Now i corresponds by
0.1 to jh°: A --; T(Y, Z+) since jhO(a)(y) = £(y,a), where a E A and y E Y,
and so j h° is continuous.

Conversely let us assume that h° satisfies the condition described in (ii).
Clearly h is well defined as a function and rh = g(qf ). The continuity of
jh° ensures that of the corresponding t, and h = .~~Y XB A must also be
continuous.

(2.2.1) If B and C are one-point spaces then Y and Z are £-space
and the maps h: Y X A - Z and 11,°: A -+ £(Y, Z) are related by h(y, a) =
hO(a)(y), where y E Y and a E A.

(2.2.2) If A = B = C and f = g = 1B then Y XB A = Y XB B can be
identified with Y and h can therefore be taken to be simply an E-map of
Y to Z over B. Further h° is a lifting of the diagonal map 6: B --~ B x B,
6(b) = (b, b) where b E B, over qC~r. Hence we have determined a bijective
correspondence between E-maps h: Y - Z over B and maps h°: B --~ YL7Z
over B x B, defined by the rule Iz~b = ho(b) for all b E B.

(2.2.3) In particular, if in (2.2.2) we take q = r and h = ly, the associ-
ated map ( 1Y )°: B --&#x3E; YDY is the lift of 6 over qDq defined by ( lY )°(b) _
l~,~b,forall bE B.

Our next result is a 110IIlOtOpy version of 2.2.2.

Proposition 2.3 Let us assume that q: Y - B and r: Z --~ B are ~-
overspaces. Then there is a bijective correspondence between:

(i) ~-homotopies H: Y x I --~ Z over B, and

(ii~ ho~ootopies HO: B x I --~ YDZ over B x B, i.e. that lift (~B, 7ru): B x
I --~ B x B over qDr,
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defined by H(y, t) = HO(b,t)(y) where q(y) = b and t E l.

Proof: This follows from theorem 2.2 with A = B x I, C = B and f = g =
~rB : B x I - B, using the identification Y XB (B x I) = Y x I.

. 

Lemma 2.4 Given that p: X - B, q: Y - B and r: Z - B are ~-overspaee~S,
and that f:X’- Y and g: Y --~ Z are 9-maps over B. Then g# fo = (g f)o.

Proof: We notice that f °: B --~ XDY, g# : X C1Y --~ XDZ and (g f )°: B ---~
XDZ. Then if b E B: (9f )° (b) _ (gf ~ b) _ (9) b)(f I b) = 9# (.f ~b) = g# f ° (b) ~

(2.4.1) Taking B to be a one point space * then f °: * 2013~ E(X, Y) has
value f, (g f )°(*) = g f and 2.4 just states that g#( f ) = g f , i.e. it is the

defining equation for g# : ~(X, Y ) --~ E(X, Z).

Proposition 2.5 Given that q: Y --~ B and r: Z --&#x3E; C are ~-overspaces, and
that U and V are subspaces of B and C respectively. Then the functional pro-
jections qOr~U xV: YCIZ~U x ~ -~ U xY and (q~U)C7(r~Y): (Y~U)Cl(Z~Y) -~
U x V coincide.

Proof: It is immediate that the two constructions agree at the set-function

level. Let p: A - U x V be a map. It is a consequence of theorem 2.2 that
a function A - Y~Z~ U x V, over U x Y, is a map if and only if the same
function A -~ (YIU)O(ZIV) is a map. The result follows.

We now consider the special case where U and V consist of single points,
i.e. b E B and c E C, respectively.

(2.5.1) YOZ~~(b, c)~, i.e. the fibre of qOr over (b, c) E B x C, is

~(Y~b, Zlc).

Proposition 2.6 Let p: X -~ B, q: ~’ --~ (} aiid r: Z -~ G’ be £ -overspaces
and f: Y - Z be an ~-map over C. If U and V are subspaces of B and
C, respectively, there are maps ( f ~Y)#: (X ~U)C~(Y~Y) --~ (XIU)O(ZIV) and
f#IU x V:XOYIU x V - XOZIU x V. Then, under the identification of
proposition 2.5, ( f ~Y)# = f#~U x V.

Proof: This is immediate from the definitions involved.

We now take U = fb} and V = {c}, where b E B and c E C.
(2.6.1) The maps ( f ~~c})# and f# f ~(b, c)~ coincide.
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3 O n t he ~- covering homot opy property
Let q: Y -~ B be an ~-overspace. Let us assume that for all choices of a

space A, an E-overspace p: X --~ A, a homotopy F: A X I - B and a map
f: X X ~0~ -~ Y which satisfy the condition that  f, FIA x ~0~ &#x3E; is an 9-

pairwise map from px 1 {O} to q, there always exists a homotopy H: X X I - I’
extending f and such that  H, F &#x3E; is an E-pairwise homotopy from p x 1,
to q. Then q will be said to satisfy the £-covering hornotopy property or
f CHP. l

For example if F is any £-space and B is any space then the trivial

E-overspace 7rB: F x B - B satisfies the ECHP. -

It is easily seen that the TCHP is equivalent to the apparently weaker
version of the same condition, with X required to be A and p = lA. Hence,
modulo our cg-space restriction, the TCHP is the familiar CHP of [Do], i.e.
the defining condition for a Hurewicz fibration.

The next lemma, which gives an alternative form of the "q satisfies the
£CHP" condition, will be used in section 7 as well as in proving the subse-
quent corollary.

Lemma 3.1 The condition that the £ -overspace q: Y -+ B satisfies the

~ CHP is equivalent to the apparently weaker condition that the ~C77P-

definition is satisfied only for quintuples (A, X, p, F, f) such that X = Yo, p =
qo and f = Fo.

Proof: Given q, X, A, p, F and f as described in the ECHP definition. It

follows from the "weaker condition" that there is a homotopy 1(: Yo x I -~ Y
such that  K, F &#x3E; is an E-pairwise homotopy, from 40 x I to q, which also
extends Fo. Then, taking H = 7~((/,p) x 11): X x I -~ Y, we see that q
satisfies the ECHP. ,

Proposition 3.2 (=~Mo 1, prop. 2.1.2J) If tltee-overspace q:Y -* B satis-
fies the ECHP then, forgetting the £ -structure, tlae map q satisfies the CHP.

Proof: This is immediate once we use lemma 3.1 to reinterpret the £CHP
and CHP (= TCHP) definitions.

Proposition 3.3 (=[Mo2, prop. 1J) If q: Y --; B and r: Z -~ C are £-
overspaces that satisfy the £ CHP then qC7r satisfies the CHP.

Theorem 3.4 (= fMo2, prop. 2J) Let q: Y -~ B be an E-overspace. Then q
has the ~ CHP if and only if qOq has the CHP.



136

The two results of [Mo2] just quoted are stated as holding in a more
restricted context, i.e. extra assumptions are made about the category as
compared with our present argument. However the proofs of [Mo2] depend
only on certain formal properties of fibred mapping spaces and therefore
extend, without alteration, to the broader context of this paper. Also [Mo2]
uses an argument that depends on lemma 1.2 of reference [1] of that paper.
Now this lemma is incompletely stated in that reference; the reader may
prefer to replace that result with onr complete and more general theorem
2.2.

A locally finite cover V of a space B will be said to be numerable if there
is a partition of unity for B, consisting of maps {A~:~ 2013~ I ~ vEV , such that
V = Avl(O, 1] for each V E V.

Lemma 3.5 If U and V are numerable covers of B and C,- respectively,
then U x V = ~ U x vlU E V and V E V ~ is a numerable cover of B x C.

Proof: Let ~~U: B --~ I~vEu and ~~v: B --~ I~~EV be partitions of unity
for B and C respectively. If U E L! and V E V we define ~U x v : B X C --&#x3E; I

by pointwise multiplication of Au and Av, i.e. Auxv(b,c) = Au(b)Av(c),
where b E U and c E V. It is easily seen that ~aU Xy ~ U E U and V E V} is
a partition of unity for B x C.

Theorem 3.6 (see [Ma, thm. 3.8), and also [Do, thm. ,~.BJ,for the T-case).
Let q: Y -~ B be an E -overspace and V be a numerable cover of B. If for
each V E V the £-overspace qlV: Y ~ V --&#x3E; V satisfies the £ CHP then so also
does q.

Proof: For each choice of Vl ,1~2 E V we know by proposition 3.3 that
(q~Vl)C~(q~v2) has the CHP, and so we see by proposition 2.5 that (qOq)IV1 x
V2 has the CHP. Now V x V is a numerable cover of B x B (lemma 3.5) so
it follows from [Do, thm. 4.8] that qOq has the CHP. We see via theorem
3.4 that q has the ~CHP.

4 On the £-weak covering homot opy property
The homotopy F: A x / 2013~ B will be said to be stationary on A x [0, 1/2] if
for all t E [0, 1/2] and all a E A, F(a, t) = F(a, 0).

If the E-overspace q: Y - B satisfies the weakened version of the defining
condition for the £CHP, in which the homotopics F: A X I - B that are
used are required to be stationary on A x (o,1/2~, then q will be said to
possess the £-weak covering homotopy property or EWCHP.

Examples obviously include all £-overspaces satisfying the ECHP. It is

easily seen that the TWCHP is equivalent to the apparently weaker version
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of the same condition in which X = A and p - lA. Hence, modulo our
cg-space requirement, the TWCHP is the familiar WCHP of [Do], i.e. the

defining condition for what are often known as Dold fibrations or h- fibrations.
It will sometimes be convenient for us to use the following abbreviated

notations.

Given an C-overspace q: Y --&#x3E; B and a homotopy F: A x I -- B, the
E-overspaces induced from q by F and Ft : A -~ B will be denoted by_q: Y -;
A x I and ~:y 2013~ A respectively, where t E I. The projections Y -~ Y
and Yt -~ Y will be denoted by F and ht respectively.

The following lemma will be useful both in this chapter and in chapter 6.

Lemma 4.1 Let q: Y - B be an E -overspace satisfying the E WCHP, and
F: A X I -- B 6e a ltorrzoto~~y. 7"licit Llr,er~: are f -~naps and F-ho~rtotopies:

These maps and homotopies satisfy:

Proof: In this argument we assume that F is stationary on A x ~0,1/2~.
If it does not already possess this property then we can make it apply by
redefining FasF~.4x/2013~Bby

whereaEAandtEl.

Let G’:/lx/x/2013~jPbe defined by

where a E A and s, t E 1. We notice that G is stationary on A x I x [0,1/2],
i.e. if s E I and t E [0, 1/2] then G(a, s, t) is independent of the value of t
chosen. Identifying Y with Y x fO} we see that qF = G(q x 11~~Y x fOl.
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Applying the EWCHP we obtain a homotopy H: Y X I -~ Y extending F
and such that  H, G &#x3E; is an E-pairwise map from q X lI to q.

Viewing Y x I as a space over A x I x I, we will consider the subspaces of
F x7 over ~x{(l,l)},~x{(l, 1/2)}, ~(a, t, t)~a E A, t E I}, A x {1} x ~l/2,1~
and A x f 11 x ~0,1 /2~ . In each case 1.2 can be applied, the f of 1.2 always
being the inclusion of the given subspace in A x I x I and the g being the
composite map F~rAxI: A x I x I -~ B, where 7rAx¡:A x I x I -- A x I
projects on to the first two factors. Hence the five subspaces of Y x I under
consideration can be taken to be Y1 = Y1 x ~(1,1)~, Y1 = Fix{(l,l/2)},F,
Y, x [1/2,1] = Y, x f 1} x [1/2,1] and F, 1 x [0,1/2] = Y, x f 11 x [0,1/2],
resp ectively.

Restricting H to the first three of these spaces, G to the correspond-
ing subspaces of A x I x I, and in each case applying 1.1, we obtain the
required maps 0,0 and a. Identifying [1/2,1] and [0,1/2] with I by the
homeomorphisms s -~ 2 - 2s and t 2013~ 1 - 2t, respectively, where s E ~1/2,1~
and t E ~0,1 /2~, we can redefine the last two of the five subspaces of Y x I.
Applying 1.1 in both cases we obtain the required homotopies Q and re-
spectively.

The next two lemmas give alternative forms of the "q satisfies the EWCHP"
and the "qOr satisfies the WCHP" conditions, respectively, thereby facili-
tating the remaining proofs of this section. The proposition, a consequence
of the first lemma and of some interest in itself, is required in the proof of
theorem 5.5.

Lemma 4.2 The condition that tlae £ -overspace q: Y -~ B satisfies the

E WCHP is equivalent to tlte apparently weaker condition that tlte ~ WCHP-
definition is satisfied only for quintuples (A, X, p, F, f ) sucla that X = Yo, p =
qo and f = Fo.

Proof: This is the same as the proof of lemma 3.1, except that the EWCHP
now replaces the ECHP and the homotopy F must be stationary on A x 1.

Proposition 4.3 If the ~-overspace q: Y -~ B satisfies the ~ WCHP then,
forgetting the ~-structure, the map q satisfies tlae WCHP.

Proof: This is immediate once we use lemma 4.2 to reinterpret the C.WCHP
and WCHP (= TWCHP) definitions.

Lemma 4.4 Let q: Y --&#x3E; B and r: Z - C be ~-overspaces. Then q~r satis-
fies the WCHP if and only if the following condition is satisified:

for all choices of a pair of homotopies F: A x I --; B and G: A x I -~ C
that are stationary on A x ~0,1/2~, and of a map h: Yo -- Z such that
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 h, Go &#x3E; is an £ -pairwise map frorn qo to r, tlaere exists a map H : Y --~ Z

extending h and such that  H, G &#x3E; is an £ -pairwise map from 4 to r.

Proof: Applying theorem 2.2 we see that there is a map H: Y -~ Z such
that  H, G &#x3E; is an 9-map from 4 to r if and only if there is a homotopy
K: A x I --~ YC1Z such that (qF-lr)K = (F, G), and these are related by
H (y, a, t) _ _~~(a, t)(y) where q( y) = F(a, t). Again, by theorem 2.2, there
is a map h: Yo --~ Z such that  h, Go &#x3E; is an E-map from qo to r if and
only if there is a map k: A --&#x3E; VDZ such that (q~r)k = (Fo, Go), related by
Iz(y, a) = k(a)(y) where q(y) = F(a, 0). Identifying A with A x 10}, we see
that H extends h if and only if ~~ extends k. The result follows easily.

Proposition 4.5 If tlze f -overspaces q: Y -~ B and r: Z -* C satisfy the
.F, WCHP then qDr satisfies the WC11IF).

Proof: Let us assume that we are given homotopies F: A x_I -~ B a,nd
G: A x I --~ C that are stationary on A x ~0,1/2~ and a map h: Yo --~ Z such
that  h, Go &#x3E; is an E-pairwise map from qo to r. Identifying Yo x 101
with Yo we have rh = G(Vo x 1/ )IY 0 x fO}, so it follows by the EWCHP
for r that there is a homotopy 1(: Y 0 X I -+ Z extending h and such that
 K, G &#x3E; is an E-pairwise homotopy from qo x 1/ to 1’. Now q also satisfies

the EWCHP so there exists an a: Y --+ Yo x I over A x I as described in
lemma 4.1. Then, defining H = ~~a, we have rH~ = rKa = G(qo x 1)a = Gq
and HlYo = ~~a~Yo = (~~~Yo)(a~Yo) = hl = h. The result then follows by
lemma 4.4.

Theorem 4.6 Let q: Y --~ B be an ~-overspace. Then q has the ~ WCHP if
and only if qmq has the WCHP.

Proof: The "only if" part is immediate from proposition 4.4.
Given a homotopy F: A x I - ~3, we notice that if 7r: A x I -- A denotes

the projection then For: A x I -+ B is a liomotopy. Replacing F, G~’,1a and
r: Z --~ C of lemma 4.4 by our Forr, F; Fo and q: Y - B, respectively, we
see by 1.2 that q: Y -~ A x I of lemma 4.4 must be replaced by (qo),~ _
qo x 1: Yo x I --~ A x I. It follows from lemma 4.4 that there is a homotopy
H : Yo x I 2013~ Y satisfying precisely the conditions specified in lemma 4.2 to
ensure that q possesses the EWCHP.

Theorem 4.7 (see [Do, thm. 5.12) for the T-case) Let q: Y --+ B be an

~-overspace and V be a numerable cover of B. If for each V E V the E-
overspace q~Y: Y ~V -~ V satisfies the 9 WCHP then so also does q.

Proof: This is as the proof of theorem 3.6, except that the terms CHP and
~CHP, [Do, thm. 4.8] and our results 3.3 and 3.4 must be replaced by WCHP
and EWCHP, [Do, thm. 5.12], and our results 4.5 and 4.6, respectively.
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5 On -E-fibre homotopy equivalence.
If P, Q and R are £-spaces and f : Q - R is an E-homotopy equivalence then
it is easily seen that /~:~(P,Q) 2013~ £(P,R) is a homotopy equivalance; our
next result generalizes this statement to the fibred mapping space level.

Lemma 5.1 Given that p: X --i A, q: Y - B and r: Z --+ B are £ -overspaces.
7y/:y -~ Z is an £FHE then /#:xay -. XOZ is an FHE.

Proof: Let g: Z .--&#x3E; Y be an £-fibre homotopy inverse of f , then it follows
by 2.1 that g# is a fibre homotopy inverse to f# .

We saw in proposition 2.1 that XC1Y is covariantly functorial in the
second variable Y. It can be shown, in a similar way that X ~Y is C011-

travariantly functorial in the first variable X, and a contravarient analogue
of lemma 5.1 established. It follows that if the £-overspaces p°: X° -~ A and
pl : X 1 -&#x3E; A are EFHE and the f-overspaces q° : Yo -~ A and ql: YI -~ A are
EFHE, then pooqo and piUqi are FHE.

Theorem 5.2 Let p: X -- B and q: Y --~ B be ~-overspaces and f : X - Y
be an E-map over B. Then f is an EFHE if and only if f#: Z~X --~ ZDY
is an FHE for both Z = X and Z = Y .

Proof: The "only if" part is given by lemma 5.1.
Let ~Z: Z~Y --~ ZOX denote a fibre homotopy inverse for f#, in the

cases Z = X and Z = Y. We recall (2.2.3) the existence of a map (lY)°: B -~
YOY over B x B, then go = Ay(ly)o: 2? -~ YOX is also a map over B x B
and the associated g: Y --~ X (2.2.2) is an E-inap over B. Now f#Ay ̂ _·~X~

lyoy so, by lemma 2.4, ( fg)° = f#g° = f#Ay(ly)o ^_rBxB (1y)’. Hence by
proposition 2.3: f g ^-rB lY .

From this point on we take Z = X . Then f#g# - (fg)# and, by propo-
sition 2.1 (ii), (fg)# ^_~~xe (lY)# = lxoY. lIence g# ^_~~X~ (~x f#)9# =
~x(.~#g#) ~-"BxB ~xlxoY = Ax. So 9#f# £iBXB ~xf# ^-’BXB lxox. Recall-
ing that (1~)~:~ -~ X ~X is a map over B x B (2.2.3), we see that:

(g f)o = (g f~ x)o
= (g f )# ( 1 x )° (see lemma 2.4)
= g#f#(lx)° (see proposition 2.1(ii))
^-JB x B (lX)O (see previous sentence).

It follows by proposition 2.3 that g f ^-~B lx, and so g is an E-fibre homotopy
inverse for f .

Theorem 5.3 (see [Ma, thm. 1.5J, also /Do, thrrc. 3.3J~ for the ~ _
version). Let p: X - B and q: Y -~ B be E - overspaces and f : X -~ Y be
and E-map over B. If V is a numberable cover of B, then f is an EFHE if
and only if, for eaclt choice of V E V, f ~V : J~V -~ YIV is an EFHE.
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Proof: The "only if" part is immediate by restriction.
It follows from lemma 5.1 that

is an FHE, both for Z = X and Z = Y, where U, V E V . Then, by
propositions 2.5 and 2.6,

is an FHE and, by [Do, thm. 3.3] f#: Z~X --~ ZDY is an FHE. The result
follows by theorem 5.2.

A space B will be said to be numerably contmctible if it admits a nu-
merable cover V such that, for each V E V, the inclusion V --~ B is null
homotopic. Such spaces include CW-complexes, classifying spaces, locally
contractable paracompact spaces and spaces having the homotopy types of
other numerably contractible spaces [Do, p. 243/4].

Theorem 5.4 ( see [Ma, thrn. ,~. 6~ for the f CHP case, and /’Do, thm. 6-3]
for the E = T case.

Let B be a numerably corztractible space, p: X --~ B and q: Y - B be

~-overspaces satisfying the ~ WCHP and f: X - Y be an ~-map over B .
Then f is an ~FHE if arzd only if, f01’ at least one clzoice of b E B in each
path component of B, f ~b: X ~b --~ y Ib is an £ -homotopy equivalence.

Proof: The "only if" part is immediate by restriction over ~b~. Conversely,
for each a E B, and each b of the specified type in B,
( f ~b)#: ~(Z~,~[6) 2013~ ~(Z~a, Y~b) is a homotopy equivalence for both Z = X
and Z = Y (see the sentence preceding lemma 5.1), i.e. f#~Z~X~~(a,b)~ is
a homotopy equivalence for both Z = X and Z = Y (see 2.5.1 and 2.6 .1 ) .
Now pOp, pDq, qDp and qDq satisfy the WCHP (see proposition 4.5) and
it follows via [Do, thm. 6.3] that f# is an FHE for both Z = X and Z = Y.
The result then follows from theorem 5.2.

Theorem 5.5 (compare with [Do, thm. 6.1~~. Let ~ be a category of en-
riched spaces, and C be a class of 9-spaces with the property that any ~-map
f, which is between spaces in C and is also a homotopy equivalence, will nec-
essarily be an ~-homotopy equivalence. Let B be a numerably contractible
space and p: X --~ B and q: Y --~ B be ~-overspaces, satisfying the E WCHP,
and such that each path-coroponerat of B contains at least one point b with
the property that both Xlb and Y ~ b are in C.

~ If g: X -- Y is an £-map over B, then g is a an 9 FHE if and only if
it is an ordinary homotopy equivalence between the underlying spaces of X
and Y .
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Proof: The "if" part if immediate. It follows from proposition 4.3 and
[Do, thm. 6.1] that g is an FHE and hence that, for each b E B, g/b is a
homotopy equivalence. Our data ensures that, for those b with Xlb in C, glb
is an £-homotopy equivalence and so, by theorem 5.4, g is an EFHE.

6 Alternative definitions of e-fibrations.

An £-overspace q: Y - B will be said to £-homotopy trivial if it is EFHE to
a trivial f-space over B, i.e. ~rB: P x B --~ B for some choice of an f-space
P.

An £-overspace q: Y --~ B will be said to be ~-locally homotopy trivial
or £LHT if there is a numerable cover V of B such that, for each V E V,
q/V: Y/V --+ V is E-homotopy trivial.

We do not assume in the £LHT case that P is fixed: it may vary with

V. It is clear that if B is not path-corrected we can find examples where
different E-spaces P of different £-homotopy types correspond to different
path-components of B.

Let q: Y - B be an f-ovcrspace. If, for all choices of a space A and a.

pair of maps f’ and g from A to B such that f ^-r g, the induced E-overspaces
q f and q, are EFHE, then we will say that q satisfies the ~-laorrzotopy induced
property or ~HIP. If this condition is satisfied then it is easily seen, taking
A to be a point, that all fibres of q over a given path component of B have
the saine E-homotopy type.

Let (B, bo) be a pointed space and q: Y -~ B be a given E-overspace.
Then if (A, ao) is a pointed space and f : A - B is a pointed map the
distinguished fibre Y XB A~ao - qf 1(ao) can, of course, be identified with
Ylbo. Two C-overspaces qf and q. induced in this way by pointed maps f
and g from A and B will be said to be identity 9-fibre homotopy equivalent
(1,EFHE) if there is an EFHE h from g f to qg such that h) ao: Y ~bo --~ Y ~bo is E-
homotopic to the identity on Ylbo. We notice that ISFHE is an equivalence
relation on the class of f-overspaces induced from q by pointed maps from
a space A.

We now specify a property of E-overspaces that is useful in cases where
the Brown representability theorem is applied to the classification of E-
overspaces, such as in [A] and [Bo2].

Let q: Y - B be an E-overspace. If there is a point bo E B such that
for all choices of a pointed space (A, ao) and a of pair of pointed maps f
and g from A to B, such that f is pointed homotopic to g, the induced E-
overspaces q f and q. are If FHE, then we will say that q satisfies the ~- based
hornotopy induced property or f BHIP.

Proposition 6.1 Let q: Y - B bc an f -n~~cra~»lce satisfying tlze f u’~’~~P
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and bo be an arbitrarily chosen point of B. Then q satisfies the £ BH IP.

Proof: Let (A, ao) be a based space and f and g be based maps from A
to B that are homotopic via a based homotopy F: A x I --~ B. Our proof
consists of showing that (): Y 1 ---+ Yo, as defined in lemma 4.1, is a IEFHE.

Applying lemma 4.1 we obtain 0, 0, a, 0 and y as described there. Defin-
ing a homotopy G: A x I &#x3E; B by G(a, t) = F(a,1 - t), where a E A and
t E l, and again applying lemma 4.1, but with F replaced by G, we obtain
analogous maps and homotopies 9’: Yo --~ Y1, ~’: Yo --~ Yo, a’: Z --~ Y, x I,
{3’: Yo x I -- Z and I’: Yo x I - Yo x I. The space Z has underlying
set ~(y, a, t)~q(y) - G(a, t)~, i.e. ~(y, a, t)~q(y) = F(a,1 - t)}, in contrast
to Y which has underlying set ~(y, a, t)~q(y) - F(a, t)~. However there is
a homeomorphism A : Y --~ Z, A(y, a, t) = (y, a,1 - t), which preserves E-
structure, and is such that ÀI(YIA x 0) = ÀBY 0 and AI(YIA x 1) = AIY, 1 are
the identities on Yo and Y1 respectively.

Then there is an E-homotopy over A, i.e. 1(: Y x I --~ Yi, running from
9’8 to 1: Y1 1 --~ Y1 1 and defined by:

where 7r, : Y 1 x I -~ Y 1 denotes the projection and (y, (1,) E Y 1. Similarly,
taking p : Z 2013)- Y to be the inverse of A, there is an E-homotopy over
A, i.e. L: Yo x I --~ yT 0, running froi-n 00’ to 1: Yo --~ Yo and defined by:

where xo : Yo X I - Yo denotes the projection and (y, a) E Yo. Hence 0 is
an ~FHE. 

_ _ _ _ _

We notice that Yo~ao,Yl~ao,Y~ao x I and Yo x I[ao x I = (Y olao) x I
can be identified with y~o,Y~O)(Y16o) x I and (Ylbo) x I respectively.
Thus Olao and al(ao x I) can be viewed as an £-map Y~bo -~ Ylbo and an
£-homotopy (Y~bo) X I ~ (Y~bo) x I respectively. Composing the latter
with the projection (Ylbo) x I --~ Y ~bo we obtain an E-homotopy between
1: Ylbo ~ Ylbo and Olbo. Hence 9 is a 1,FFHE.

Proposition 6.2 Let £be a category of enriched spaces and q: Y - B be

an ~-overspace. Then the conditions that q satisfies:

(i) the £LHT property, (ii) the ~ WCHP ,

(iii) the ~ BHIP, and (iv) tlze ~ HIP

are related according to the schenic (i) ~ (ii) # (iii) # (iv).
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Proof: (i) ~ (it). Let V be a numerable cover associated an the £L1-I’T
structure on q. Now the EWCHP is easily seen to be preserved by EFHEs
of E-overspaces, so for each V E V, q/V satisfies the îWCRl. Then q has
that same property by theorem 4.7.

(ii) ~ (iii). This is proposition 6.1
(iii) ~ (iv). If U is used to denote disjoint topological sum, then any

homotopy F: A x I - B determines a based homotopy G: (~4U{ao}) X I --~ B
by G(a, t) - F(a,t) where a E A and G(ao,t) = bo. Applying the EBHIP
for q with G we obtain the CHIP for q with F.

Theorem 6.3 (compare with [Do, thm. 6.4J, which asserts that the T LHT’
and T WCHP conditions are equivalent). Let B be a numerably contractible
space, .6 be a category of enriched spaces and q: Y --+ B be an C-overspace.
Then the î LHT property, the E WCHP, the î BHIP and the ~HIP for q are
all equivalent.

Proof: As a consequence of proposition 6.2 we just have to show that the
[LHT property is a consequence of the EHIP. If V is a subspace of B such
that the inclusion V -~ B is homotopic to a constant map to a point, say b,
of B then it follows via the EHIP that q~~’ is EFHE to 7r~: (Y Ib) x Y --~ ~.
If we select a cover of B that satisfies the numerably contractible condition,
and apply the above argument to each member V of that cover, we see that
q satisfies the ~LHT property.

7 First example: sectioned fibrations.

In this section we will take to be To and U: T° -~ ~’ to be the functor
that forgets distinguished points.

A map q: Y --+ B together with a section, i.e. a not necessarily continuous
function t: B -4 Y such that qt = 1B, will be called a sectioned space over
B. Now such a t selects a distinguished point in each fibre Ylb of q over B,
where b E B: hence sectioned spaces can be identified with To-overspaces
and vice-versa.

For example, if B is a space and (P, xo) is a pointed space, ~rB: Px B - B
will denote the projection on B and aB: B ~ P x B the section to 7rB given
by (J’B (b) = (xo, b), for all b E B. Then (7rB, ~n) is the trivial sectioned space
over B with fibre (P, x°).

The symbols (p,s) = (p: X --~ A, ,s: A --~ X) and (q,t) = (q: Y -
B, t: B -~ Y) will be used below, sometimes without any further explana-
tion, to denote sectioned spaces.

We now reformulate various T°-conc;epts in sectioned space terminology.
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Given a map g: A --~ B then t9 : A --~ Y x ~ A, t9 (a) _ (tg(a), a), a E A, is
a section to qg. Then (q9, t9) is the sectioned space induced from (q,t) by g.
In particular if V is a subspace of 13 then (qlV: Y~V --~ V, t~V: V - YIV) is
a sectioned space.

If f : X --~ Y and g: A -- Ij arc iiiaps such that q f = gp and f s = tg
then  f, g &#x3E; will be a sectioned pairwise map from (p, s), to (q, t).

There is a sectioned space (p x l: X x I --~ A x I, s x 1: A x 1 -~ X x I),
and sectioned pairwise maps  F, G &#x3E;: (p x l, s x 1) -; (q, t) are sectioned
pairwise homotopies. Taking A = B, constraining g to be 1B and G to be the
projection, there are associated concepts of sectioned map over B, sectioned
homotopy over B and sectioned fibre homotopy equivalence (sectioned FHE).

We will say that (q, t) is sectioned homotopy trivial if it is sectioned FHE
to a trivial sectioned space (~rB, 0"). If there is a numerable cover V of B

and, for each V E V, (q~V, t~Y) is sectioned homotopy trivial then (q, t) will
be said to be sectioned locally homotopy trivial or sectioned LHT.

Let us assume that for all choices of a sectioned space (p: X --~ A, s: A -~
X), a homotopy F: A x I --~ B and a map f: X x 10} -i Y which satisfy the
condition that  f, FIA x {0} &#x3E; is a sectioned pairwise map from p x I{o)
to q, there always exists a homotopy H: X x I - Y such that  H, F &#x3E; is a

sectioned pairwise homotopy from (p x 1, s x 1) to (q, t).’ Then (q, t) will be
said to possess the sectioned covering Iao~raotopy property or sectioned CHP.

We notice that the various sectioned concepts just defined agree with
the analogous’To- concepts, i.e. the sectioned definitions are just rephrased
versions of the To-definitions.

Proposition 7.1 Ij (q, t) is sectioned LHT then t is continuous.

Proof: The sections (jB to trivial sectioned spaces are continuous and so

also, by composition, are the sections tlV for all V in a numerable cover V
of the base space. It follows that t is continuous.

A well sectioned fibration is a sectioned space (q: Y -+ B, t: B -~ Y),
where q is a Hurewicz fibration and t is a closed cofibration.

Proposition 7.2 If (q, t) is a well sectioned fibration and f: A -- B is a

map then (q~, tf ) is also a well sectioned fibration.

The proof is removed to section 10; the next corollary refers to the special
case where f is the inclusion of a point in B.

A pointed space will be said to be well pointed if the inclusion of the
point in the space is a closed cofibration.

Corollary 7.3 ~(7,~) ~ ~ well sectioned fib7,ation over B then tlte f bre.~~
(YI b, t(b)) are medl pointed space.~, for all b E B.
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Theorem 7.4 If (q, t) is a, wcll sectioned fibiatioit then it satisfies the sec-
tioned CHP.

Proof: Given a homotopy F: A x 1 --~ B and taking f = Fo: A --~ B, we
notice that Fo: Yo x ~0~ = Y° --~ Y and t,F(qo x ll)~tf (A) x I: tf (A) x I --~ Y
agree on tf (A) x {0} so they combine to give a map

h = Fo U (tF(qo x lI)Itf (A) x I): (Y 0 x f 01) U (tf (A) x I) --~ Y.

Then qh = F(qo x l/)!(Fo x ~0~) U (t,f (A) x I) and, according to the E = T°
version of lemma 3.1, we just have to construct a homotopy H : Yo x I - Y
extending h and such that qH = F(Vo x lj). Now tf is a closed cofibration
(proposition 7.2) hence so also is tf x 1: A x I --a Yo x I (see [Br, 7.3.3]).
The result follows by [St 1, thm.4].

The following corollaries 7.5, 7.6 and 7.8 are direct consequencies of
theorem 7.4 in conjunction with theorems 5.4, ’6.2 (((ii) ~ (iv)) and 6.3
respectively; corollary 7.7 is the particular case of corollary 7.6 where f is
the inclusion of a point in B.

Corollary 7.5 (cornpare witla fE, tlam. 3.9]). Let (p, s) and (q, t) be well

aectiorzed fibrations over’ a, ~cu~~terably co~ztr~actible. space B, and f be a sec-

tioned rnap ovcr B f~~o»z ( p, .~) to (q,t). ~Ve will assu~nE~ that there is ot t

least one point in each patfa-co~npo~zcezf, of 1J with the property that f I b is a

pointed homotopy equivalence between pointed fibres. Then f is a sectioned
FHE.

Corollary 7.6 (=HIP for well sectioned fibrations). If (q, t) is a well sec-

tioned fibration, A is a space and f and g are homotopic maps from A to B
then (q f, tf ) and (q9, t9) are sectioned FHE.

Corollary 7.7 (= fE, prop. 3.5J). If (q, t) is a well sectioned fibration and
bo and bl are a pair of points in the same path-component of B, then the
pointed spaces (Y I bo, t(bo)) and (Ylbi, t(bl )) are pointed homotopy equivalent.

Corollary 7.8 (Compare witla fE, tlam. 3.6]). Any well sectioned fibratiorz
over a nu~nerably contractible space is sectioned LII T.

It is well known, and a particular case of [Br, 7.4.2], that if (X, xo) and
(Y, yo) are well pointed spaces then any pointed map from X to Y which
is a homotopy equivalence, must also be a pointed homotopy equivalence.
Hence if we take E - TO, then the class of all weakly well pointed spaces, i.e.
pointed spaces that are pointed homotopy equivalent to well pointed spaces,
is an example of a class C, as described in theorem 5.5.
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Proposition 7.9 Let (p, s) and (q, t) be well sectioned fibrations over a nu-
merably contractible space B and f: X --&#x3E; Y be a sectioned map over B.
Then f is a sectioned FHE if and only if it is an ordinary homotopy equiv-
alence between tlae spaces X and Y .

Proof: This follows from the above discussion, theorem 5.5, corollary 7.3
and theorem 7.4.

8 Further examples.

(i) Let E denote T and U : T -- T be the identity functor on T. Then our
results 3.6, 4.7, 5.4, 5.5, 6.2 and 6.3 repeat information already known from
[Do], in addition 6.2 and 6.3 contain some further information.

(ii) Let G be a topological monoid. If £ = Gyhe and U: GThe ---~ T forgets
the G-action, then a principal G-fibration may be defined to be a Gyhe-
overspace satisfying the Gyhe LHrr condition.

The next two examples are different generalizations of the sectioned
space example.

(iii) Let C denote the category of pairs of spaces and maps of pairs [Sp,
p. 22/23]. If f : (P, Po ) - (~ 1 Qo ) is a map of pairs then we define if by
U(P, Po) = P and U f = f .

Then a pair-overspace consists of a pair (Y, Yo ) and a map q: Y -~ B,
the fibre of q over b being the pair (Ylb,Yolb). This provides an appropriate
framework for the study of pair-fibrations, such as appear in, for example,
the Leray-Hirsch theorem [H, ch. 16, thm. 1.1 and remark 1.2] and in the
last (spectral sequence) chapter of [Sp].

(iv) We now take £, to be the category TA of spaces under a fixed space A.
The objects are maps such as i: A -~ P and j : A -~ Q, and morphisms from
i to j are maps f : P --~ Q such that f i = j. The functor U: TA --~ T forgets
A and forgets maps out of A, in the obvious way.

A TA-space over B can clearly be taken as consisting of a pair (q, t),
where q : Y -~ B is a map and t : A x B -~ Y is a function such that qt is
the projection ~rB . A x B -~ B and, for each b E B, ~x{6} : A x ~b~ - Y ) b
is continous. In general t itself may not be continuous. However there is an
easy direct generalization of proposition 7.1 and its proof, which tells us that:
if (q, t) corresponds to a yA-space that is 7-A LHT, then t is continuous.

If B is a given space, Y contains A x B as a subspace, and q: Y - B
extends ~B, then the fibre Y~b contains a subspace A x ~b~ that may be
identified with A. On this basis q can be viewed as a TA -overspace. There
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is a corresponding theory o1’ f ih~~atio~i.s which extend trivial fibrations.

(v) Let E be TA, the category of spaces over a fixed space A. Thus the

objects are maps such as d: P -- A and e: Q -~ A, and a morphism from d
to e is a map f: P ~ Q such that d - e f . The functor U: 7-A --+ T forgets
A, and forgets maps into A, in the obvious fashion.

A T~A-space over B determines a corresponding function q : Y -- A x B in
an obvious fashion; in fact a TA-space over B can be taken to be a function
q : Y --&#x3E; A x B, where ~B q : Y --~ B is continuous, and for each b E B
~-Aq~(Y~A x ~b}) : YI(A x ~b~) --; A is continuous. Taking ~rA : A x B - A
to denote the projection, we see that in general ~-Aq : Y --~ A, and hence q,
may not be continuous. However, by an argument similar to that used in
proposition 7.1, it can be shown that: if q : Y 2013~ A x B corresponds to a
T,~-space that is TALHT then ~rAq, and hence q, are continuous.

If q: Y 2013~ A x B is a map we notice that the fibre of ~rBq: Y -~ B over
b E B, i.e. q~ A x ~b~: Y (A x fb} --~ A x ~b~, can be viewed as an object of TA .
So q can be identified with the TA-space over B determined by ~-Bq: Y -~ B,
and we have the foundation for a theory of fibrations over product spaces.

(vi) We will now take C to be the category Fib with objects that are at
the same time both Dold fibrations and identification maps, and morphisms
that are T-pairwise maps. The functor U: Fib --&#x3E; ?’r remembers only the
total spaces (= domains) of the objects of .~’ib, and only the f of morphisi-ns
 f,g &#x3E;.

If q: Y - M and m: M -~ B are Dold fibrations and q is also an (of
course surjective) identification then there is an associated .~’ib-overspace
(77~~:y 2013)- B, ~q~b: Y~b --~ M~b~bEB). In fact a modification of the proof of
the result that the composite of two Dold fibrations is a Dold fibration, shows
that such pairs of Dold fibrations determine .~’ib-overspaces that satisfy the
.~ibWCHP. Thus this example provides a suitable context for the study
of composites of Dold fibrations. It may be generalized to cover n-stage
fibrations and infinite towers of fibrations.

9 Proof of proposition 7.2

It is well known and easily seen that q f is a Hurewicz fibration. We will
show (i) t~ (A) is closed in Y XB A, and that tf is a cofibration when (ii)
f is a cofibration and also when (iii) f is a Hurewicz fibration. Now ev-
ery map f is the composite of a cofibration and a Hurewicz fibration [St3,
prop. 2~, so it follows via 1.2 that tJ is a closed cofibration in the general case.
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Proof of (i): tf (A) _ ~(t,f (a), a)~a E A) = {( y, a) E Y XB Aly E t(B)} -
(fq)-lt(B). Now t(B) is closed (data), so tf (A) is closed.

Proof of (ii): (given by P.Heath) We will assume that f is a cofibration.
The composite of two cofibrations is a cofibration, so t f is a cofibration.
Now ( f9)(tf ) - t f and fq is a cofibration ([St2, thm. 12] or [Bol, cor. 3]),
so tf is a cofibration [St3, lemma 5].

The next three lemmas are fibred mapping space results, we require that
E = ?’r and that C is a single point. Then lemma 9.1 is a particular case
of theorem 2.2, lemma 9.2 is a homotopy version of lemma 9.1 that can be
derived from lemma 9.1 by replacing the q: Y --~ B of lemma 9.1 by the
composite of q with ~rY: Y x I --~ Y, and lemma 9.3 is the particular case of
lemma 9.2 where Y = B and q = 1~.

We assume that q: Y --~ B and f : A --~ B are given maps and Z is a
given space. Regarding Z as a space over a point via a map r : Z -; *, we
see that ADZ has underlying set UbEB ?(A~b, Z) and that f Or can be taken
to be the obvious projection of ADZ to B.

Lemma 9.1 There is a bijective correspondence between maps g: Y XB A -
Z and maps g°: Y -~ ADZ over B defined by g(y, a) - g’(y)(a), where
q(y) = f (a).

Lemma 9.2 There is a bijective correspondence between homotopies G: (Y X B
A) x I - Z and homotopies over B, G°: Y x I -~ AOZ, defined by G(y, a, u) _
G°(y~ u)(a)~ where q(J) = f (a) c~~zcl ue E I.

Lemma 9.3 There is a bijective correspondence between homotopies H : A x
I --~ Z and homotopies over B, HI: B x I --~ AD Z, defined by H(a, u) =
H°(b, u)(a), where f (a) = b and u E I.

Proof of (iii):. We now assume that f is a Hurewicz fibration.
Let Z be a given space, g: (Y x B A) x ~0~ --~ Zbe a map and ~f:Ax7 2013~ Z

be a homotopy such that g(tf x 1{°~) = H~A x 10}.
Applying lemmas 9.1 and 9.3 to g and H, respectively, we obtain a map

g°: Y X (0) - ADZ over B with g(y, a, 0) = g°(y, 0)(a), where q(y) = f (a),
and a homotopy H’: B x I -~ ADZ over B with H(a, u) = HO(b, u)(a),
where f(a) = b and u E I. Then go(t x l~o})(~0)(a) = ~(~),0)(a) =
g(t(b), a, 0) - H(a,O) = H°(b, 0)(a), where f(a) = b, so go(t x 1~°} ) _
H° ~ B x fOl.

Hence there is a well defined map k: (Y x 101) U (t(B) X I) --~ ADZ

defined by k(y, 0) = g°(y, 0) when y E Y, and k(t(b), u) = H°(b, u), where
b E B and u E I (see [St1, thIn. 1]). Now g° and H° are over B so it follows
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that (f Or)k = q1ryl(Y x f 01) U (t(B) x I), where 1ry:Y x I - Y denotes
the projection.

Taking E= Tin proposition 3.3, we see that f ~r is a Hurewicz fibration.
Applying the relative covering homotopy property theorem [Stl, thm. 4]
we see that there is a homotopy over B, G°:Y x I -~ ADZ, such that
(fOr)Go = q~ry and GO I(Y x f 01) U (t(B) x I) = k. It follows via lemma 9.2
that there is a homotopy (?:(yx~.4)x/-~ Z with G(y,a, u) = G°(y, u)(a),
where q(y) = f(a) and u E I. Then G(y,a,0) = GO(y, 0)(a) k(y, 0)(a) =
90(y,O)(a) = g(y, a, 0), so GI(Y XB A) x fO} = g. Also, if f(a) = b and
u E I,G(tl x lj)(a,u) = G(t(b), a, u) = GO(t(b),u)(a) = k(t(b),u)(a) =
H°(b, u)(a~ = H(a, 0) and thus G(tl x II) = H, and the proof is complete.
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