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Dedicated to the memory of Honza Reiterman

R6sum4. Les categories essentiellement algibriques avec la propri6t6
suppl6mentaire que leur (Epi, Mono-source)-factorisations soient obtenues
d’une certaine qualit6 soulevante de leur foncteurs d’oubli , sont examinés
et, aussi, sont caractérisés comme une classe spécifique de sous-categories
pleines et epi-réflexives des catégories monadiques. Les cas particuliers de
ce resultat comprennent la caracterisation de Linton pour les categories
quasi-primitives d’algibres et tous ses généralisations. Ceci est apparenté
a l’observation que, en catégories essentiellement algibriques d’algebres
partielles, l’image d’un homomorphisme n’a pas besoin d’itre un sous-
algibre de son but.

Introduction

Linton’s monadicity theorem for Set-based functors [8], stating that a faithful func-
tor U: A -&#x3E; Set is monadic if and only if (0) A has coequalizers, (1) U has a left
adjoint, (2) U preserves and reflects regular epimorphisms, and (3) U preserves
and reflects congruence relations, is often considered to be of less importance than
the Beck-Paré Theorem. For example, MacLane’s standard textbook on category
theory [7] doesn’t contain Linton’s theorem at all, and the recent book [2] treats it
as a consequence of the Beck-Paré Theorem. The reason is probably, that Linton’s
characterization cannot be generalized to arbitrary base categories, which however,
from the point of view of algebra, is not a strong argument, since monadic functors
over categories different from Set might badly fail to enjoy properties common to
underlying functors of categories of algebras (see e.g. [2, p. 321 f]).

In fact, from the point of view of algebra, Linton’s theorem has quite a number
of advantages:

O it comprises two theorems: while, as a whole, it characterizes varieties, con-
ditions (0), (1), and (2) only characterize quasivarieties (up to rank consider-
ations) ; 
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9 all its conditions are extremely natural from an algebraic viewpoint.

Correspondingly, Linton’s theorem served as a starting point for an axiomatic theory
of algebraic functors on various levels of generality (see e.g. [4], [5], [6], [9], [10]).
Moreover, it could be generalized to a wide range of base categories - see the
section on applications in this note.

What only gradually became clear is the fact, that a functor is "algebraic" in
any reasonable way (from the point of view of total algebras) iff it enjoys a certain
- extremely weak - lifting property with respect to factorizations of sources, as it
is rudimentarily expressed by Linton’s condition (2). In its most general form this
will be developed in the main part of this paper. Finally we will comment on the
question, why one cannot expect a lifting property of this kind on the most general
level in the hierarchy of algebraic functors, viz. for essentially algebraic functors.

We will use the following terminology: a right adjoint functor U will be called
monadic (resp. premonadic, of descent type) iff the corresponding comparison func-
tor is an equivalence (resp. a fully faithful right adjoint, fully faithful). A functor U
will be called essentially algebraic if it has a left adjoint, reflects isomorphisms, and
its domain has (Epi, Mono-source)-factorizations, while U will be called algebraic
(resp. regular) if it is essentially algebraic and preserves extremal epimorphisms
(resp. preserves regular epimorphisms and, in addition, its codomain has (Regular
Epi, Mono-source)-factorizations) - for equivalent descriptions of these classes of
functors see [2].

1 Functors lifting (E, M)-factorizations
Throughout this section let X be an (E, M)-category in the sense of [2]; that is,
every source (X, X fi -&#x3E; Xi) I of morphisms in X can be factored as fi = mi o e
with X -&#x3E; Y belonging to a prescribed class E of X-morphisms and the source
(Y, Y mi -&#x3E; Xi)r belonging to a prescribed class M of sources in X, subject to the
usual diagonal-fill-in condition.

We slightly generalize [2, 20.23] by saying
1.1 Definition A functor U: A - X lifts (E, M) -factorizations provided that, for
any source (A, A -&#x3E;fi Ai)1 in A and any (E, M)-factorization of its underlying
source in X

O there exists a factorization ,f; = A11 B mi -&#x3E; Ai in A and an X-isomorphism
k: X -&#x3E; UB with Ug = k o e and Umi o k = mi for all i E It such that

. the U-lifts are unique in the sense that, given two such factorizations

fi = A ’*i Bi mi-&#x3E; Ai with isomorphisms hj: X -&#x3E; UBj (j = 1, 2), there
exists an isomorphism p: B 1 --+ B2 with p o El = g2 and m1i = mi2 0 p for all
i E I.
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The terms E-monad and E-monadic functor are used as in (2].

1.2 Examples 1. Every regular functor lifts (Regular Epi, Mono-Source)-factor-
izations [2, 23E].

2. Every algebraic functor over an (extremal Epi, Mono-source)-category lifts
(Extremal Epi, Mono-source)-factorizations [2, 23.31].

3. Every T-regular functor with respect to some monotopological functor T (c.f.
[10]) lifts T-regular, i.e., ( T-1[Regular Epi], T-initial Mono-source)-factoriza-
tions by definition; in particular

4. Every underlying space functor V: TopAlg -&#x3E; Top of a category of algebra-
objects (the algebras from some variety) in the category Top of topological
spaces lifts ( continuous surjections, initial point-separating source)-factoriza-
tions.

5. For any E-monad T on X the Eilenberg-Moore functor UT: XT -&#x3E; X lifts
(E, M)-factorizations [2, 20.24].

1.3 Lemma Every functor U: A -&#x3E; X which lifts (E, M)-factorizations reflects iso-
morphisms.

Proof 1. If for some A-morphism f: A - B the morphism U f is an isomorphism,
then UA 1UA-&#x3E; UA -&#x3E;Uj UB and UA Uf UB 1UB-&#x3E; are (E, M)-factorizations of
Uf with U-lifts A 1A -&#x3E; A -&#x3E; B and A -&#x3E;f B 1B-&#x3E; B respectively. By the second
condition of Definition 1.1 there is an isomorphism p: B -&#x3E; A with f o p = 1B.
Hence f is an isomorphism. O

1.4 Proposition Let U: A - X lift (E, M) -factorizations. Then each of the fol-
lowing statements implies the next one:

1. U is faithful.

2. Every A-morphism f with U,f E E is a U-final epimorphism.

3. A is a (U-1(E), U-1(M])-category.

If U has a left adjoint, all the conditions above are equivalent.

Proof 1. =&#x3E; 2. Our proof is a modification of the proof of [2, 23.23]. Let

f: A -&#x3E; B be an A-morphism with U f E E and h: UB --i UC an X-morphism with
h o Uf = Ug for some A-morphism g: A -&#x3E; C. Consider the 2-source
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and its (E, M)-factorization

The lift of this factorization is

with some isomorphism p: X -&#x3E; UD. From n o e = Ug = h o U, f = h o m o e one
concludes n = h o m, hence m o (h,’lUB) = (hm, m) = (n, m). From this Um E M
follows. But Um E E, too, since Um o (p o e) = U f and U f, p o e E E. Hence Um
is an isomorphism. By Lemma 1.3 m is an isomorphism, too. Now h = n o m-1 is
the desired morphism B:-&#x3E; C.
2. =&#x3E; 3, is straightforward.
Assume now that U has a left adjoint and that 3. holds. The counit c of the

adjunction for U is pointwise in U-1 [E] since UE is pointwise a retraction, hence in
E. By [2, 15.5 (3)] c is pointwise epic; therefore U is faithful. O

1.5 Proposition Let U: A -&#x3E; X be a right adjoint which lifts (E, M)-factoriza-
tions. Then the following hold:

1. The monad T = (UF, n, UEF) induced by U and its left adjoint F is an E-
monad ; hence, in particular

(a) the Eilenberg-Moore functor UT: XT -+ X lifts (E, M) -factorizations;

2. The comparison functor K: A -+ XT lifts (UT-1[E], UT-1[M])-factoriza-
tions.

Proof 1. To show that UFe E E for every e E E consider, for any such e: X - Y,
the (E, M)-factorization

and its U-lift

with isomorphism cp: Z -&#x3E; UA. The commutative square
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admits a diagonal d: Y - UA. By adjointne8s there results a morphism d’: FY -&#x3E; A.
From U (ffi o dl) o t7y o e = Umodoe = ’1yoe one concludes (e is epic I) mod = lFy,
hence m o p-1 o Udi = IUFy. It follows m E E n M and therefore UFe E E.
2. Given a source (A, fi : A - Ai)I in A, let

be the factorization in XT with UT e E E and (X, UT mi)i E M. Then UT (m¡ o e)
is the (E, M)-factorization of U,fs, such that there are an X-isomorphism p: X -i UB
and U-lifts 9, mi with Ua = p o UT e, Umi = UTmi op, fi = A 1 B mi-&#x3E;Ai
for all i E I. Since then Kmi o Ke is a (UT-1[E], UT-1[M]-factorization of
(KA, Kfi)l, too, p lifts to an XT- isomorphism (X,z) - KB as required by
Definition 1.1.
It is an easy exercise, using 1. (a) and Proposition 1.4, to show that K also meets
the second condition of Definition 1.1. O

1.6 Corollary Every faithful right adjoint functor U: A -&#x3E; X which lifts (E, M)-
factorizations is of descent type.

Proof The counit c of the adjunction for U is pointwise U-final by Proposition
1.4, since UE belongs pointwise (being a retraction) to E. Hence U, being faithful,
is of descent type (see [13]). O

From now on we will work under the following additional hypothesis:
Assumption: The class M of the factorization system on X consists of mono-
sources only, i.e., M C Mono-source(X).

1.7 Proposition Let U: A - X be a faithful functor lifting (E, M) -factorizations.
Then the following hold:

1. A has coequalizers.

2. Ue E E for every regular epimorphism e in A.

Proof Due to our assumption on M this is a consequence of Proposition 1.4 in
connection with [2, 15.7]. O

1.8 Proposition If U: A - X is a faithful right adjoint functor which lifts (E, M)-
factorizations, then U is premonadic, and the unit of the adjunction for the com-
parison K functor of U is pointwise in UT-’[E].
Proof It is well known that, in the presence of coequalizers in A, the unit of the
adjunction for the comparison functor K at some algebra (X, x) is the unique XT -
morphism p(X,x): (X, x) -&#x3E; KL(X, x) with p(X,x) o x = Kc, where c: FX -&#x3E; L(X, x)
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is a coequalizer of the pair (Fx, EFX) with x: FTX -&#x3E; (X, x) the canonical mor-
phism and F the adjoint of U. It follows UT p(X,x) 0 UT x = Uc, and therefore
uTp(x,.) E E, since Uc E E by Proposition 1.7. O

We are now in the position to state our main result.

1.9 Theorem For any functor U: A -+ X into some (E, M)-category X with
M C Mono-source(X) the following are equivalent:

1. U is a faithful right adjoint which lifts (E, M)-factorizations.

B. Up to concrete equivalence, (A, U) is a full UT-1 [E]-reflective concrete sub-
. 

category of some E-monadic category over X.

Proof 1. =&#x3E; 2. is clear by Proposition 1.8; 2. =&#x3E; 1. follows from [2, 20.24, 20.26].
O

2 Applications
2.1 Example (Linton’s Theorem) For X = Set with its (surjections, point-
separating source) factorization system, a right adjoint functor U: A -&#x3E; Set lifts
these factorizations iff A has coequalizers and U preserves and reflects regular epi-
morphisms (c.f. [5]). Clearly the functor part of every monad on Set preserves
surjections. Hence our theorem yields Linton’s result.

2.2 Example (Regular functors) Let X be any regular category, i.e., (E, M)=
(Regular Epi, Mono-source). Now the theorem specializes to [9, Theorem 2]:
A functor U: A -&#x3E; X is regular iff (A, U) is, up to concrete equivalence, a full
regular epireflective concrete subcategory of some regular monadic category over X
(see also [2, 24.2]). Clearly, this contains Linton’s result as a special case.

2.3 Example (Algebraic functors) Let X be any (Extremal Epi, Mono-source)-
category. Now, using [2, 23.31 ff] our theorem yields the following: A functor
U: A -+ X is algebraic iff (A, U) is, up to concrete equivalence, a full extremally
epireflective concrete subcategory of some extremally monadic (resp. algebraic and
monadic) category over X.

2.4 Example (T-regular functors) Let T: X -&#x3E; Y be a monotopological func-
tor (e.g. the underlying functor of the category of Hausdorff spaces). Consider
the T-regular factorization on X. Now our theorem reduces to [10, Theorem 2.10]:
A functor U: A -&#x3E; X is T-regular iff (A, U) is, up to concrete equivalence, a full
(TUT)-1[Regular Epi (Y)]-reflective concrete subcategory of some T-1[Regular
Epi (Y)]-monadic category over X. (Note that, in the instance of X = Hausdorff
spaces T-1Regular Epi (Y)] is simply the class of continuous surjections.)
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3 Some remarks on essentially algebraic functors
From our previous results it is clear that the following holds

3.1 Proposition For any functor U: A -+ X into some (E, M)-category X with
M C Mono-source(X) the following are equivalent:

1. U is a faithful right adjoint which lifts (E, M)-factorizations.
8. U is essentially algebraic in such a way that the (Epi, Mono-source)-factor-

ization of a source (A, A -&#x3E;fi Ai)I in A can be obtained as a U-lift of the
(E, M)-factorization of th,e source (UA, UA -&#x3E; Ufi UAi)l.

Moreover, if U fulfills the above conditions, so does the Eilenberg-Moore functor
UT: XT -&#x3E; X and the comparison functors K: A -&#x3E; XT, which, up to equivalence,
is a full UT - 1 [E]-reflective embedding.

Observe that, in general, the comparison functor of an essentially algebraic func-
tor U fails to be full (see e.g. [2, 20.41 (3)]).

Also in general, an essentially algebraic functor U: A -&#x3E; X will not lift (E, M)-
factorizations, which means that the (Epi, Mono-source)-facto rizations in A are
not necessarily carried by (E, M)-factorizations in X. In fact, there are well known
examples for this effect, e.g., the category Cat of small categories, Set-based by the
morphism functor (see also the example of partially ordered sets below). While from
a formal point of view this might appear as a shortcoming of the con cept of "alge-
braic functor" there is good reason for this proper extension of the class of "faithful
right adjoints lifting (E, M)-factorizations": Over Set the essentially algebraic cat-
egories are precisely the essentially equational categories of partial algebras (see
[1]), and here even (surjections, injections)-factorizations of single homomorphisms
cannot be lifted, since in these categories the set-theoretical image of a homomorphi
8m might fail to be a subalgebra of its codomain as already was pointed out in [12].

3.2 Example A simple illustration of this effect is the following. The relation
functor R: POS -&#x3E; Set, assigning to a partially ordered set its relation, and to
a monotone map f the map f2 restricted and corestricted to the corresponding
relations, is essentially algebraic. Consider the monotone map f : Mi - M2, where
Ml consists of two disjoint copies {0,1} and f 0’, 1’} of the 2-chain, where M2 is the
3-chain on M = (0, 1 , 2}, and where f (0) = 0, f (1) = f (0’) = 1, f (1’) = 2. f has
an (Epi, Mono)-factorization M1 -&#x3E; M2 -&#x3E; 1M2 M2 in POS, which is not an R-lift
of the factorization of R f in Set. For the latter is RM, Rf Rf[RM1] -&#x3E;in RM2
with in th e inclusion, and the set-theoretical image Rf[RM1] is not an order on
M, since it contains (0,1) and (1, 2), but not (0, 2). Though somewhat hidden this
indeed is an example based on the existence of a (essentially equational) partial
operation (see [11]).
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Hence, the existence of essentially equational partial operations can prevent the
underlying functor U from lifting (E, M)-factorizations, or its comparison functor K
from being full. On the other hand there might be such operations, and nevertheless
U will lift factorizations and K will be full: quasivarieties are an example (following
[1] one replaces every implication by an essentially equational partial operation and
two additional equations).

Finally, the comparison functor of an essentially algebraic functor U might
be full without U lifting (E, M)-factorizatioaa (even over Set I). Th e functor
R: POS - Set discussed above provides an example. Since R reflects regular epi-
morphisms (if, for some monotone map f, R f is surjective, f is surjective and
R-final, hence a regular epimorphism in POS by [2, 8.O]), R is premonadic. This
discussion contains most of the arguments needed to prove more in general:
3.3 Proposition The following are equivalent for an essentially algebraic functor
U: A -&#x3E; Set.

1. U is premonadic,

2. U is of descent type,

3. U reflects regular epimorphisms,

4. an A-morphism f is U-final, if Uf is surjective. O

The functor R: POS -&#x3E; Set also is an example of an essentially algebraic functor
which reflects regular epimorphisms without preserving them. Concerning these
properties one has however (see also [3, 2.1]) the following:
3.4 Proposition Let U: A -&#x3E; X be an essentially algebraic functor. If U maps
regular epimorphisms to epimorphisms (hence in particular, if U preserves regular
epimor phisms), then U reflects regular epimorphisms (and therefore is of descent
type).
Proof Let f : A -&#x3E; B be an A-morphism such that Uf is a coequalizer of a pair
of X-morphisms r, s: X -&#x3E; UA. Let g: A -&#x3E; C be a coequalizer of the A-morphisms
rl, sl: FX -&#x3E; A with rl 77x = r, s’nX = s (where i7x: X - UFX is the unit of the
adjunction for U). The coequalizer properties of 9 and Uf imply that there exists
a unique A-morphism h: C -&#x3E; B with h o g = f as well as a unique X-morphism
k: UB -&#x3E; X with k o U f - Ug. It follows Uh o k = luB by the coequalizer property
of Uf, and k o U h = 1 UC since Ug is an epimorphism by assumption. Since U
reflects is omorphisms h is an isomorphism and therefore f = h o g is a regular
epimorphism. O

Finally, for the sake of completeness, we add the following combination of Propo-
sition 1.5 and Theorem 1.9 (see also [2, 23.32]):
3.5 Proposition Let U: A -&#x3E; X be an essentially algebraic functor over an (E, M)-
category X with M C Mono-source(X), and T the monad on X induced by U. The
following are equivalent:
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1. U lifts (E, M) -factorizations,
B. Up to equivalence, (A,U) is a full reflective concrete subcategory of the Eilen-

berg-Moore category (X UT) which is closed w. r.t. (UT-1[E], UT-1 [M])-
factorizations, i.e., which contains, with every source (A, A J.!... Ai)1 in A,
its (UT-1[E], UT-1[M])-factorization taken in XT. O

The added closure condition on the reflective subcategory A in the above propo-
sition can again be nicely illustrated by means of the functor R: P O S - Set. The
Eilenberg-Moore category of R is the category DGra of directed graphs, i.e. of alge-
bras (A, c, d) with two unary operations c, d subjects to the equations cc = dc = c
and dd = cd = d. The comparison functor K:POS -&#x3E; DGra assigns to a par-
tially ordered set (M, ) its directed graph (, c, d) with E(x, y) = (y, y) and
d(x, y) = (x, x) (see [11] for details). The monotone map f considered in Ex-

ample 3.2 has in DGra the regular factorization KM1 -&#x3E;Rf (G, c, d) -&#x3E;in KMz
with in: G = Rf[RM1] -&#x3E; RM2 the inclusion map and c, d the restrictions of the
operations of KM2. Since (0,0), (1,1), (2,2) E G, (G, c, d) is a directed graph
but, as seen in Example 3.2, not the graph of an order. Hence, the full reflective.
embedding of P O S into D Gra is not closed w.r.t. the factorizations in question.
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