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EQUATIONALLY CLOSED SUBFRAMES AND REPRESENTATION
OF QUOTIENT SPACES

by Ale0161 PULTR and Anna TOZZI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXXIV-3 (1993)

In memory of Jan Reiterman

Resume : On dit que le subframe B du frame A est dquationalement
fermd si les relations a V x, a A x, a E B entraînent x E A . Entre autres
on montre que pour une certaine classe d’espaces, les immersions des
subframes équationalement fermes donnent une description des quotients
topologiques, et on caractérise cette classe. On prouve aussi I’analogue
du Theorcmc de diagonalization de Dikranjan - Giuli.

It is a well-known fact that in a distributive lattice A an element x E A

is, for any a C A, uniquely determined by the values a, a V x and a A x.
Consequently, the values of a frame homomorphism 4Y : A -&#x3E; B deter-

mined on a subset M C A are uniquely determined also on all the solutions
x of the equation pairs

with a, b, c E M .
In this paper we present a few facts on subframes closed under solutions

of the equations ( *) (equationally closed subframes). In particular, we show
that in a class of topological spaces containing all metrizable ones, these
represent well the quotients, that is, a continuous map X - Y is a quotient
if and only if the induced frame homomorphism n(Y) -&#x3E; n(X) is an

embedding of an equationally closed subframe.
The article is divided into Preliminaries and four further sections. In Sec-

tion 2, basics on equational closedness are proved. In particular, we show
* the support of the Italian C.N.R. is gratefully acknowledged.
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that all subframes that are Heyting subalgebras are closed (and consequently,
on the one hand all Boolean subalgebras, and on the other hand images of
open homomorphisms are), and that the images of closed homomorphisms
are equationally closed. In Section 3, the notion is used for proving an anal-
ogon of the Dikranjan - Giuli diagonalization theorem. In Section 4, a nec-
essary and sufficient condition for a space Y to have the quotients X --- Y
represented by equationally closed subframes is found. The last Section 5
is devoted to more information on the resulting class of spaces. It is not yet
satisfactorily understood; we know that it includes, for instance, all Frechet
spaces, but also all the ordinals. For quasidiscrete spaces, a complete char-
acterization is presented.

1 Preliminaries

1.1.1 A frame A is a complete lattice satisfying the distributivity law

a frame homomorphism O: A -&#x3E; B preserves general joins and finite
meets. A typical example is the lattice n(X) of open sets of a topolog-
ical space, and if f : X -&#x3E; Y is a continuous map, n(f): n(Y) -&#x3E;

n(X) defined by n(f) (U = f-1 (U) is a frame homomorphism. Another
class of examples is provided by complete Boolean algebras and complete
Boolean homomorphism.

The category of frames and their homomorphisms will be denoted by

Frm .

1.1.2. Because of the distributivity law, the mappings x H x A a pre-
serve suprema and hence we have a uniquely defined binary operation 2013&#x3E;

satisfying
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Thus, each frame is a Heyting algebra. Frame homomorphisms are not
necessarily Heyting ones (that is, do not necessarily preserve -&#x3E;), not to

speak of complete Heyting (the infinite meets are not necessarily preserved).
Frame homomorphisms between Boolean algebras are completely Boolean,
though.

1.1.3. A frame homomorphism is said to be open if it is completely
Heyting . This notion corresponds to the classical openness of continuous
maps in the sense that Q ( f ) is open in this new sense if and only if f is open
( see [8],[2]) Similarly, a homomorphism O: A -&#x3E; B is said to be closed

if we have the implication

for O+ the right adjoint to 0 (that is, the mapping 0, : B -&#x3E; A satisfying
O(x)  y iff x  O+ (y)) and ( f ) is closed in this sense if and only if f
is closed in the usual one (see, e.g.[10], [11]).

1.1.4. A sublocale of a frame A is a "’surjective frame homomorphism
,y : A -&#x3E; C.

1.1.5. Monomorphisms in Frm are exactly the one-one frame homo-
morphisms.

1.1.6. Recall that A e B, the coproduct of frames A, B, is generated by
the a fl3 b = vA( a) A vB( b) where vA, vB are the coproduct injections.

A reader wishing for more details on frames may consult, e.g., [7].

1.2.1. As usual, a continuous map f : X - Y will be called quotient
(or, a quotient map) if U is open in Y iff f -1 ( U) is open in X.

1.2.2. A topological space X is said to satisfy TD (see [1]) if
each x C X has an open neighbourhood U such that U B {x} is open.

This separation axiom allows easy algebraic interpretations of various
topological facts (see, e.g., [12],[2],[11]). In particular we have
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Proposition : A ,space X satisfies TD if and only if , for any vpace Y,
the continuous onto maps f : Y -&#x3E; X are exactly those continuous maps
for which ii (f ) are rrronarrtarphis’m,v in Frm.

Proof : Trivially, if f is onto, n(f) is one-one. If f is not onto and if
X satisfies To, consider mo x E X B f Y I and an open U D x, such that
V = U B {x} is open. Then U V and f-1 (U) = f-1 (V).

Now let TD be not satisfied, let xo be such that for no open U 3 x0,
UB{x0} is open. Put Y = XB {x0} and let f: Y - X be the embedding
of the subspace. Then Q (f), sending U to U B {x0}, is one-one but f is not
onto. 0

1.2.3. Ordinals will be viewed as usual with the interval topology.

1.2.4. Speaking of quasidiscrete spaces (cf. [3] ) we will have in mind
those connected with partially ordered sets (that is, we really have in mind
the To-quasidiscrete spaces) : Given a poset (X, ) we denote, for a set
M C X, l M = {xl3y E M, x  y}; a set is declared open if M =1 M.

We write l x for l {x} and i x for {yly &#x3E; x}. Obviously T x is the
closure of {x}.

1.3.1. From category theory only basics are assumed (the reader is re-
ferred to the general chapters of [9] or [6]). A coreflective subcategory is
said to be extremally monocoreflective if the coreflection morphisms are ex-
tremal monomorphisms. For a subcategory A of C,

Epi(A)

is the full subcategory of C generated by the objects b such that there is an
epimorphism E : a -&#x3E; b with a E A. It is easy to see that

for an extremally monoreflective A, Epi(A) = A,
(Indeed, if p is the coreflection and - : a -&#x3E; b is an epimorphism with
a E A, we have e = !Jb o c’, hence Ab is an epimorphism and hence an
isomorphism.)

1.3.2. The Dikranjan-Giuli diagonalization theorem, the analogon of
which we will prove in 3.5 below, is the following fact [4] ):
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Theorem : Let A be an extremally epireflective subcategory of the cat-
egory of topological spaces. Let a ,space A be in A, let X be a subspace of
A. Then X i,s A-closed (that is, an equalizer of morphisms in A) if an only
if AUxA is in A.

(The vertex P in the pushout

is denoted by A UXA.)

2 Equationally closed suhframes

2.1. A subframe B of a frame A is said to be equationally closed (ab-
breviated, EQC) if

for any a E B, a V x e B and a n x E B imply that x E B.
That is, an equationally closed subframe is one closed with respect to solu-
tions x of the systems of equations

aVx=b,

a Ax = c.

A frame homomorphisms B -&#x3E; A is said to be equationally closed if
O[B] is EQC in A.

Obviously, an intersection of EQC subframes is EQC. Hence, for any
subset M of A we have the least EQC subframe B of A containing M.
It will be called the equational closure of B and denoted by e(M). More
exactly, one should write ê,A( M) . Note that

(2.1.1) if M C B C A and B is EQC in A then B(M) A(M).
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2.2. For a subset M of a frame A put

and denote by

the subframe generated by M. Further, put

and define ea for ordinals a by

1, and

is a limit ordinal .

Obviously,
G( M) = E,QL( M) such that ea+1 (M) = Ea(M).

Note : For any a there is an example of a frame A and a subframe
B C A such that Ey( M) do not saturate before a. Consider the embedding
A -&#x3E; N( A) from [7], Chapter II and iterate the construction transfinitely.
By II.2.10 in [7], if A is a free frame with infinitely many generators, the
procedure never stops. This example was pointed to us by B.Banaschewski.

2.3. It is a well- known fact that in a distributive lattice,
(2.3.1) an element x is uniquely determined by the values a, a V x and

a A b.

(Indeed, let the values for x and y coincide. We have x = x A (a V x) =
x A (a v y) = (xna) V(x A y) = (yna) V(yAx) yA(aVx) =
y A (a V y) = y.)
Consequently, if the values of a frame homomorphism O; A -&#x3E; C are
determined on M C A, they are determined on eq( M) . Since trivially a
homomorphism determined on M is determined on sf (M) , we obtain by
transfinite induction

Proposition : A homomorphisms B -&#x3E; A such that E (O [B]) = A
is an epimorphism.



173

2.4. Lemma : Let H C A be a Heyting algebra, a, a V x, a A x E H.
Then

Proof : Put b = a V x, c = a A x, y = b A (a - c) . We obviously have
x  b and by the second equation x  a -&#x3E; c so that x  y . As a  b we

have b=a V xa V yb, that is,

we have a A(a-&#x3E;c)  c so that

and hence also

Thus, by (2.3.1), x = y . 0

As a consequence we immediately obtain

Proposition : Let a subframe B C A be a Heyting subalgebra. Then it
is EQC.

2.5. A homomorphism is open if and only if it is a complete Heyting
homomorphism (recall 1.1.3). Thus, we have

Corollary : Each open homomorphism is EQC.

2.6. Proposition : Each closed homomorphism is EQC.
Proof : Let 0 : B ) A be a closed homomorphism (recall l.1.3). Let

O(a) V u = 0(b) and 0(a) A u = O( c) . We want to prove that u E O[ B] .
We have

As 0 is closed, we have the implication
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hence in particular b  a V O+ ( u) so that

Thus,

so that, by (2.3.1), u = OO+ (u). D

2.7. Let A be a subcategory of Frm. We will denote by Equi(A) the
class of all frames B such that there is a homomorphism 6 : A -&#x3E; B with

A E A and e (e[A]) = B.

3 EQC, congruences, and the diagonal theorem

3.1. Lemma : Let A be a frame. Then the congruences C C A x A are
exactly the equationally closed subframes of A x A containing the diagonal
A.

Proof : I. Let C D A be an EQC subframe. Since it is a subframe, it
suffices to show that it is an equivalence.

Let (x, y) E C. We have (y, x) A (x, y) E C and (y, x) V (x, y) C C.
By the EQC, (y, x) E C.

Let (x, y) , ( y, z) E C.. We have

Hence also ( x , z ) C C.
II. Let C be a congruence. Then it is, trivially, a subframe containing the

diagonal. Let (x, y) V (a, b) , ( x, y) A (a, b) and (a, b) be in C. Write uCv
for (u, v) E C. Thus, we want to prove that xCy. We have
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3.2. Corollary : Let A C M C A x A. Then g( M) is the congruence
generated by M .

3.3. Let A be a subcategory of Frm, A E A. A sublocale y: A -&#x3E; C
is said to be A-closed if it is a coequalizer of two morphisms from A.

3.4. For a sublocale y: A -&#x3E; C denote

Obviously,

with pi( xl , x2)= xi , is a pullback in Frm.

3.5. Theorem (analogon of the Dikranjan-Giuli diagonalization the-
orem) : Let A be a coreflective subcategory of Frm, let A E A and. let
’Y : A -&#x3E; C be a sublocale of A. Then the following statements are equiv-
alent :

(i) y is A-closed,
(ii) A n,., A is in Equi(A),
(iii) A nry A is in Epi( A) . 

Proof : (i) =&#x3E; (ii) : Let ’1 = coequ (a1, a2) : A -&#x3E; B . Consider the

following diagram



176

with pi 08= id, p, o cx = at, tA, tB : A, B -&#x3E; A 0 B the coproduct, and E
given by 

As y = coequ(a1, a2 ) , A Fill A = {(x, y) y(x) = 7(y)} is the congruence
generated in A x A by

We easily see (recall 1.1.6) that e(aO b) = e(iA(a) A tB(b)) = 6(a) A
a(b) = ( a 1B a1(b),a 1B a2(b)). Thus, M = a(AO B) contains both N
(put a=1) and the diagonal (put b=1) and hence, by 3.2, A ny A =

E( M) (in A x A, but by (2.1.1) also in A ny A). Thus, by 3.2 and (2.1.1),
e(e(AOB)) =AnyA.

(ii) =&#x3E; (iii) by 2.3.
(iii) =&#x3E; (i) quite analogously with the proof of 1.12 in [4] :
Obviously 7 = coequ ( p, , P2) - If q : B -&#x3E; A n, A is an epimorphism,

we have also y = coequ (piq, P2q). By(iii) we can choose an 77 with B G A
13

3.6 Notes : 1. If A is extremally-monocoreflective, Epi(A) = A and
hence we have that

y is A-closed iff A ny A is in A.
2. The extremal monocoreflexivity is not necessary for this stronger

statement. It holds for instance also for A the subcategories of regular or
completely regular frames.
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4 Equational closedness and algebraic descrip-
tion

of quotient maps

4.1 A topological space X is said to satisfy the condition of approxima-
tion by closed sets (abbreviated, AC) if

for each non-open M C X there is a clo,sed F and open U, V such that

and this set i,s not open.

4.2. Proposition : A ,space X satisfies AC if and only if for each non-
open M C X there is a closed F and open Ul , Vi, U2 , ’V2 .such that Ul U
( M n Vt) = U2 U ( F n V2) and this set is not open.

Proof: LetUl U(MnV1) = U2 U(FnV2). PutU - Ul UU2,V =
VI n V2. We have

and similarly

4.3. Theorem : Let Y be a space satisfying TD and AC. Then a con-
tinuous f : X -&#x3E; Y i,s a quotient map if and only if K2 (f) i,s an EQC
monomorphism.

Note : As we will see in the next section, this concerns, for instance, all
metrizable spaces .

Proof : We easily check that the equations
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are equivalent with

Thus, ( f ) is EQC if and only if
( *) for U, V, W open, f-1 (W U ( ( Y B U) n V ) open implies W U ( ( Y B
U) n V) open.
Now let f : X -&#x3E; Y be a quotient map. Then, first, since f is onto, f2 (f)
is a monomorphism. As it is a quotient, we have generally the implication
f-1 (N) open o N open. Thus, in particular, (*).

Let Y be TD and AC and let s2 ( f ) be a monomorphism. Then, by 1.2.2,
f is onto. Let u ( f ) be EQC and suppose it is not a quotient. Thus, there is
a non-open M with f-1 ( M) open. Consider the U, V, F from the definition
ofAC,N = UU(FnV) = UU(MfIV) non-open. Then, by(*), f-1(N)
is not open. But 

4.4. Theorem : A space Y satisfies TD and AC if and only if the quo-
tients f : X - Y are exactly those continuous maps for which n ( f ) are
equationally closed monomorphisms.

Proof : =&#x3E; by 2.3.
=: If Y does not satisfy TD there is an equationally closed monomor-

phism, indeed an isomorphism n (f) with f not being onto at all (see 1.2.2).
Now let Y violate AC. Thus, we have a non-open M such that whenever

U U ( M n V ) = U1U(Fn V1) with U, V, Ul, V, open and F closed,
U U ( M n V) is open. Define X as the space carried by the same set as Y
and with

Obviously f : X -&#x3E; Y carried by the identity is not a quotient.
n(f) (n(Y)) = n(Y) is EQC in n (X), though: If W1 U (UU(MmV))=
V1 and P)/i n ( U U (M n V)) = U1 with U1, Vi, WI open in Y, we compute
easily that U U (M n V) = U1 U ((YBW1) n V1) and hence UU ( M n V)
is open- by the assumption. D
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5 More about AC

5.1. Let us say that a space X has the property of approximation oj.points
(abbreviated, AP) if for any x E M B int M in X there is a C C- X such
that

Thus, e.g., each metrizable space, or more generally each Frechet space, has
AP.

5.2. Proposition : Each TD space with AP satisfies- AC.
Proof : Take a non-open M, choose x E MBint M, and take the C from

the definition of of AP. We obviously have

By TD we have an open V such that {x} =V n {x}. Thus, it suffices
to show that (X B C) U {X} is not open. If U is an open neighbourhood
of x, by definition of C we have an element y + x, y E U n C. Thus,
U C (XBC) U{X}.D 

Corollary : For a metrizable (or, more generally, Fréchet) spaces Y,
a continuous map f : X-&#x3E; Y is a quotient if and only if n ( f ) is an
equationally closed monomorphism.

5.3. Example : WI 1 + 1 does not have AP.
Proof : Take M = {a  wlla limit}, x = WI, Suppose C 3 W1, C3 

w1. Thus, for each a  wi there is an a’  wi such that Q  a’ E C. Choose
ao E C and, by induction, a+ 1 = an, and put /3 = sup {anln E W0}. Then
/3 E MnC. Thus, if CUM = 0 and M n 17 C 3 x, we have M n C + {x}. D

5.4. Proposition : Let X = U iEJ Xi, Xi open, let Xi satisfy AC. Th.en
X does.

Proof : Let M ç X not be open. Then, for some j e J, Mj = M n Xj
is not open and hence there are Uj, Vj open and Fj closed in Xj such that
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and this set is not open. Take an F closed in X such that Fj= Xj n F and
put U = Uj, V = 11; n Xj. 0

5.5. Proposit ion : Let X be a disjoint union of X1, X2 with X j open(and
hence X2 closed). If both X 1 and X2 satisfy AC, .so does X .

Proof : Let M be non-open.
I. If M n X1 is not open we find U, V and F as in the proof of 5 .4.
ll.1f M n X 1 is open and if M n X2 is open in X 2 , we have

for some V open in X. Use 4.2.

III. If M n Xt 1 is open and M n X2 is not open in X 2 , we have N =
(U m X 2) U (M mX2 nV) = ( U n X2) U (Fn X2 nV) not open in X2 ,
with U, V open and F closed. We have

Since (M n X1) U (M m X2 m V) = M m (X1 U V) we obtain, for V1=
X1 UV, U1 = UU(M n X1),

and this set is not open in X since obviously its meet with X2 is N. Use 4.2
again. 0

5.6. Proposition : Closed subspaces inherit AC.
Proof : Let X be closed in an AC space Y. Put W = Y B X Let M C X

be non-open. Then M’ = M U W is not open in Y and hence there are open
U’ , V’ in Y, and a closed F’ such that

is not open in Y. Put U = U’ n X , V = V’ n X, F = F’ n X . We have
U U (M n V) = U U ( F n V) and it remains to be shown that this set is not
open in X. Suppose it is. Thus, U U ( M n V) = T n X for some T open in
Y. But then U’U (M’n’) - (TUW) n(U’UV’) is open. D
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5.7. Examples : 1. All countable ordinals have AC (being 111etrizable).
Now suppose all ordinals  cx have AC. Then a has : if it is a limit ordinals,
the fact follows from 5.4 ; if cx = (3 + 1 this is a consequence of 5.5. Thus,
by induction

each ordinal (with the interval topology) has AC.
2. Quite analogously one can prove that

for any space X with AC, and any ordinal a, a x X has AC.
3. Recall 5.3. w 1 + 1 is an example of a space with AC and without AP.
4. By 5.5 and 5.7.1 also the standard example of a non-normal space

satisfies AC : removing the closed {w1} x wo , which is discrete and hence
has AC, we get an open set which has AP.

5. The topology of complements of finite sets on an infinite set X does
not satisfy AC. Indeed, consider an infinite M with X B M infinite. Suppose

with open U, V and closed F. We have to have U = 0 and V + 0 or else the
set( *) is open Then M n V - F n V is infinite. But this is possible only
for F = X and M n V = V is open again.

5.8. Now we will present a criterion for AC in among the quasidiscrete
spaces (recalll.2.4).

An interval in (X, ) is a subset J C X such that x, y E J and x 
z  y imply z E J. In particular, lxnl y are intervals and we will denote
them by x , y &#x3E; .

Proposition : A quasidiscrete space (X, ) satisfies AC if an only if for
each M which i,s not open. there is an a E M and a b E M such that b  a

and  b, a &#x3E; nM is an interval.
Proof : I. Let the condition be satisfied. Then it is easy to check that

U = XB l b, V =l a and F = U{l clc Eb, a &#x3E; nM} witness for the
condition AC.

II. Now let AC be satisfied, let M 11 M. We have open U, V and closed
F such that
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is not open, Thus, in particular there is an a E M n V and b  a with

b g U U ( M n V) . Intersecting ( *) with! a we obtain (Un l a) U (Mn l
a) = (un l a) U (Fn ! a) and hence, for G = X B ( Un l a),

As G is closed, for each x E G, Mn l xn l a = Fn i xn ! a. In particular,
b V U and hence b E G so that

Since F is closed, Fn  b, a &#x3E; is an interval. D

5.9. Notes : 1. Thus, e.g. each (X, ) such that for every non-void
M C X there is a minimal a E M (in particular, each finite (X, )) satisfies
AC. (Indeed, if M is not open, choose x C M and b  x , b E M, and take
for a a minimal element in Mn  b, x &#x3E; . Then Mn b, a &#x3E;= {a}.) On
the other hand, no linear (X, ) containing an order-dense interval satisfies
AC.

2. The condition AP is for quasidiscrete spaces of little interest since it
is obviously violated whenever there are a, b, c with a  b  c.
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