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ON ANALYTIC MODELS OF SYNTHETIC
DIFFERENTIAL GEOMETRY

by Eduardo J. D UB UC and Jorge G. ZILBER

CAHIERS DE TOPOL OGIE
ET GEOMETRIE DIFFERENTIELLE

CATEGORIQUES

Volume XXXV-1 (1994)

R6sum6. Soit M une cat6gorie de variit6s ou d’espaces analytiques
complexes. Les objets de M se construisent par recollement de certain
objets de base, ce qui impose qu’un modele biem adapt6 de la Géométrie
Differentielle Synth6tique (GDS) i : M - T, comme foncteur dans un
topos T, doit pr6server ces recouvrements. Egalement aussi., pour per-
mettre des applications de caract6re local (et non uniquement infinitesimal),
en plus de 1’axiome original de Reprisentation de Jets ([8],[2]), 1’axiome
plus puissant de Repr6sentation de Germs ([4], [2]) doit etre valide. La
validite de cet exiome requiert que dans la modile, l’object des infinites-
imaux de Penon soit un faisceau representable. Dans le cas r6el C°°

cela s6btient au moyen du concept d’ideal de caract6re local, introduit
dans [3]. Cependant cette solution ne s’applique pas dans le cas an-
alytique complexe. Ici nous introduisons le concept de Scheme Analy-
tique [definition 1.3] au moyen duquel nous parvenons a la solution de ce
probl6me. Les schemes analytiques sont des objets géométriques (stricte-
ment) plus giniraux que les espaces analytiques et sont determines par
un ouvert en en et deux faisceaux cohérents d’id6aux.

Cet article est une suite de [6] et de [12] ou les notions d’anneau
analytique et d’anneau analitique local ont ete introduites. Ces travaux
culminent ici par la construction d’un modele de la GDS bien adapt6
al’etude des variétés et des espaces analytiques complexes.

Introduction.

This article is a sequel of [6] and [12], where we introduced the notions of
analytic and (local) analytic rings, and developed their spectral theory. These

works culminate here, where the construction of a model of Synthetic Differential
Geometry (S.D.G.) well adapted to the study of complex analytic varieties and
spaces is achieved.

Let M be a category of algebraic varieties, or (complex) analytic or (real)
differentiable manifolds. Objects in M are build up pasting together basic objects.
This implies that a well adapted model of SDG, i : M-&#x3E; T , as a functor into
a topos T should preserve all open covers. This leads to the classical notions of
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Zariski Topology and Local ring (the Zariski topology works because it consist of
all open covers, and it is characteristic of the algebraic case that it is generated by
a pretopology of finite covers), as well as to the respective open cover topologies
and their related notions of C°° -local ring ([3], [1]), (not the same that a C°° -ring
which is local in the algebraic sence) and local analytic ring ([6], [12]).

Besides the preservation of open covers and the original axiom of Jet Rep-
resentability ([8], [2]), the stronger axiom of Germ Representability ([4], [2]) has
to hold for the applicability of SDG to results of local (and not only infinitesi-
mal ) character (see for example [7]). The validity of the axiom of germ repre-
sentability is reflected in the model by the fact that the object of infinitesimals
A = [[x E Linen | -i-(x = 0)]] should be a representable sheaf. This fact is

achieved in the differentiable case by means of the notion of germ determined ideal
(introduced in [3], the axiom of germ representability proved later in [5]). This

solution does not apply to the analytic case.
We introduce here the notion of Analytic Scheme (definition 1.3), key to the

solution of the problem. Analytic Schemes are (strictly) more general than usual
Analytic Spaces (as defined for example in [9]), and as such they have no counterpart
in the differentiable case (they are determined by an open set in C" and two
coherent sheaves of ideals).

In section 1 we consider the notion of analytic model M - T of S.D.G. (M
denotes the category of analytic complex manifolds), and construct a topos T which
is such a model (1.10, 1.11 and 1.12). In sections 2 and 3 we study the intrinsic
(Penon) topology in T . In section 4 (theorem 4.5), we prove the axiom of germ
representability in T , and in section 5 (theorem 5.5), we prove that it furthermore
satisfy (the postulate of ) A -Infinitesimal integration [2], [5]).

1 Analytic Schemes

1.1 Theorem. Let U be an open subset of Cn and let :1, £ L C :1, be any
two coherent sheaves of ideals in OU. Let

Then 0 J:.E is a local analytic ring [12] in ShE , the category of sheaves over
E, which defines an A-Ringed Space [6] denoted (E, O£B). Furthermore:

The inclusion i : E -&#x3E; U , together with the quotient q : On,p-&#x3E; O£E,p define
a morphism of A-Ringed Spaces: (E,O£E)-&#x3E; (U,Ou) which is characterized by
the universal property sketched in the following diagram:
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Given any (X, Ox) and (f, 0) : (X, Ox)-&#x3E; (U, Ou) such that:

we have:

Proof. The same proof that the one given in [6 theorem 2.10.] for the

particular case 7 = £, works also here. D

If .7 = £, according to the usual notation we write (E, O£E) = (E, OB) , and
in the case G = 0 , we write (E, OOB) = (E, OU) . From the previous theorem
we have (E,OE)-&#x3E; (E,O£E)-&#x3E; (E,Ou) C (U,OU). The first two arrows can be
considered to be infinitesimal extensions of (E, OB) inside (U, Ou ) .

1.2 Example. Let U = en, .7 = Z1, x2, ... , in) , and £ = 0 . Then ({0}, Ocn)
is the largest (n-dimensional) infinitesimal extension of the point {0}. It consist of a
singleton, structured (as an A -Ringed Space) with the ring of germs of holomorphic
functions on n variables, (a (very) fat point).

1.3 Definition (Affine Analytic Schemes). Let U be an open subset of C"

and let 7,£,£,C7, be any two coherent sheaves of ideals in Ou. The A -Ringed
Space constructed in Theorem 1. I will be called an (Affine) Analytic Scheme. We
will denote by 1£ the category determined by considering as arrows the morphisms
of A -Ringed Spaces.

1.4 Remark. The category of (local) models (see [9]) considered in [6] and

[12], is by definition a full subcategory of H, its objects being those affine analytic
schemes for which .7=£.

1.5 For the record (Analytic Schemes). Although we shall not need this
concept here, it is clear that an Analytic Scheme should be an A-Ringed Space
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where every point has an open neighborhood such that the corresponding subobject
(structured with the restriction sheaf) is isomorphic to an (Affine) Analytic Scheme.

1.6 Remark. Since an object (E,OCE) E 1l is a A-Ringed Space, there is a
bijection [(E,OLE), (C,Oc)]= r(E, O.cE) , where [(E,OLE), (C,Oc)] is the set

of arrows in H (E,OLE)-&#x3E; (C, Oc) and r(E,O.cE) is the set of global sections
of the sheaf OCg (see [6] corollary 2.9).

Hence, if (f , 0) : (E, OLE)-&#x3E; (C, Oc) , we have that for each po E E , there
exists an open neighborhood W of po in C", W C U , and an holomorphic function
g : W-&#x3E; C such that:

and

(where by [].c we indicate class modulo .c).
That is, the following diagrams commute (for p E W n E) :

1.7 Observation. An arrow 1 -&#x3E; (E, OLE) in X is the same thing that a point
pEE.

Proof. In fact, the terminal object 1 in ’H is 1 = (CO, OC0) = (1, C) . It

consist of a singleton, structured (as an A -Ringed Space) with the field of complex
numbers (a simple point). If (E, OcB) is an object in H, to give an arrow
1 -&#x3E; (E, O.cE) is equivalent to fix a point p in E and a morphism of analytic rings
OLE,p -&#x3E; C . But since O.cE,p is a local analytic ring there is a (unique) morphism
OLE,p - q [12 theorem 1.6]. 0

1.8 Finite Limits in H. Let U and V be open subsets of Cn and Cm

respectively, let .7, £, ,C C .7, be coherent sheaves of ideals in OU and 7’, £’,
,C’ c 3’ be coherent sheaves of ideals in Ov. Let (E,OLE) and (E’, OL’E’,) be
the objects in H defined by 3, £ and 3’ , £’ respectively. Then, the product in
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It, (E,O£s) x (E’, Or-,B,), is given by the coherent sheaves of ideals (7,7’) and
(£, £’) in Ov x v , (L, £’) C (7, J’) . That is, we have:

In fact, it is clear that supp(Ou/:1) x supp(Ov/7’) = supp(Ouxv/(7, :1’)).
The rest is straightforward, it follows essentially from [6 Proposition 1.19].

The construction of equalizers in H is similar to the case 7= ,C considered
in [6, section 2]. It follows that x has all finite limits, and that they are actually
limits in the whole category of A -Ringed Spaces. Thus, from [Corollary 2.9] we
have:

1.9 Proposition. The full embedding C -i x (from the category of open
subsets of C" (aH n) and holomorphic functions) is an Analytic ring in h. That
is, it preserves terminal objects and transversal pullbacks. 0

1.10 Definition-Proposition. We consider in H the Grothendieck topology
given by the open corerings. It is straightforward to see that this topology is
subcanonical. We will denote by T the topos of sheaves on H for this topology.
There is a full embedding h-&#x3E; T. We consider the functor i : M-&#x3E; T, (where
Jlil denotes the category of analytic complex manifolds) given by:

iM(E,OLE)= [(E,OLE), (M,OM)], for (E,OLE) E H and M E M

Here [(E,OLE),(M,OM)] is the set of arrows (E,OLE)-&#x3E; (M, OM) in the

category of A -Ringed Spaces. Recall that (M, OM ) is the A -Ringed Space
given by the sheaf OM of germs of holomorphic functions in M . In general,
(M, OM)£ 1l, but it is an Analytic Scheme in the sense of 1.5 above. This fact,
together with the fact that covers are universal in the whole category of A -Ringed
Spaces, implies that the functor i : M-&#x3E; T is a full embedding. Furthermore,
from 1.9 it follows that it preserves terminal object and transversal pun-backs. 0

1.11 Definition. An analytic Model of S.D. G. is a topos 6 together with a
full embedding i : M-&#x3E;E which preserves open coverings, terminal object and
transversal pullbacks. Furthermore, it is required that iC be a ring object of line
type [8].

Equivalently, an analytic model of S.D. G. is a local analytic ring [12] of line

type in a topos E , which, in addition, is full and faithful as a functor.

A first analytic model of S.D.G. is the classifying topos £, of the theory of
local analytic rings (cf [12, 3.10]). However this model is not satisfactory since the
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ring of germs of holomorphic functions (on Cn) is not of finite presentation, thus
a point equipped with this ring as structure sheaf is not a local model of analytic
space [9], and therefore it is not in the site of definition of the topos (notably, this
is not the case with the topos in 1.10, as it follows from 1.2). A consequence of this
is that the axiom of germ representability (see introduction) does not hold in the
topos £.

1.12 Corollary. The functor i : M-&#x3E; T defined in 1.10 is an analytic model of
S.D.G.

Proof. It only remains to check the condition of line type and that it preserves
open coverings. This is easily seen by general categorical considerations. 0

By properties of the site it is also clear that the following holds:

1.13 Remark. The topos T satisfies the Nullstellensatz. By this we mean:

2. Subobjects of iM

2.1 Proposition. Let M EM, let N be an open subset of M, and let

(E, OLE) E H. Consider an arrow f : (E, OLE) -t iM in T . If for every

point p : 1 -&#x3E; (E, OLE), there is a point 1 -t iN such that the following square
commutes:

then f factors through iN as indicated by the diagonal arrow.

Proof. Recall 1.7 and 1.10; p and f as indicated above amount to a point
pEE and an arrow (f,4J): (E, OLE)-&#x3E; (M, OM) of A -R,inged spaces. Moreover,
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the arrow fop: 1 -4 iM in T corresponds to the point f ( p) E M . The fact that
fop factors through iN means that f (p) E N(V pEE). ’1’hen, the continuous
function f : E - M factors through a continuous function g : E-&#x3E; N C M .

Moreover, we have Op : : OM,f(p)-&#x3E; OLE,p and OM,f(p)= ON,f(n) = ON,g(p),
VpEE (since N is op en in M and f(p) E N V PEE). Then, we have an
arrow 77p : ON,g(p) -&#x3E; OLE,p,VpEE, and it follows that the diagram:

commutes.

That is, (f , 0) factors through (N,ON). In other words, f factors through
iN . 0

2.2 Corollary. Let M E.M., let N be an open subset of M , and let F C iM
be any subobject in T . If r(F) C N , then F C iN

Proof. Observe that objects in 1(, generate T, then utilize Proposition 2.1.
D

2.3 Theorem. Given an object (E, Ocg) E 1(, and any pair of subobjects F, G
in T, F C (E, O£,E), G C (E, O£E) , we have: FUG = (E,O£E) in T iff there exist
Y C E, Z C E open such that Y C Z = E , and (Y, Ocy) C F,(Z,OLZ) C G.

Proof. Suppose that F U G = (E, OLE). Then, there exist an open covering:

of (E, 0 £E) in x such that for each a E I, ja factors through F or G. Then,
if we define Ii = {03B1 E I ) ja factors through F} and 12 = {03B1EI |Ja factors
through G}, we have that I1 U 12 = I . Then if we define Y = Ul,,Ejl Ea and
Z = UaEI2 Ea, we have that 11 C 12 = I . Then, if we define Y = UaEI1 Ea and
Z = UaEI2 Ea , we have that Y U Z = Uael Ea = E . Since each E« is open in E,
then Y and Z are open in E , and since for each a E I1, Ja, factors through F , we
have (Ea, O£Ex) C F . Hence (Y,O£y) C F . Similarly, we have (Z,OLZ) c G.
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Converseley, suppose that Y C E, Z C E are open subsets such that
Y u Z = E , and that (Y, OLY) C F, (Z, OLZ) C G . then, we have that:

is covering of (E, OLE) in 1£ such that k factors through F and r factors through
G. This shows that F U G = (E,OLE) in T . 0

2.4 Corollary. Let M E M and let F and G be subobjects of iM . Then,
F U G = iM in T iff there exist V C M, WC M open such that iV C F, iW C G ,
and VUW =M.

Proof. Suposse that F U G = iM . Let {Ua}(aEI) be an open covering
of M such that each Ua is biholomorphic to an open subset of C" . Then,
(Ua,OUa) E 1t and we have iUa= (Ua,OUa ) in T . Since i preserves open

coverings, UaEI(iUa) = iM in T. Let Fa = FniUa and Ga = GniUa. Then
FaUGa = iUa = (Ua, OUa) in T . Hence, by theorem 2.3 there exists Va C Ua and
Wa C Ua open such that (Va, Oyj C Fa, (Wa, Ow a) C Ga , and Va U Wa = Ua
(for each a ) .

Let V = UaEI Va and W = Ua E I Wa ; V and W are open subsets of M
such that VUW=M. Moreover, as before, we have that iV = UaEI iVa and
iW = UaEI iWa . But, iVa = (Va, Ova) C Fa C F (for all a EI). Then, iV C F .
Similarly, we have iW C G .

Converseley, suppose that there exist V C M, W C M open such that
iV C F, iW c G , and V U W = M . Then, iV U iW = iM in T . But, since
iVC F C iM , and iWC G C iM , we have that F U G = iM. 0

3. Penon’s characterization of open sets in T.

Recall that given an object X in a topos, a part U E llx is said to be Penon

open iff the following condition holds (in the internal logic of the topos):

We shall denote by r the global sections functor. Clearly, we have

r(iM) = M for all M E M.
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3.1 Theorem. Given an analytic complex manifold M E ,Mt , we have:

a) If N C M is any subset, then:

iN C iM is a Penon open subobject, and N = r(iN).

b) If F C iM is any Penon open subobject, then:

r(F) C M is an open subset and F = i(rF).

(This theorem is similar to theorem 7 of [5]).

Proof. a) Let A be the diagonal and let be the negation in T . We

have to show that -AiN and iN x iN cover iM x iN in T’ (where we think AiN
and iN x iN as subobjects of iM x iN in T ). Let (AN)c be the complement
of the diagonal AN in M x N . It is an open subset of M x N , and we have

i(!1 N) C iM x iN in T . Moreover, since i(AN) = AiN it follows that

I(ACN) C -AiN (recall that i preserves products and i0 = 0). Hence, it is sufficient
to show that i(AcN) U (iN x iN) = iM x iN . This follows from the fact that (AN)’
together with (N x N) are an open cover of M x N .

b) We have r(F) C r(im) = M . Let p E r(F) be any point of r(F),
p : 1 -&#x3E; F in T . Since F is a Penon open subobject of iM , we have that

r(p) U F = iM in T . Then, by corollary 2.4 there exist open subsets V C M,
W C M such that iV C -{p},iW C F and V U W = M . Then,
W = F(iW) c F(F). We shall see now that p E W . If p£ W , since

p E r(F) C M and V U W = M , it follows that p E V , that is p : 1 -&#x3E; iV

in T . Since iV C -{p} , this implies p : 1 -&#x3E; -{p}. Thus, the empty family covers
1. This shows that p E W . We have proved that for each p E F(F) , there exist an
open subset W C M such that p E W c r(F) . This shows that r(F) is open. It

remains to see that F = i(rF) . We have stablished above that for each p E r(F) ,
there exist W open such that iW C F (and p E W c r(F)). The the open sets
W (one for each p E F’(F)) cover the open set r(F) . It follows that the subobjects
iW cover i(r(F)) . Since each iW C F , it follows that i(r(F)) C F . On the other
hand, if B = r(F) , then B is an open subset of M such that r(F) C B . Hence
by corollary 2.2, it follows that F C iB , that is F C i(F’(F)). 0

3.2 Observation. It follows that i and r establish a bijection between open
subsets of M and Penon open subobjects of iM . A subobject F C iM is Penon

open iff it is of the form F = iN for some open subset N C M . 0

A similar fact holds for all the objects in H (and in fact it could be proved for
all analytic schemes in the sense of 1.5 above):
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3.3 Proposition. Given any (E,OLE) E H and F E T such that
F C (E, 0LE), we have:

F is a Penon open subobject of (E, OLE) iff there exist an open subset Y C E
such that F = (Y,OLY) .

Proof. Assume F is a Penon open subobject of (E, OLE). Then, for any
p E r(F) , that is p : 1 -&#x3E; F, r(p) U F = (E, OLE). Then by theorem 2.3 and
arguing exactly as in the proof of theorem 3.1,b), it follows that there is an open
set W C E such that p E W and (W, Ocw) C F . Let Y be the union of all

the sets W (one for each p ). Then it follows that (Y, O£Y) C F . Since Y is

an open subset of E , there is an open subset V of C" such that Y = V n E

(here we suppose that E C Cn). By construction of Y , we have that r(F) C Y .
Then, we have that F is a subobject of (C’, Oon) = iCn such that r(F) C V .
Hence, by corollary 2.2, F C iV = (V, Ov). Since F C (E, 0,CB), it follows that
F C (V n E, O£,vn B) , that is F C (Y, OLy) .

Converseley, suppose that F = (Y, OLY), where Y is an open subset

of E . Then, there is an open subset V of C’ such that Y = V n E . By
theorem 3.1,a), iV is a Penon open subobject of iCn. It follows immediately
that iV n (E,O,LE) is a Penon open subobject of (E, OLE). Moreover,
iV n (E, OLE) = (V, Ov) n (E, OLE) = ( Y, OLY) = F. 0

3.4 Prop osition. Let (E, OLE ),(Y,OsY) E H and let F C (Y, Osy) be any
Penon open subobject in T . Let f be any map in H, f: (E, OLE) -&#x3E; (Y, OSY)

Consider a diagram:

If for every point p : 1 -&#x3E; (E, 0 £.E), there is a map 1 -&#x3E; F such that the

square commutes, then f factors through F as indicate by the diagonal arrow.

Proof. Immediate from proposition 2.1 and 3.3. 0
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3.5 Corollary. Let (Y, Osy) E 1(, and let F C (Y, Osy) be any Penon open
subobject in T. Given any subobject G C (Y, Osy) in T, if 1’(G) c r(F), then
GCF.

Proof. Observe that objects in H generate T, then utilize Proposition 3.4.
D

3.6 Proposition. Given any (E,OzB) E H,(E,OLE) satisfies the covering
principle with respect to the intrinsic Penon topology in T (see [2]). That is, the
following conditions holds:

(where t indicates the interior operator (largest Penon open inside)).

Proof. Let F, G : (Y, OSY) -+ -O-(E,OLE), the corresponding subobjects
F, G C (E,OLE) x (Y, OSY) and are such that F U G = (E, OLE) x (Y, Osy) -
By 1.8 we have then F U G = (E x Y, O(L,S)EXY). Hence, by 2.3, there are open
subsets Z and W in E x Y such that (Z, O(L,S)Z) C F, (W, O(L,S)W) C G , and
ZUW = E x Y . By 3.3, (Z, O(L,S)Z) and (W,O(L,S)W) are Penon open subQbjects

I of (E x Y, O(L,S)ExY), and we have:

in T

The corresponding arrows:

factor through the object of Penon opens of 
Thus we have:

This proves the statement. 0

3.7 Proposition. Given any (E,(?L:.E) E H,(E,O£E) is separated for the
intrinsic Penon topology in T (see [2]). That is, the following condition holds:

is Penon open .

Proof. Let x E (E, OLE)’ We have f xl E -O-(E,OLE). If
then corresponds to the
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(subobject) graph of x, rz = (x, id) . We have F’x C (E,OLE) x (Y,OSY).
Thus, it is sufficient to prove that -Ix is a Penon open subobject of

(E,OLE) x (Y, Osy) = (E x Y, O(L,S)ExY). [c.f. 1.8]. Let x = ( f, 0). Since

f is a continuous function, f : Y-&#x3E; E , the complement of its graph, Z =F’cf is

an open subset of E x Y . It follows easily by 3.5 that -F’x = (Z, O(L,S)Z). Then,
by 3.3, we have that rrz is a Penon open subobject of (E x Y, O(L,S)EXY)’ This
proves the statement. 0

3.8 Proposition. Let (E,O.cE) and (Y,OSY) in H and

p : 1 -&#x3E; (E,OLE). Let G be any family of Penon opens indexed by (Y, OSY).
That is, G C (E, OcB) x (Y, Osy) is Penon open in the slice topos T|(Y,OSY)’
Then, if {p} x (Y, Osy) C G , there exist a subobject F C (E,O.cE) x (Y, OSY),
Penon open in T, such that {p} x (Y, Osy) C F C G .

Proof. By [2 lemma II. 1.7] this will be true provided that the intrinsic
topology satisfies the covering principle. But this is precisely the statement in
proposition 3.6 0

4. The axiom of germ representability.

Recall that the object of infinitesimals, 0(n) C (Cn, OCn) , is defined as fol-
lows :

in T.

It is the largest infinitesimal neighb ourho o d of 0 E ( C n , Ocn) in T .

4.1 Observation. It is easy to see that 0(n) = P0(Cn,Ocn), where

P0(Cn, Ocn) denotes the intersection of all Penon neighbourhoods of 0 in

(Cn,Ocn) [2.II 1.10J.
That is:

4.2 Definition. Consider the object of partial maps, and the ’domain’ map a :

Partial 
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A germ at 0 is an equivalence class ofelements f E Partial ((C’, Ocn), (C, Oc))
such that 0 E a(f) and a(f) is Penon open, that is, d(f) E P(C", Ocn) .

The equivalence relation is:

The ob j ect of germs is denoted cg0((Cn, Ocn),(C,Oc)). Given any germ,
since 0 E a(f) and a(f) E P(Cn, Ocn) , it is clear that 0(n) C a(f). Thus there
is a map:

which sends a germ into its restriction to 0(n) .
The axiom of germ representability, axiom III of S.D.G., says that this map is

invertible, (see [2] ). In the rest of this section we shall prove that it holds in T .

4.3 Proposition.

that is,

Proof. Clearly (C" - f 01, Ocn-{0}) n {0} = 0 . Thus we have to prove:
If G C (Cn, OCn),G in T, is such that G n {0} = 0 , then

In fact, by 3.3 we know that (Cn - {0}, Ocn-{0}) is a Penon open. On the
other hand, r(G) C Cn - {0}. The statement follows then by 3.5. D

4.4 Proposition. A(n) is representable by ({0}, OCn). That is, A(n) E 1l and
it is the analytic scheme A(n) = ({0}, Ocn) . (see 1.2).

Proof. By 4.3, it is sufficient to check:

2) Given a subobject F of (en, Ocn) in T :

if then

1) is clear by 1.13. Let now F be such as in 2), and let i : F - (C" , Or, ) be
the inclusion. We have to to prove that for all objects (E, O£E) E 1l

and A : (E,OLE)-&#x3E; F , the composite i o l factors through (101, Oen). Let

i o A = ( f, 0): (E, OLE)-&#x3E; (Cn, OCn) . By assumption it follows that r(F) C {0} .
Thus f factors through {0} and Op : On,0-&#x3E; OCBP (for all p in E ) D
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4.5 Theorem. For each positive integer n, the restriction map j (defined in 4.2)
is invertible. That is, j is injective and surjective. This lnean the validity in T of
the following two formulae, (Axiom of Germ Representability, [2 II. 3.1]):

Proof of

Then, f and g are partial maps from ( C", Ocn) x (Y, Osy) into (C, Oc)
in t , and their domain (which we can assume to be the same) is a

subobject H C (C",Oc,) x (Y,OSy) such that the corresponding map
(Y,OSY)-&#x3E; -O-(Cn,Oon) factors (Y,Osy) - P(C",Oc.) C n(C"00.),
and the map (0, id) : (Y, Osy) -&#x3E; ( C", OCn) x (Y, Osy) factors

(Y,OSY)-&#x3E; H, H C (C’, Ocn) x (Y, OsY). Since 0 EH and H EP(Cn, OC.),
by (4.1) we have that A(n) x (Y, OSY ) C H . Then:

The object H is a "family" of Penon opens, that is, it is Penon open
in the slice topos T/(y,Osy). By proposition 3.8 there is a Penon

open F C (C", OCn ) x (Y, OsY ) in T such that {0} x (Y, Osy) C F C H . By 4.1,
A(n) x (Y, 0,9 y) C F . Thus, we have f , g , such that f , g : F - (C, Oc) and f = g
on A(n) x (Y, Osy). Moreover, by 1.8 we can consider F C ( Cn x Y, O(O,S)Cnxy).
Now, by 3.3, there is an open subset Z C C’ x Y such that F = (Z, O(O,S)z). Since
A(n) x (Y, Osy) = ({0},OCn) x (Y, Osy) = ({0} x Y,O(O,S){0}XY) (this holds
by 4.4 and 1.8), we have that {0} x Y C Z . Let us denote f = (f , 0), g = (g, cp),
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f, g : (Z, O(O,S)Z) - (C, Oc). The fact that f and G are equal on A(n) x (Y, Osy)
imply that f (0, y) = g(0, y) , and 0(o,y) -= cp(O,y) (for all y e Y ).

Let the object (Y, Osy) E H be defined by two coherent sheaves of ideals
:1, S, in Ov , with V an open subset of Ck, S C V. Since Z C Cn x Y is open,
there is an open subset W in Cn+k, WCCn x V , such that Z = W fl (C" x Y) .
Let y E Y . Then, (0, y) E Z and we have ( f, 0), (g, W),: (Z, O(0,S)Z) - (C, (0),
It follows by 1.6 that there are open neighbourhoods Wly of 0 in Cn and W2y of
y in Ck, Wly x W2y C W , and holomorphic functions f -, g- : Wiy x W2y -&#x3E; C ,
such that:

(where [ ](0,S) indicates class modulo (0, S) ).
Since f(0,y) = g(O, y) and 0(o,y) = cp(o,y), then 0(o,y)(idf(o,y))= 0(o,y)(idg(o,y)) -
This shows that If - (O,y)](o,S) = Ig- (0,Y)](0,S) , that is f - (0,Y) - g- (0,Y) E ( 0, Sy) .
Moreover, since S is a coherent sheaf of of ideals in Oy , there is an open neighbor-
hood Ty of y in ek, Ty C V, and holomorphic functions h1, ... hr : Ty -&#x3E; C , such
that, for each q E Ty, Sq is generated by {h1q,.., hrq}. It follows that there are

open neighgorhoods Tly of 0 in en, Tly C Wly and T2y of y in Ck, T2y C W2ynTy,
such that on Tiy x T2y, f- g- = ¿i Ci.i .hi, where ai are holomorphic functions
on Tiy x T2y . That is:

for each

Let (p,q) E (T1y x T2y)n (C" x Y). Since Y = supp(Oy/7), each

hiq E Sq C :Jq, and q E Y, we have that hi(q) = 0 V i. This implies that
f-(p,q) = g- (p, q), and since Tly x T2y C W1y x W2y C W, then

(p, q) E W n ( Cn x Y) = Z. Thus, f-(p,q) = f(p,q) and g-(p,q) = g(p,q).
Then, f ( p, q ) = g(p, q). Moreover, by (2) and the fact that each hiq E Sq we
have that f(p,q) - g(p,q) E (0, Sq), that is [f(p,q)](0,S) = [g(p.q)](0,S). Then by (1),
if we denote Q = f(p,q) = g(p, q), we have that 0(p,q)(idB) = cP(p,q)(idB). Then, by
the characterization of morphisms of analytic rings (with domain O1B),
we have that 0(p,q) = Sp(p,q). (see [6 prop.1.16]). It follows that if we define
M = UyEY(Tly X T2y), M is an open subset of Cn+k, M n (Cn x Y) C Z, and
f (p, q) = g(p, q), 0(p,q) = cp(p,q), for all (p, q) E M n (C" x Y). Hence, if we denote
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Ul = M n (Cl x Y), we have that Ul is an open subset of C’ x Y such that

101 x Y C U1 C Z C C" x Y, and (f, 0), (g,cp) are equal on (U1, O(0,s)u1). Then,
by 3.3, we have that U = (Ul, 0(0,s)ul) is a Penon open of (C’ x Y, O(0,s)CnXY),
thus a Penon open subobject of (Cn, Ocn) x (Y, Osy) in the topos T . It

follows then that the corresponding map (Y,OsY)-&#x3E; -O-(Cn,OCn) factors

(Y,Osy) -&#x3E; p(Cn,Ocn) C -O-(Cn,Ocn). That is. U E P(Cn,OCn),0 E U
and f, 9 are equal on U . 0

Proof of b). Let (Y, Osy) E 1l and let g : (Y, osy) - (C, Oc)A(n). By 4.4
and 1.8, we have that 0(n) x (Y,OsY) = ({0}, Ocn) x (Y, osy) =
= ({0} x Y, O(0,S){0}Xy). Let the object (Y, Osy) E 1l be defined by two co-
herent sheaves of ideals Y, S in Ov , where V is an open subset of Ck, S C :1 ,
and let g = (g, 0) : ({0} x Y, O(o,s){0}xY)-&#x3E; (C, Oc). It follows by 1.6, that for
each y E Y , there are open neighborhoods Wly of 0 in Cn and W2y of y in

Ck, W2y C V , and an holomorphic function g-: Wly x W2y-&#x3E; C such that:

where [ ](0,s) indicates class modulo (0, S) .
We can assume that Wly is a polydisk with center at 0 in Cn . Let y, z E Y ,

and let us denote g- and g° the holomorphic functions given by (3), corresponding
to y and z respectively. We have, for each q E W2y n W2z n Y :

cp(o,q)(idg(0,q))= [g-(0,q)](0,s) and cp(0,q)(idg(o,q))= [g° (0,q)](0,s).
It follows that g-(0,q) - g°(0,q) E (0, Sq) . Moreover, since S is a coherent sheaf of
of ideals in Ov, there is an open neighborhood W of q in Ck , and h1, ... hr:
W-&#x3E; C holomorphic functions such that, for each w E W, Sw is generated by
{h1w,... hrw}. Thus:

where Vl, V2, are open neighborhoods of 0 in C’ and q in Ck respectively, and
ai are holomorphic functions defined on V1 x V2.

We can assume Vl C W1y nW1z ,V2 C W2ynW2znw. Since Y = supp(Ov/7),
each hiq E Sq C Jg. For q E Y we have that hi(q) = 0 V i. Then, by
(4), we have that g-(p, q) = g° (p, q) V p E Vl . It follows that the holomor-

phic function m : Wly n W1z -&#x3E; C given by m(p) = g-(p,q) - g° ( p, q ) vanishes
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for p E Vl . Since Wiy rl Wiz is a polydisk, it is connected, and it follows that
m(p) = 0 Vp E Wly n W1z . Thus, g-(p,q)= go (p, q) Vp E Wly f1 W1z. Then,
we have that, g- = g° on (Wiy n W1z) x (W2y n W2z n Y) . Hence, if we de-
fine H = (U,,y(Wly x W2y)) n (Cn x Y) , we have that H is an open subset of
C" x Y, fol x Y C H , furnished with an arrow (f, 0): (H, O(O,S)H)-&#x3E; (C, OC) such
that (f,0)|({0}xY,O(0,s) {0}xy) = (g,cp). That is, (f, Ø)|A(n)x(Y,Osy)= (9, cp).
Then, by 3.3, U = (H, O(O,S)H) is a Penon open subobject of (Cn xY, O(O,S)CnXY) .
That is U is a Penon open subobject of (Cn, Ocn) x (Y, Osy) in the topos T . Thus
the corresponding map (Y,Osy)-&#x3E; -O-(Cn,Ocn) factors (Y, Osy ) - P(Cn, Ocn).
This means U E P(Cn, 0o,,) (notice also 0 E U ) .

Thus, the arrow ( f , 0) : (Y, Osy)-&#x3E; Partial ((Cn, Oe"), ( C, Oc)) , shows that
there is f E Partial ((C", 00,,), (C, C7C)) such that 0 Ea(f) = U E P(Cn, 0°")’
and f|A(n) = g. 0

5. The postulate of A -infinitesimal integration

In this section, the complex space Cm will be denoted by the letter M when
it is consider as an analytic complex manifold. However, when it plays the role of
the tangent space at a point (of any m-dimensional complex manifold) we shall
write Cm.

Given an Analytic model of S.D.G. i : M-&#x3E; T (cf definition 1.11), the basic
ring object of line type (the one dimensional "line" ) is given by the object iC in
T , which by abuse of notation we shall also denote C . Notice that in the model

T introduced here in 1.12, C is representable and we have C = (C, Oc).

The following considerations are meaningful in any model of S.D.G. (see [5]).
We shall specify them here in the context of analytic models.

Given a function 9 E (Cm)M and a point p E M , they determine a differential
equation:

A solution of this equation is a map f on the variables (p, z) , defined on some
"neighbourhood" H of the axe, Mx{0}CMxC, such that:

For example, if D = [[z E clz2 = 0]], there is always (tautologically) a solution
on H = M x D , defined by f (p, z) = p + z.g(p) .



66

Recall that an integral flow of g is a map f on the variables (p, z) E M x C
such that:

f will be defined on some part H C M x C, Mx{0}C MxC.
Any map ,f(p,z) which satisfies (2) also satisfies (1), since

Conversely, if f (p, z) satisfies (1), for each p, z (fixed), the functions

yl(w) = f ( f (p, z), w) and y2(w) = f (p, z + w) both satisfy the differential equation
dy/dz = g(y) with initial condition y(0) = p . Thus, the uniqueness of solution to
differential equations shows that yl = y2 .

We shall consider now the infinitesimal neighbourhood of the axis H = M x A ,
where A = A(l) C C, M x {0} C M x A C M x C . The previous considerations
show the following:

5.1 Proposition. The following two statements are equivalent in any analytic
model of S. D. G.:

Any one of this two equivalent is postulate WA2 in [2,11; 3.1; 3.2]. Its validity
(in the presence of the axiom of germ representability, c.f. 4.5 above) implies that
we actually have local integration of vector fields in the topos.

We shall now prove that postulate WA2 is valid in the model T introduced
in 1.12.

5.2 Observation. Consider on the set A = {holomorphic functions defined on
an open set W in em+l such that C’’’’i x {0} C W}, the relation " - " given by:
h - r iff h = r o n on an open set in Cm+1 which contains em x {0}. Then we
have a bijection:

Proof. Recall that M = (Cm, Ocm) in T , and that r denotes global
sections. We have:
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Moreover, by (1.8) and (4.4) if follows that:

Let (f,0): : (cm x {0},Omc x {0}) -&#x3E; (C,Oc). By (1.6), for each

(p,0) E em x {0}, there is an open neighbourhood Wp of (p,0) in Cm+1 and
an holomorphic function fp: Wp-&#x3E; C such that

We can assume that Wp = UP x Yp where UP is a polydisk in em centered at
p and Vp is a disk in C centered at 0. Let p, q E C"’’, (y, z) E Wp fl Wq . Then,
(y,0) E wpnwq. Thus, by (3), 0(y,0)(idf(y,0)) = fp(y,0) and 0(y,o)(idf (y,o)) = fq(y,o)
That is, fp = fq on an open neighbourhood of (y,0) in Cm+1. Since Wp n Wq
is connected, it follows that IP = Iq on Wp n Wq . Thus, there is an holomor-

phic function h on W = U Wp, such that h = fp on each WP . (note that W
is open in Cm+1 , and C7n x {0} C W). By (3) it follows that h(p, 0) = f (p, 0), and
0(P,o) (tf(P,o)) = (t o h)(p,o)V(p,0) E C x fOl, Vtf(p,o) E O1,f(p,0) Thus,
if we consider the arrow (h,h*): (W,Ow)-&#x3E; (C, Oc), we have that

(h,h*)|(Cm x {0},Ocmx{0}) = (f,0). Moreover, if r is any other holomor-

phic function defined on an open set Wl in Cm+1 , and Cm x {0} C Wl ,
such that (r,r*)|(Cm x {0},Ocmx{0}) = (f,0), then 0(p,o)(id f(p,0)) = r(p,o)

V(p,0) E em x fOl, and 0(p,0)(id f(p,o)) = h(p,o) . Thus, h = r on an open neigh-
bourhood of each (p,0) in C’n x {0}. It follows that h = r on an open set W2 in
Cm+1x{0}CW2. D

Given an element g in r((C"l)M), g : Cm -&#x3E; Cm, let f be the solution to
the differential equation df/dz(p,z) = g(f(p,z)), f(p, 0) = p , given by the classical
theory of differential equations. f will be defined in an open set W, Cm x {0} C
W C Cm+1, f : W - C-. Thus. each coordinate fi of f, fi : W - C , determines
an element Ii EA. The (local) uniqueness of f with respect to g implies that this
determinates a map:

Thus, we have an arrow:
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this arrow sends into

We shall now show that this map lifts into a map in the topos.

5.3 Theorem. There is a map in T , (Cm, Ocm)-&#x3E; Mm x a which sends

9 E (Cm, OCYn)M into a solution f E MMxl1 off the differential equation (1) above.
This actually means the following:

Given any (Y, Osy) in H, and g : M x (Y, OsY)-&#x3E; (Cm, OcYn), There is
f: M x (Y, Osy) x A -&#x3E; M , such that:

and the correspondence g -&#x3E; f is natural in (Y, Osy).

Proof. Let the object (Y, Osy) E 1i be given by two coherent sheaves of
ideals 7, S in Ou, where U is an open subset of Cn, S C 7. By (1.8) we have:

Thus:

g : (C"l x y,O(o,s)(cm-xy))-&#x3E; (Cm, OCm) (we shall denote g = (g, 0)).
It follows by (1.6) (working in each coordinate), that for each (po, yo) E em x Y ,
there is an open neighbourhood W of (po, yo) in Cm x C’ and an holomorphic
function g-:W-&#x3E; C"i such that:

(we can suppose that W = Wl x W2 , where Wl is an open neighbourhood of po
in C’n , and W2 is an open neighbourhood of yo in en, W2 C U).

By the classical theory of differential equations, there is an open set

N C Cm x C’ x C such that W1 x W2 x {0} C N C W1 x W2 x C ,and an
holomorphic function f:N-&#x3E; em such that V(p,y,z) E N,f(p,y,z) E Wi,
and df/dz(p, y, z) = g - (f (p, y, z), y), f(p, y, 0) = p . We have

(f,f*) : (N, ON) - (em,OCTn)’ Consider the restriction of this map:
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We are going to prove now that all these arrows (one for each point of C"’ x Y) ,
define an arrow (Cm, OCm.) x (Y, Osy) x A -&#x3E; (CII, Oem.). It is sufficient to prove:

If g°: W’-&#x3E; Cm is an holomorphic function such that

(W’ = W’1 x W’2, W’1 open in C’n, W2’ open in Cn, W2 C U).
And f’ : N’-&#x3E; Cm is an holomorphic function defined on an open set

N’ C CmxCnxC,W1xW2x{0}C N’CW’1xW’2xC, such that

then,

By (1.8) and (4.4) we have that:

Moreover, Thus, we have to prove that

Then, by the characterization of morphisms of analytic rings with domain Om,p
[6, 1.16], it suffices to prove that this holds for the coordinate functions z1,.... Zn ..
Thus we have to prove that [(fi)(P,y,0)](0,s,0) = [(f’i)(p,y,0)](O,S,0) i = 1, ... m.
That is, for each one of the m coordinates, (that by abuse of notation we shall
write without subindexes), we should verify /(p,y,o)-f’(p,y,0) E (0, Sy, 0) . We do
this now.

From (1) and (2) we have (g-)(p,y) - (g°)(p,y) E (0, By). Let U’ be an

open neighbourhood of y in Cn, U’ C U , and hl, ... hT holomorphic func-
tions on U’ such that for each y’ E U’, 8y’ is generated by {(h1)y’, ... (hr )y’}.
Take an open neighbourhood H of (p, y) in Cm x C’ , and holomorphic func-
tions B1,... Br : H-&#x3E; Cm , such that g-(q,x)- g° (q,x)= Lri hi(x).,Bi(q, x)
V(q, z) E H . Consider now a parameter space C’’ and the function A defined by
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It is holomorphic and clearly A(0, q, z) = g°(q, x), A (h1(x),..., hr (x), q, x) = g - (q, x).
By the classical theory of differential equations, there is an open neighbourhood

V of 0 in Cr, V = V1 x ... x V,. (where each Vi is an open neighbourhood of 0 in
C ), an open neighbourhood G of (p, y) in Cm x C’ ( G can be considered to be
a product of open subsets of C ), an open disk D with center at 0 in C , and an
holomorphic function 0 : V x G x D-&#x3E; Cm such that:

It follows that there are holomorphic functions such

that:

Y(z1, ... Zr,q,x,z) - 1/J (0, ... 0, q, o, z) = ¿i zi.Fi(z1, ... Zr, q, o, z) , [6, 0.10].
Since each hi,y E Sy C 7y, and y E Y = supp(OU/,7), then hi(y) = 0 Vi.
Thus, there is an open neighbourhood T of y in C" such that for all x E T,
(h1 (x),.... hr (x)) E V . It follows that for all (q, x.z) E (G rl (Cm x T)) x D (which
is an open neighbourhood of (p, y, 0) in C"i x C’ x C) we have:

Moreover, by the uniqueness of solution to differential equations,
f’(q,x.z)= Y(0, ... 0,q,x,z) and f(q,x,z) = Y(h1(x),..., hr(x),q,x,z),(in

a neighbourhood of (p, y, 0)). This finishes the proof of f(p,y,o)- f’(p,y,o) E (0, Sy, 0) .
Thus, we have an arrow (that by abuse of notation we shall denote f ) such

that:

and

5.4 Lemma. Let (Y, OSY ) E H be defined by two coherent sheaves of ideals
7, S in Ou, where U is an open subset of en, S C :1. Let (po, yo) E C’’’i x Y, W
an open neighbourhood of (po, yo) in Cm x en, W C Cm x U, and g- W-&#x3E; C’
an holomorphic function. Let f , f’ : W’-&#x3E; Cm be holomorphic functions (where
W’ is an open subset of C" x C’ x C such that W x fOl C W’ C W x C, and
for all (p, y, z) E W’,f(p,y,z),y) E W,f’(p,y,z) E W) such that for each one of
the m coordinates, (that as before we denote without subindexes) we have:
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Proof. By hypothesis, there is an open neighbourhood H of (po, yo, 0),
H C W’ , and there are holomorphic functions al, a2, b1, b2 on H such that their
germs at (po, yo, 0) belong to (0, syo, 0) , and:

(the functions bl and b2 actually do not depend on z).
By the classical theory of differential equations, there are open neighbourhoods

V of 0 in C2, V = Vi x v2,G of (po, yo) in Cm x C’, an open disk D centered
at 0 in C , and an holomorphic function Y : V x G x D -&#x3E; CM such that:

By the uniqueness of solution to differential equations, if follows that

Since yo E Y - supp(OU/7) , and the germs at (po, yo, 0) of the functions

a1,a2,b1,b2 are in syo C Jyo’ we have that al (Po, Yo, 0) = 0,
a2(P0, Y0,0) = 0, bi (po, yo, 0) = 0 , and b2 (po,yo,0) = 0 . Then, there is an

open neighbourhood V’ of (po, yo, 0), V’ C H , such that for all (p, y, z) E V’,
(a1(p, y, z), &#x26;i(p, y, z)) E V, (a2(p, y, z), b2 (p, y, z)) E V (and (p, y) E G, z E D).

As in 5.3, let r, u be holomorphic functions, r,u:VxVxGxD-&#x3E; Cm such
that:
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It follows that for (p, y, z) E V’ ,

That is,

Hence,

5.5 Theorem. In the topos T, the following holds:

where .

Proof. The existence is guaranteed by theorem (5.3) and the uniqueness
follows immediately from lemma (5.4). D
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