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CAHIERS DE TOPOLOGIE Volume XXXV-1 (1994)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

ON ANALYTIC MODELS OF SYNTHETIC
DIFFERENTIAL GEOMETRY

by Eduardo J. DUBUC and Jorge G. ZILBER

Résumé. Soit M une catégorie de variétés ou d’espaces analytiques
complexes. Les objets de M se construisent par recollement de certain
objets de base, ce qui impose qu’un modéle biem adapté de la Géométrie
Différentielle Synthétique (GDS) ¢ : M — T, comme foncteur dans un
topos T, doit préserver ces recouvrements. Egalement aussi, pour per-
mettre des applications de caractére local (et non uniquement infinitésimal),
en plus de 'axiome original de Représentation de Jets ([8],[2]), 'axiome
plus puissant de Représentation de Germs ([4], [2]) doit étre valide. La
validité de cet exiome requiert que dans la modéle, 'object des infinites-
imaux de Penon soit un faisceau représentable. Dans le cas réel C*
cela sébtient au moyen du concept d’idéal de caractére local, introduit
dans [8] . Cependant cette solution ne s’applique pas dans le cas an-
alytique complexe. Ici nous introduisons le concept de Schéme Analy-
tique [définition 1.3] au moyen duquel nous parvenons & la solution de ce
probléme. Les schémes analytiques sont des objets géométriques (stricte-
ment) plus généraux que les espaces analytiques et sont déterminés par
un ouvert en C" et deux faisceaux cohérents d’idéaux.

Cet article est une suite de [6] et de [12] ol les notions d’anneau
analytique et d’anneau analitique local ont été introduites. Ces travaux
culminent ici par la construction d’un modéle de la GDS bien adapté
al’etude des variétés et des espaces analytiques complexes.

Introduction.

This article is a sequel of [8] and [12], where we introduced the notions of
analytic and (local) analytic rings, and developed their spectral theory. These
works culminate here, where the construction of a model of Synthetic Differential
Geometry (S.D.G.) well adapted to the study of complex analytic varieties and
spaces is achieved.

Let M be a category of algebraic varieties, or (complez) analytic or (real)
differentiable manifolds. Objects in M are build up pasting together basic objects.
This implies that a well adapted model of SDG, ¢ : M — T, as a functor into
a topos 7 should preserve all open covers. This leads to the classical notions of

-49-



DUBUC & ZILBER - ON ANALYTIC MODELS OF SDG

Zariski Topology and Local ring (the Zariski topology works because it consist of
all open covers, and it is characteristic of the algebraic case that it is generated by
a pretopology of finite covers), as well as to the respective open cover topologies
and their related notions of C* -local ring ([8], [1]), (not the same that a C'* -ring
which is local in the algebraic sence) and local analytic ring ([6], [12]).

Besides the preservation of open covers and the original axiom of Jet Rep-
resentability ([8], [2]), the stronger axiom of Germ Representability ([4], [2]) has
to hold for the applicability of SDG to results of local (and not only infinitesi-
mal ) character (see for example [7]). The validity of the axiom of germ repre-
sentability is reflected in the model by the fact that the object of infinitesimals
A = [[¢ € Line™ | ~—(z = 0)]] should be a representable sheaf. This fact is
achieved in the differentiable case by means of the notion of germ determined ideal
(introduced in [3], the axiom of germ representability proved later in [5]). This
solution does not apply to the analytic case.

We introduce here the notion of Analytic Scheme (definition 1.3), key to the
solution of the problem. Analytic Schemes are (strictly) more general than usual
Analytic Spaces (as defined for example in [9]), and as such they have no counterpart
in the differentiable case (they are determined by an open set in C™ and two
coherent sheaves of ideals).

In section 1 we consider the notion of analytic model M — T of S.D.G. (M
denotes the category of analytic complex manifolds), and construct a topos 7 which
is such a model (1.10, 1.11 and 1.12). In sections 2 and 3 we study the intrinsic
(Penon) topology in 7. In section 4 (theorem 4.5), we prove the axiom of germ
representability in 7, and in section 5 (theorem 5.5), we prove that it furthermore
satisfy (the postulate of ) A -Infinitesimal integration [2], [5]).

1 Analytic Schemes

1.1 Theorem. Let U be an open subset of C™ and let J,L L C J, be any
two coherent sheaves of ideals in Oy . Let

E = supp(Oy/J) = {p € U | h(p) = 0 Vh|, € Jp} and
Ocg = (Oy/L)|g = the restriction of Oy /L to E.

Then Ocg is a local analytic ring [12] in Shg, the category of sheaves over
E, which defines an A-Ringed Space [6] denoted (E,O.g). Furthermore:

The inclusion i: E — U, together with the quotient q: Op , — Orgp, define
a morphism of A-Ringed Spaces: (E,Ocg) — (U,Oy) which is characterised by
the universal property sketched in the following diagram:
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Given any (X,0x) and (f,4):(X,0x) — (U,Oy) suck that:

Vz € X, f(ﬁ) € E and Vh’j(z) € [',f(z) ¢z(hf(z)) = 0;

we have:
(X,0x)
ELCRY) N\ (£:9)
(4,9): (E,Ocg) —— (U,0p).
Proof. The same proof that the one given in [6 theorem 2.10.] for the
particular case J = L works also here. O

If J = L, according to the usual notation we write (E,O¢g) = (F,Og), and
in the case £ = 0 , we write (E,Opg) = (F,Oy). From the previous theorem
we have (E,Og) — (E,0cg) — (E,O0y) C (U,Oy). The first two arrows can be
considered to be infinitesimal extensions of (E, Og) inside (U,Oy).

1.2 Example. Let U = C™, J = (21,22,...,25), and £ = 0. Then ({0}, Ocn)
is the largest (n-dimensional) infinitesimal extension of the point {0} . It consist of a
singleton, structured (as an A-Ringed Space) with the ring of germs of holomorphic
functions on n variables, (a (very) fat point).

1.8 Definition (Affine Analytic Schemes). Let U be an open subset of C"
andlet J,L, L C J, be any two coherent sheaves of ideals in Oy . The A-Ringed
Space constructed in Theorem 1.1 will be called an (Affine) Analytic Scheme. We
will denote by H the category determined by considering as arrows the morphisms
of A-Ringed Spaces.

1.4 Remark. The category of (local) models (see [9]) considered in [6] and
[12], is by definition a full subcategory of H , its objects being those affine analytic
schemes for which J = L.

1.5 For the record (Analytic Schemes). Although we shall not need this
concept here, it is clear that an Analytic Scheme should be an A-Ringed Space
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where every point has an open neighborhood such that the corresponding subobject
(structured with the restriction sheaf) is isomorphic to an (Affine) Analytic Scheme.

1.6 Remark. Since an object (E,O,g) € H is a A-Ringed Space, there is a
bijection [(F,Ocg),(C,0c)] ~ I['(E,Ocg), where [(E,Ocg),(C,O¢)] is the set
of arrows in H (E,O;g) — (C,0¢) and T(E,O,g) is the set of global sections
of the sheaf O, (see [6] corollary 2.9).

Hence, if (f,4): (E,Ocg) — (C,0Oc), we have that for each py € E, there
exists an open neighborhood W of py in C*, W C U, and an holomorphic function
g : W — C such that:

9(p) = f(») VpeWNE and
$o(tr) = [(tog)plc VYPEWNE, Vi) € Oy

(where by []. we indicate class modulo £).
That is, the following diagrams commute (for p€ WNE) :

WNE —— W 9" 0150 —— Onp

N\ 9 ¢\, Ve
(o} Ocgp

1.7 Observation. An arrow 1 — (E,O¢g) in H is the same thing that a point
pEE.

Proof. In fact, the terminal object 1in H is 1 = (C% Oco) =~ (1,C). It
consist of a singleton, structured (as an A-Ringed Space) with the field of complex
numbers (a simple point). If (E,O,g) is an object in , to give an arrow
1— (E,O¢p) is equivalent to fix a point p in E and a morphism of analytic rings
Ocep — C. But since O¢g, is alocal analytic ring there is a (unique) morphism
Ocgp — C [12 theorem 1.6). O

1.8 Finite Limits in H. Let U and V be open subsets of C* and C™
respectively, let J,L £ C J, be coherent sheaves of ideals in Oy and J', L',
L' C J' be coherent sheaves of ideals in Oy . Let (E,Og) and (E',Ogig:) be
the objects in H defined by J, £ and J’, £’ respectively. Then, the product in
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H,(E,Ocp) x (E',Oc:E), is given by the coherent sheaves of ideals (7, J') and
(£,£') in Oyyxy, (£,L£')C(T,T'). That is, we have:

(E,Ocg) x (E',Orip') = (E x E',Oc,c\ExE")

In fact, it is clear that supp(Oy/J) x supp(Ov/JT') = supp(Ouxv/(T,T’)).
The rest is straightforward, it follows essentially from [6 Proposition 1.19].

The construction of equalizers in A is similar to the case J = £ considered
in [6, section 2]. It follows that # has all finite limits, and that they are actually
limits in the whole category of A-Ringed Spaces. Thus, from [Corollary 2.9] we
have:

1.9 Proposition. The full embedding C — H (from the category of open
subsets of C™ (all n) and holomorphic functions) is an Analytic ring in M. That
is, it preserves terminal objects and transversal pullbacks. O

1.10 Definition-Proposition. @ We consider in ‘H the Grothendieck topology
given by the open corerings. It is straightforward to see that this topology is
subcanonical. We will denote by T the topos of sheaves on H for this topology.
There is a full embedding H — T . We consider the functor i : M — T, (where
M denotes the category of analytic complex manifolds) given by:

’I:M(E,OLE) = [(E, OLE): (M, OM)], for (E,OLE) EHand M e M

Here [(E,Org),(M,Ou)] is the set of arrows (E,Ocg) — (M,Opr) in the
category of A-Ringed Spaces. Recall that (M,O)) is the A-Ringed Space
given by the sheaf Opp of germs of holomorphic functions in M. In general,
(M,On) ¢ H, but it is an Analytic Scheme in the sense of 1.5 above. This fact,
together with the fact that covers are universal in the whole category of A-Ringed
Spaces, implies that the functor i : M — T is a full embedding. Furthermore,
from 1.9 it follows that it preserves terminal object and transversal pull-backs. O

1.11 Definition. An analytic Model of S.D.G. is a topos € together with a
full embedding i : M — € which preserves open coverings, terminal object and
transversal pullbacks. Furthermore, it is required that i{C be a ring object of line
type [8].

Equivalently, an analytic model of $.D.G. is a local analytic ring [12] of line
type in a topos €, which, in addition, is full and faithful as a functor.

A first analytic model of S.D.G. is the classifying topos £ of the theory of
local analytic rings (cf [12, 3.10]). However this model is not satisfactory since the
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ring of germs of holomorphic functions (on C") is not of finite presentation, thus
a point equipped with this ring as structure sheaf is not a local model of analytic
space [9], and therefore it is not in the site of definition of the topos (notably, this
is not the case with the topos in 1.10, as it follows from 1.2). A consequence of this
is that the axiom of germ representability (see introduction) does not hold in the
topos L.

1.12 Corollary. The functor i : M — T defined in 1.10 is an analytic model of
S.D.G.

Proof. It only remains to check the condition of line type and that it preserves
open coverings. This is easily seen by general categorical considerations. O

By properties of the site it is also clear that the following holds:

1.13 Remark. The topos T satisfies the Nullstellensatz. By this we mean:

For any object Fin T, F =04 I'(F)=0 (T = global sections)

2. Subobjects of iM

2.1 Proposition. Let M € M, let N be an open subset of M, and let
(E,Ocg) € H. Consider an arrow f : (E,Ocg) — iM in T. If for every
point p: 1 — (E,Ocg), there is a point 1 — iN such that the following square
commutes:

1 —— (E,Ocgp)

e f

iIN —— M

then f factors through iN as indicated by the diagonal arrow.

Proof. Recall 1.7 and 1.10; p and f as indicated above amount to a point
p € E and an arrow (f,¢): (E,Ocg) — (M,Op) of A-Ringed spaces. Moreover,
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the arrow fop:1— iM in T corresponds to the point f(p) € M. The fact that
f op factors through i{N means that f(p) € N(V p € E). Then, the continuous
function f : E — M factors through a continuous function g : E - N C M.
Moreover, we have ¢, : Opr sy — Ocpyp andOpn 55) = On sy = ONg(p)
Vp € E (since N is openin M and f(p) € N Vp € E). Then, we have an
arrow 7, : On g(p) — OcE,p) ¥V P € E, and it follows that the diagram:

(Es OLE)
l (g:m) N\ /19)
(N,Oxy) ——— (M,0) commutes.

That is, (f,¢) factors through (N,Oy). In other words, f factors through
iN. O

2.2 Corollary. Let M € M, let N be an open subset of M, and let F C iM
be any subobject in T . If T(F) C N, then F CiN

Proof. Observe that objects in H generate 7, then utilize Proposition 2.1.
O

2.3 Theorem. Given an object (E,O,g) € H and any pair of subobjects F,G
inT,F C(FE,0Ocg),G C(E,Ocg), wehave: FUG = (E,Og) in T iff there exist
Y CE,ZCE opensuchthat Y CZ=F, and (Y,Oy)C F,(2,0:2)CG.

Proof. Suppose that FUG = (E,O,g). Then, there exist an open covering:
Ja: (Eou OLE‘,) i (E, OLE)1 (a € I)

of (E,O¢g) in H such that for each « € I,j, factors through F or G. Then,
if we define I = {a € I | j, factors through F} and I, = {a € I | j, factors
through G}, we have that I; UI, = I. Then if we define ¥ = Uaeh E, and
Z = Uger, £a, we have that Iy C I; = I. Then, if we define ¥ = Uaeh E, and
Z = UaGI: E,, we have that YU Z = UaeI E, = E. Since each E, isopenin F,
then Y and Z are openin E, and since for each a € I3, j, factors through F, we
have (E,,Ocg,) C F. Hence (Y,O,y) C F. Similarly, we have (7,0, 7) C G.
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Converseley, suppose that Y C E,Z C FE are open subsets such that
YUZ = E, and that (Y,Ocy) C F,(Z,0,z) C G. then, we have that:

kZ(Y,Ocy)—'(E,OLE), T‘Z(Z,Ocz)——’(E,OLE)

is covering of (E, O¢g) in H such that k factors through F and r factors through
G . This shows that FUG = (E,O¢g) in T. O

2.4 Corollary. Let M € M and let F and G be subobjects of iM . Then,
FUG =1iM in T iff there exist V C M,W C M open such that iV C F,iW C G,
and VUW =M.

Proof.  Suposse that F UG = iM. Let {Ua}acr) be an open covering
of M such that each U, is biholomorphic to an open subset of C™. Then,
(UayOy,) € H and we have iU, = (Uy,Op,) in T. Since i preserves open
coverings, |J,c;(iUa) =iM in T. Let Fy = FNiUy and Go = GNilUs. Then
FaUG, = iUy = (U, Oy, ) in T. Hence, by theorem 2.3 there exists V,, C U, and
Wy C U, open such that (V,,Ovy,) C Fy, (Wa,Ow,) C Go, and V,UW, =U,
(for each «).

Let V = U,erVa and W = U,y Wa; V and W are open subsets of M
such that VUW = M. Moreover, as before, we have that iV = |J,;iVo and
W =Uyer tWa - But, iV, = (Vo,0v,) C Fo C F (forall a € I'). Then, iV C F.
Similarly, we have :W C G.

Converseley, suppose that there exist V C¢ M,W C M open such that
iV CF,iWCG,and VUW = M. Then, i:VUiW = iM in 7. But, since
iWCFCiM,and iW C GC iM, we have that FUG =iM . O

3. Penon’s characterization of open sets in 7.

Recall that given an object X in a topos, a part U € 2% is said to be Penon
open iff the following condition holds (in the internal logic of the topos):

VzeU VyeX (y#z) vV (yeU). (see[10], [11], [2])

We shall denote by I' the global sections functor. Clearly, we have
I'iM)=M forall M e M.
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3.1 Theorem. Given an analytic complex manifold M € M, we have:
a)If N C M is any subset, then:

iN C iM is a Penon open subobject, and N = I'(iN).

b) If F C iM is any Penon open subobject, then:
I'(F) C M is an open subset and F = i(T'F).

(This theorem is similar to theorem 7 of [5]).

Proof. a) Let A be the diagonal and let ” =” be the negation in 7. We
have to show that —A;y and iN x iN cover iM x iN in T (where we think A,y
and iN x iN as subobjects of iM x iN in 7). Let(Ayn)° be the complement
of the diagonal Ay in M x N. It is an open subset of M x N, and we have
i(A%) C iM x iN in T. Moreover, since i(Ay) = A;y it follows that
i(A%) C —A;n (recall that ¢ preserves products and @ = 0). Hence, it is sufficient
to show that i(A%)U (iN x iN) = <M x iN . This follows from the fact that (Ax)°
together with (N x N) are an open cover of M x N.

b) We have I'(F) C I'(iM) = M. Let p € T'(F) be any point of I'(F),
p:1— F in T. Since F is a Penon open subobject of iM, we have that
-{p}UF = iM in T. Then, by corollary 2.4 there exist open subsets V C M,
W C M such that iV C —{p},sW C F and VUW = M. Then,
W = I'(iW) C T'(F). We shall see now that p € W. If p ¢ W, since
pE(F)C M and VUW = M, it follows that p € V, thatis p: 1 — iV
in 7. Since iV C —{p}, this implies p: 1 — —{p}. Thus, the empty family covers
1. This shows that p € W. We have proved that for each p € I'(F'), there exist an
open subset W C M such that p € W C I'(F). This shows that I'(F) is open. It
remains to see that F = i(I'F). We have stablished above that for each p € I'(F),
there exist W open such that :W C F (and p € W C T(F)). The the open sets
W (one for each p € I'(F) ) cover the open set I'(F). It follows that the subobjects
1W cover i(T'(F)). Since each {W C F, it follows that i(I'(F)) C F. On the other
hand, if B = I'(F), then B is an open subset of M such that I'(F) C B. Hence
by corollary 2.2, it follows that F C iB, thatis F C i(T'(F)). O

8.2 Observation. It follows that i and T' establish a bijection between open
subsets of M and Penon open subobjects of iM . A subobject F C iM is Penon
open iff it is of the form F = iN for some open subset N C M . O

A similar fact holds for all the objects in H (and in fact it could be proved for
all analytic schemes in the sense of 1.5 above):
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3.3 Proposition. Given any (E,Ocg) € H and F € T such that
F C(E,Ocp), we have:

F is a Penon open subobject of (E,O,g) iff there exist an open subset Y C E
such that F = (Y,O.y).

Proof. Assume F is a Penon open subobject of (E,O¢g). Then, for any
p€ I'(F), thatis p: 1 —» F,~{p}UF = (E,Ocg). Then by theorem 2.3 and
arguing exactly as in the proof of theorem 3.1,b), it follows that there is an open
set W C E such that p € W and (W,0Ow) C F. Let Y be the union of all
the sets W (one for each p). Then it follows that (Y,0cy) C F. Since Y is
an open subset of E, there is an open subset V of C™ such that Y = VN E
(here we suppose that E C C™). By construction of Y, we have that TI'(F) C Y.
Then, we have that F is a subobject of (C™, O¢n) = iC™ such that I'(F) C V.
Hence, by corollary 2.2, F C iV = (V,0y). Since F C (E,O¢g), it follows that
FC (V NnE, OL’VQE), thatis F C (Y, Ocy) .

Converseley, suppose that FF = (Y,Ogy), where Y is an open subset
of E. Then, there is an open subset V of C™ such that Y = VN E. By
theorem 3.1,a), iV is a Penon open subobject of iC™. It follows immediately
that iV N (E,O¢g) is a Penon open subobject of (E,O,g). Moreover,
iV N (E,Ocg) = (V,0v) N (E,Ocg) = (Y,0y) = F. o

8.4 Proposition. Let (E,Ocg),(Y,0sy) € H and let F C (Y,Osy) be any
Penon open subobject in T . Let f be any mapin H,f:(E,Ocg) — (¥,0sy).
Consider a diagram:

- T
N

(—
-~

(Y, Osvy)

If for every point p: 1 — (E,Ocg), there is a map 1 — F such that the
square commutes, then f factors through F as indicate by the diagonal arrow.

Proof. Immediate from proposition 2.1 and 3.3. O
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3.5 Corollary. Let (Y,0Osy) € H and let F C (Y,Osy) be any Penon open
subobject in T . Given any subobject G C (Y,Ogy) in T, if I'(G) C I'(F), then
GCF.

Proof.  Observe that objects in M generate T, then utilize Proposition 3.4.
(]

3.8 Proposition.  Given any (E,Ocg) € H,(E,Ogg) satisfies the covering
principle with respect to the intrinsic Penon topology in T (see [2]). That is, the
following conditions holds:

VF,GeQFOs)FUG=(E Or)=LFULG=(E,O5)}

(where ¢ indicates the interior operator (largest Penon open inside)).

Proof. Let F,G : (Y,Osy) — Q5928 the corresponding subobjects
F,G C (E,O¢g) x (Y,Ogy) and are such that FUG = (E,Og) x (Y,0sy).
By 1.8 we have then FUG = (E x Y,0(¢ syexy) - Hence, by 2.3, there are open
subsets Z and W in E x Y such that (Z,0s)z) C F,(W,0O,syw) C G, and
ZUW = ExY . By 3.3, (Z,0(,s)z) and (W, O, syw) are Penon open subobjects
- of (E xY,0,s)Exy), and we have:

(2,0(£,5)2) U (W, O, syw) = (E x Y,O¢,5)Exy) in T
The corresponding arrows:
(Z,0(c,5)7) : (Y, Osy) — QF:C28) and (W, 0, 5yw) : (¥, Osy) — QF:O<s)

factor through the object of Penon opens of (E,O,g), P(E,Ocg) C Q(F:Ocs)
Thus we have:

FAS P(E,OLE),y € P(E,OLE) such that z C F,yC G, and z Uy = (E, OLE)-
This proves the statement. 0O

8.7 Proposition. Given any (E,Ocg) € H,(E,Org) is separated for the
intrinsic Penon topology in T (see [2]). That is, the following condition holds:

Vz € (E,Ocg),~{z} is Penon open .

Proof. Let = € (E,Ocg). We have {z} € QEOcs), If
z: (Y,0cg) — (E,Ocg), then {z} : (Y,0sy) — Q(F:©28) corresponds to the
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(subobject) graph of z,T'; = (z,id). We have T, C (E,Ocg) x (Y,0Osy).

Thus, it is sufficient to prove that —1'; is a Penon open subobject of

(E,OLE) x (Y,0sy) = (E x YaO(L,S)ExY)' [cf. 1.8]. Let z = (f,¢) Since
f is a continuous function, f : Y — FE, the complement of its graph, Z = I‘; is
an open subset of E x Y. It follows easily by 3.5 that —I'; = (Z, O, s)z) . Then,
by 3.3, we have that —T'; is a Penon open subobject of (E x Y, O sygxy)- This
proves the statement. O

3.8 Proposition. Let (E,Ocg) and (Y,0Osy) in ‘H and
p:1— (E,Ocg). Let G be any family of Penon opens indexed by (Y,Osy).
That is, G C (E,Ocg) x (Y,Osy) is Penon open in the slice topos T |y,04y)-
Then, if {p} x (Y,Osy) C G, there exist a subobject F C (E,O¢g) x (Y,0Osy),
Penon open in T , such that {p} x (Y,0sy) CF C G.

Proof. By [2 lemma II. 1.7] this will be true provided that the intrinsic
topology satisfies the covering principle. But this is precisely the statement in
proposition 3.6 O

4. The axiom of germ representability.

Recall that the object of infinitesimals, A(n) C (C™,Oc-), is defined as fol-
lows:
A(n) = —1ﬂ{0} C (Cn, O’é) in 7.

It is the largest infinitesimal neighbourhood of 0 € (C*,O¢») in T.
4.1 Observation. It is easy to see that A(n) = Po(C",Oc») , where
Py(C™,0Ocn) denotes the intersection of all Penon neighbourhoods of 0 in
(C™, Oc¢») [2]I 1.10].
That is:
Pp(C™,0¢n) =
= [[z € (C, Ocn)|V U € (€O} (U € P(C™,0c) A0 €U) =z € UJ|

4.2 Definition. Consider the object of partial maps, and the 'domain’ map 9 :

a n
Partial ((C™, Oc»), (C, Oc)) — Q(€™%cn)
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A germ at 0 is an equivalence class of elements f € Partial ((C™, Og-),(C, O¢))
such that 0 € 9(f) and 9(f) is Penon open, that is, 9(f) € P(C",Oc~).

The equivalence relation is:
f~g & 3IUEPC"Oc)0€U, UCdf)nd(g), flv=glu-

The object of germs is denoted C§((C™,O¢-),(C,0c)). Given any germ,
since 0 € (f) and 8(f) € P(C",Ocn), it is clear that A(n) C 3(f). Thus there
is a map:

j: C§((C™, Ocn), (C,0¢)) — (C,0c)2™,

which sends a germ into its restriction to A(n).

The axiom of germ representability, axiom III of S.D.G., says that this map is
invertible, (see [2] ). In the rest of this section we shall prove that it holds in 7 .

4.3 Proposition.

~{0} = (C* - {0}, Ocn_(0) (in T)
that is, A(n) = ~(C™ — {0}, Ocn_{0}) (in T)

Proof. Clearly (C™ — {0}, Ocn_(0}) N {0} = 0. Thus we have to prove:

If G ¢ (C*0O¢g-),G in T, is such that G N {0} = @, then
G C (C" - {0}, Ocn_ (o).

In fact, by 3.3 we know that (C" — {0},Oc~_{0}), is a Penon open. On the
other hand, I'(G) C C" — {0}. The statement follows then by 3.5. a

4.4 Proposition. A(n) is representable by ({0}, Oc~). Thatis, A(n) € H and
it is the analytic scheme A(n) = ({0},Ocn). (see 1.2).

Proof. By 4.3, it is sufficient to check:

1) ({0}, Oc~) N (C" — {0}, Ocn—_(0}) =0
2) Given a subobject F of (C",O¢») in T :

if FN(C"—{0},00n_0)) =0, then F C ({0},0cn).

1) is clear by 1.13. Let now F be such asin 2), and let i: F — (C",O¢~) be
the inclusion. We have to to prove that for all objects (E,Org) € H
and A : (E,Ocg) — F, the composite i o X factors through ({0},Oc»). Let
iod = (f,9): (E,Ocg) — (C",Ocx). By assumption it follows that T'(F) C {0}.
Thus f factors through {0} and ¢,:On 90— Orp, (forall p in E) O
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4.5 Theorem. For each positive integer n, the restriction map j (defined in 4.2)
is invertible. ‘T'hat is, j is injective and surjective. T'his mean the validity in T of
the following two formulae, (Axiom of Germ Representability, [2 II. 3.1]):

a) V f,g € Partial((C", Oc»), (C*, Og)),
0 € a(f)na(g), 9(f),8(g) € P(C",Oc~),

flA(n) = glA(n) => e P(C”vOC")’O eV C a(f) n a(g)a flU = glU-

b) ¥ g € (C,0c)*™ 3f € Partial((C™, Oc~), (C", Oc)),
0e 8(f) € P(Cn, OC""))flA(n) =4.

Proof of a). Let (Y,Osy) € H and let
f,9:(Y,0sy) — Partial ((C", Oc»), (C", Oc))

Then, f and g are partial maps from (C",Og-) x (Y,0sy) into (C,O¢)
in T, and their domain (which we can assume to be the same) is a
subobject H C (C™,0O¢n) x (Y,0Osy) such that the corresponding mag
(Y,05y) — Q(C"%") factors (Y,0sy) — P(C",0¢-) C Q(C"O0n)
and the map (0,id) : (¥,0sy) — (C™ Oc¢s)x (Y,0sy) factors
(Y, Osy) — H,H C (C",Ocu) X (Y, Osy). Since 0 € H and H € P(C",Ocn),
by (4.1) we have that A(n) x (Y,Osy) C H. Then:

{0} x (Y, 0sy) C A(n) x (Y,0sy) C H C (C*,Oc¢r) x (Y,0sv)
flgl
(C,Oc),

(f = g on A(n) x (Y, Osy)

The object H is a “family” of Penon opens, that is, it is Penon open
in the slice topos T/(y04y)- By proposition 3.8 there is a Penon
open F C (C™,O¢») X (Y,0sy) in T such that {0} x (Y,0sy) C F C H. By 4.1,
A(n)x(Y,0Osy) C F. Thus, we have f,g,such that f,g: F — (C,0O¢c) and f=g¢g
on A(n) x (Y, Osy) . Moreover, by 1.8 we can consider F C (C"xY, Og,s)crxy) -
Now, by 3.3, there is an open subset Z C C"xY such that F = (Z,O(o s)z) - Since
A(n) X (Y, Osy) = ({0}, Oc-.) X (Y, Osy) = ({0} x Y, 0(0,8){0})(1’) (this holds
by 4.4 and 1.8), we have that {0} x Y C Z. Let us denote f = (f,4),q = (g,%),
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f,9:(2,0,5yz) = (C,Oc) . The fact that f and G are equal on A(n)x(Y, Osy)
imply that f(0,y) = ¢(0,y), and ¢(o,y) = Po,y) (forall ycY).

Let the object (Y,0Ogy) € H be defined by two coherent sheaves of ideals
J,S8,in Oy, with V an open subset of C*¥,8 C J. Since Z C C® x Y is open,
there is an open subset W in C*t¥ W C C™ x V, such that Z=Wn(C" xY).
Let y €Y. Then, (0,y) € Z and we have (f,¢),(g,9),:(Z, O(0,5yz) — (C,Oc).
It follows by 1.6 that there are open neighbourhoods Wy, of 0 in C™ and Wy of
y in C%, Wiy x Wy, C W, and holomorphic functions f~, g~ : Wy, x Wy — C,
such that:

(1) f~(e)=f(Pa) ¢ (e =9(Pq) V(pg)e(WyyxWy)NnZ

$e.0)(t1p,0) = [t f7)e,0l0s)
V (p,q) € (Wiy x Way) N Z,Y t45.4) € O1,4(p,0)

2o.a0)(tse) = [(E0 9")m))05)
V (pq) € (Wiy x Way) N Z,V tg(5,4) € O1,4(p,0)
(where [](,s) indicates class modulo (0, S)).

Since f(0,y) = ¢(0,y) and $o,y) = P(0,y), then (o,4)(ids(0,5)) = b(0,9)(idg(0,y)) -
This shows that [f~(0'y)](0,5) = (97 (0,9))(0,5)» that is f~ g 4) — 97 (0,y) € (0,5Y).
Moreover, since S is a coherent sheaf of of ideals in Oy , there is an open neighbor-
hood T of y in C",Ty C V, and holomorphic functions hy,... h, : Ty, — C, such
that, for each ¢ € Ty, S, is generated by {hy,,... h.g}. It follows that there are
open neighgorhoods T3, of0in C*, Ty, C Wy, and T3, of y in C",sz C W, NT,,
such that on Ty, x Tyy, f~ — g~ = Y, a;.h;, where «; are holomorphic functions
on Tyy x Ty,. That is:

(2) f~(p,a) -9~ (p,9) Z% (p,q)-ki(q) for each (p,q) € Tyy x Toy.

Let (p,q) € (Tiy x Tzy) N (C™ x Y). Since Y = supp(Oy;z), each
hig € 8§ C Jy, and ¢ € Y, we have that h;(¢) = 0 V i. This implies that
f~(pea) = ¢~(p,q), and since Ty, x Tpy C Wy, x Wy C W, then
(pg) € WnN(C" xY) = Z. Thus, f~(p,q) = f(p,q) and ¢~ (p,9) = 9(p,q)-
Then, f(p,q) = g(p,q). Moreover, by (2) and the fact that each h;y € S; we
have that £ = 9%, € (0,8,), that is [f(p q)](o 5) = [g(p .,)](0 s)- Then by (1),

if we denote ﬁ f(p,q) = 9(p,q), we have that ¢, q)(x 8) = P(p,q)(idg). Then, by
the characterization of morphisms of analytic rings (with domain Oig),

we have that ¢, q) = P(,q)- (see [6 prop.1.16]). It follows that if we define
M = U, ey (Tiy x Tzy), M is an open subset of C***, M N (C" x Y) C Z, and
(2 a) = 9(p,9) b(p,9) = Pp,q)» Tor all (p,g) € M N(C™ xY). Hence, if we denote
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Uy = MN(C" xY), we have that U; is an open subset of C® x Y such that
{0} xY CcU, CZCC"xY, and (f,¢),(g,9) are equal on (U, Oy syy,)- Then,
by 3.3, we have that U = (U3, O(o,s)v,) is a Penon open of (C" x Y, O sycnxy ),
thus a Penon open subobject of (C™,Oan») x (Y,Osy) in the topos T. It
follows then that the corresponding map (Y,0Osy) — Q(C"%c)  factors
(Y,0sy) — P(C™,0¢-) C Q(€"9e"). Thatis. U € P(C*,0cn),0 € U
and f,g are equal on U. (]

Proof of b). Let (Y,Osy) € H andlet g: (Y,0sy) — (C, 0¢c)2™), By 4.4
and 1.8, we have that A(n) x (¥,0sy) = ({0},0¢c») x (Y,0sy) =
= ({0} x Y, 0(0,s){0}xy)- Let the object (Y,Osy) € H be defined by two co-
herent sheaves of ideals J,S in Oy, where V is an open subset of C*, 8 C J,
and let g = (9,¢) : ({0} x Y, O(q,5)(0}x¥) — (C,Oc). It follows by 1.6, that for
each y € Y, there are open neighborhoods Wy, of 0 in C™ and W, of y in
C*, Wy, C V, and an holomorphic function g~ : Wiy x W3y — C such that:

(3) 97(0,9)=9(0,q) ¥V (0,9) € (Wyy x Wy N ({0} xY)

#(0,9)(tg(0,0)) = [(t 2 97)(0,0))(0,5)
V (0,q) € (Way x Way) N ({0} X Y), Vtg0,9) € O1,(0,9)
where [ ](o s) indicates class modulo (0,S).
We can assume that Wy, is a polydisk with center at 0 in C". Let y,z €Y,
and let us denote g™ and g° the holomorphic functions given by (3), corresponding
to y and z respectively. We have, for each ¢ € W, N W,, NY :

©(0,0)(1dg(0,0)) = [97 (0,0))0,5) and ¥(0,9)(idg(0,6)) = [9° (0,9)l(0,5)-

It follows that 9% 0,0) ~ 9°(0,0) € (0,8,) . Moreover, since S is a coherent sheaf of
of ideals in Oy , there is an open neighborhood W of ¢ in C*, and hy,... h, :
W — C holomorphic functions such that, for each w € W, Sy is generated by
{P1wy.++ hry}. Thus:

(4) g~ —-9°= Za;.h.-, on Vi xV,
f

where V3, V3, are open neighborhoods of 0 in C™ and ¢ in C¥ respectively, and
«; are holomorphic functions defined on V; x V5.

We can assume V; C WyyNWy,, V3 C Wy NW;,NW. Since Y = supp(Ov,z),
each hyy € §; C J,. For ¢ € Y we have that hi(qg) = 0V i. Then, by
(4), we have that g~(p,q) = ¢°(p,q) V p € V3. It follows that the holomor-
phic function m : Wy, N W;, — C given by m(p) = ¢~(p,q) — ¢°(p,q) vanishes
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for p € V;. Since Wy, N W, is a polydisk, it is connected, and it follows that
m(p) = 0 Vp € Wi, N W,,. Thus, ¢g~(p,q) = ¢°(p,q) Vp € Wi, " Wy,. Then,
we have that, g~ = g° on (Wy, N Wy,) x (Wyy N W3, NY). Hence, if we de-
fine H = (U, ey (Wiy X Way)) N (C" x Y), we have that H is an open subset of
C"xY,{0}xY C H, furnished with an arrow (f,4) : (H,O0,s)r) — (C,Oc) such
that (£, é)l{0} x v, O.5)(0}xv) = (9,9). Thatis, (f,8)|la@m)x(v,05v) = (9,9)-
Then, by 3.3, U = (H, O(g,s)x) is a Penon open subobject of (C" xY, O(g s)crxy)-
Thatis U is a Penon open subobject of (C*, Ocn)x(Y, Osy) in the topos T . Thus
the corresponding map (Y, Osy) — Q(C™%") factors (Y,Osy) — P(C™, Ocn).
This means U € P(C",O¢n) (notice also 0 € U).

Thus, the arrow (f, ¢) : (Y, Osy) — Partial ((C", O¢~), (C, O¢)), shows that
thereis f € Partial ((C™,Ocn),(C, Og)) such that 0 €8(f) =U € P(C",Oc¢-),
and flam)=9. O

5. The postulate of A-infinitesimal integration

In this section, the complex space C™ will be denoted by the letter M when
it is consider as an analytic complex manifold. However, when it plays the role of
the tangent space at a point (of any m-dimensional complex manifold) we shall
write C™.

Given an Analytic model of S.D.G. i : M — T (cf definition 1.11), the basic
ring object of line type (the one dimensional “line”) is given by the object ¢C in
T, which by abuse of notation we shall also denote C. Notice that in the model
T introduced here in 1.12, C is representable and we have C = (C, O¢).

The following considerations are meaningful in any model of S.D.G. (see [5]).
We shall specify them here in the context of analytic models.

Given a function g € (C™)™ and a point p € M, they determine a differential
equation:

oot 0 =n

A solution of this equation is a map f on the variables (p, z), defined on some
“neighbourhood” H of the axe, M x {0} C H C M x C, such that:

M o) =o(fn2).  f(n0)=7

For example, if D = [[z € C|z? = 0]], there is always (tautologically) a solution
on H =M x D, defined by f(p,2) =p+ 2.9(p).

-65-



DUBUC & ZILBER - ON ANALYTIC MODELS OF SDG

Recall that an integral flow of g is a map f on the variables (p,z) € M x C
such that:

@) f(p,d)=p+d.g(p) Vde D

f(p,z+w) = f(f(p,2),w)

f will be defined on some partt HC M xC, Mx{0}CHC M xC.
Any map f(p,z) which satisfies (2) also satisfies (1), since

f(p,z+d) = f(f(p,2),d) = f(p, 2) + d.g(f(p, 2)).

Conversely, if f(p,z) satisfies (1), for each p,z (fixed), the functions
ni(w) = f(f(p,2),w) and y2(w) = f(p, z+w) both satisfy the differential equation
dy/dz = g(y) with initial condition y(0) = p. Thus, the uniqueness of solution to
differential equations shows that y; = y;.

We shall consider now the infinitesimal neighbourhood of the axis H = M x A,
where A = A(1) CC, M x {0} C M x A C M x C. The previous considerations
show the following:

5.1 Proposition. The following two statements are equivalent in any analytic
model of S.D.G.:

1) Vge(C™M,3! fe MM*2 | f(p,0) =p, df/dz(p,z)= g(f(p,2)).
2) Vge(C™M 31 fe MMxa
|Vd € D f(p,d) =p+d.g(p), f(pz+w)=f(f(p 2)w)
o

Any one of this two equivalent is postulate W A2 in [2,1I; 3.1; 3.2]. Its validity
(in the presence of the axiom of germ representability, c.f. 4.5 above) implies that
we actually have local integration of vector fields in the topos.

We shall now prove that postulate W A2 is valid in the model 7 introduced
in 1.12.

5.2 Observation. Consider on the set A = { holomorphic functions defined on
an open set W in C™*! such that C™ x {0} C W}, the relation “~ " given by:
h~7 iff h=ron on an open set in C™*! which contains C™ x {0}. Then we
have a bijection:

A/~ =[(C™ x {0}, Ocmx(e}), (C, Oc)], thus T(MM*2) = (A].)™.
Proof.  Recall that M = (C™,0¢cm) in T, and that T denotes global

sections. We have:

L((C™M) = [(C™, Ogn),(C™, Ocm)] = (Om(C™))™.  (see 1.6)
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Moreover, by (1.8) and (4.4) if follows that:
P(MMXA) = [M x A, M] = [(Cm»OC"") x ({0}, 0c), (C™,Ocm)| =
=[(Cc™ x {O}aocmx{O})' (C™, Ocn)] =
= [(Cm X {O}v OC"‘x(()] )l (Cmy OC"‘)v (C, OC)]m

Let (f,¢) : (C™ x {0},0% x {0}) — (C,Oc¢). By (1.6), for each
(p,0) € C™ x {0}, there is an open neighbourhood W, of (p,0) in C™*! and
an holomorphic function f?: W, — C such that

fP(y,0) = f(y,0) ¥(y,0) € W, N (C™ x {0})
$5,0)(t1(3,0) = (t 0 fF)(y,0) ¥(¥,0) € W, N (C™ x {0}), Vis(y,0) € O1,1(y,0)-

We can assume that W, = U, x V,, where U}, is a polydisk in C™ centered at
p and V,, is a disk in C centered at 0. Let p,qg € C™,(y,2) € W, N W,. Then,
(y, 0) € WpﬂWq . Thus, by (3), ¢(y,0)(idf(y’0)) = f&’o) and ¢(y’0)(idf(y,0)) = f(qy,o)‘
That is, f? = f? on an open neighbourhood of (y,0) in C™*!. Since W, N W,
is connected, it follows that f? = f¢ on W, N W,. Thus, there is an holomor-
phic function h on W = |JW,, such that h = f? on each W,. (note that W
isopenin C™*+1 and C™x{0} C W). By (3) it follows that h(p,0) = f(p,0), and
$0.0)(t1p0) = (t o h)po)V¥(p,0) € C™ x {0}, Visp0) € Orppo). Thus,
if we consider the arrow (h,h*) : (W,0w) — (C,0Oc¢), we have that
(h, h‘)|(cm x {0}, Ocmx (0}) = (f,¢). Moreover, if r is any other holomor-
phic function defined on an open set W; in C™t', and C™ x {0} C W,
such that (r, T‘)l(cm % {0}’00'“)({0}) = (f,¢), then ¢(p,0)(id f(p,O)) = T(p,0)
¥(p,0) € C™ x {0}, and @(, 0)(id #(p,0)) = h(p,0)- Thus, h = 7 on an open neigh-
bourhood of each (p,0) in C™ x {0}. It follows that h = r on an open set W; in
Ccm+l C™ x {0} C W;. o

Given an element g in I'((C™)M),g: C™ — C™, let f be the solution to
the differential equation df /dz(p, z) = g(f(p, 2)), f(p,0) = p, given by the classical
theory of differential equations. f will be defined in an open set W,C™ x {0} C
W C C™t, f: W — C™. Thus. each coordinate f; of f, f; : W — C, determines
an element f; € A. The (local) uniqueness of f with respect to g implies that this
determinates a map:

[M,(C™, Ocm)] — (A/)" g = ([Ai], -+ [fm])-
Thus, we have an arrow:

[M,(C™, Ocm)] — T(MM*2)
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this arrow sends g € I'((C™)M) into (f, c™ x {03,
(where (f, f*): (W,0w) — (C™,Ocn)).
We shall now show that this map lifts into a map in the topos.

Ocmx(0))

5.8 Theorem. There is a map in 7, (C™,Oc»)™ — MMX2 which sends
g € (C™,Oc=)M into a solution f € MM*A off the differential equation (1) above.
This actually means the following:

Given any (Y,Ogy) in H, and g : M x (Y,0sy) — (C™,Ogm), There is
f:Mx(Y,Osy) x A — M, such that:

df/dZ(p, Yy 2) = g(f(P) Y, z)) y)
f(pa Y, 0) =p vy € (Y, Osy),

and the correspondence g +— f is natural in (Y,Osy).

Proof.  Let the object (Y,Osy) € H be given by two coherent sheaves of
ideals J,8 in Oy, where U is an open subset of C*,§ C J. By (1.8) we have:

M x (Y, Osy) = (Cm,OCm) X (Y, Osy) = (Cm xY, O(O,S)(mel’))-

Thus:
9:(C™ xY,0p,s)cmxy)) = (C™ Ocn) (we shall denote g = (g,¢)).
It follows by (1.6) (working in each coordinate), that for each (po,y0) € C™ x Y,

there is an open neighbourhood W of (pg,yo) in C™ x C™ and an holomorphic
function g~ : W — C™ such that:

9~ (my)=9(py)
(1) bew(tiey) = [(Eo97)emlos)
v (P: y) eEwn (Cm X Y)! v tg(p,y) € Om,g(Pyy)

(we can suppose that W = W; x W, where W, is an open neighbourhood of pg
in C™, and W; is an open neighbourhood of 39 in C*, W, C U).

By the classical theory of differential equations, there is an open set
N C C™ x C" x C such that W; x W, x {0} C N C W; x W, x C,and an
holomorphic function f : N — C™ such that V(p,y,z) € N, f(p,y,2) € Wy,

and df/dz(p,y,2) = ¢~ (f(p,v,2),9), f(p,y,0) = »p. We have
(f+f*): (V,0n) = (C™,Ocm) . Consider the restriction of this map:

(W11 OW1) X (WZ n Yv OSW;HY) X A — (Cm)OC"‘)! A= ({0}1 OC)
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We are going to prove now that all these arrows (one for each point of C™ xY),
define an arrow (C™,Ocm)x (Y,0Osy)x A — (C™,O¢n). It is sufficient to prove:

If g°: W — C™ is an holomorphic function such that

9°(my) = 9(p,y)
(2) bey (i) =t g”)pulos)
V(py) € w'n (C"xY), Vv to(py) € oﬂhy(?,!l)

(W' = W{ x W;, W] openin C™,Wj openin C*, W; CU).
And f' : N’ — C™ is an holomorphic function defined on an open set
N'C C™ x C" x C,W! x W} x {0} C N' C W] x W} x C, such that

Y(p,y,2) € N, f'(p,y, 2) € Wy,
df,/dz(pl Y, Z) = go(.f,(py Y, z)’ y)r fl(pl Y, O) =p, then)

(f's f*) = (f, f*) on (Wan W, O, nw:) x (W NWi;NY, Osw,awjny) X A.

By (1.8) and (4.4) we have that:

(Wi N W1, Ow,aw:) X (WaN W0 Y, Osw,nwiny) X A =
= (WL N W) x (W, nW;NY) x {0}, Oo,5,0) (W, nW!)x (WanWnY)x {0} )-

Moreover, f(p,v,0) = f'(p,y,0) = p. Thus, we have to prove that

[t ° Fpw.0)(0,5,0 = [(t 0 F)p,3,0)(0,5,0)
V(py) e(WinW))x (WonW;NY),Vit, €Onyp.

Then, by the characterization of morphisms of analytic rings with domain O,, ,
[6, 1.16], it suffices to prove that this holds for the coordinate functions zj,... 2 ..
Thus we have to prove that [(fi)py.00,5,00 = (f)ey.0los0 =1,... m
That is, for each one of the m coordinates, (that by abuse of notation we shall
wr.ite without subindexes), we should verify f,, 0y — f(lp,y,O) € (0,8,,0). We do
this now.

From (1) and (2) we have (9™)p.y) — (9°)py) € (0,Sy). Let U’ be an
open neighbourhood of y in C*, U’ C U, and hy,... h, holomorphic func-
tions on U’ such that for each y' € U’, S, is generated by {(h1)y,... (hr)y'}-
Take an open neighbourhood H of (p,y) in C™ x C", and holomorphic func-
tions fi,... B : H — C™, such that g~(g,z) — ¢°(q,z) = Y, hi().Bi(q, =)
V(g,z) € H. Consider now a parameter space C” and the function A defined by

)‘(zla ceeZry 4, (E) = gO(q’ 11) + 2¢ zi‘ﬁi(Q’w)l A:C"x H—C™
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It is holomorphic and clearly A(0,q,z) = ¢°(q, z), A(h1(2),..., he(2), ¢, 2) = ¢~ (g, z).

By the classical theory of differential equations, there is an open neighbourhood
V ofO0in C",V=V; x... x V, (where each V; is an open neighbourhood of 0 in
C), an open neighbourhood G of (p,y) in C™ x C™ (G can be considered to be
a product of open subsets of C), an open disk D with center at 0 in C, and an
holomorphic function % : V x G x D — C™ such that:

(¥(21y..- zr,q,2,2),z) € H, v (z1,... zr,q,2,2) €V x G x D,

dy/dz(z1,... 2r,q,2,2) = A(21, ... 2z, ¥(21,-.. 2,q,2,2),2),

P(21,... 2r,q,2,0)=1z.

It follows that there are holomorphic functions §; : V x G x D — C™ such
that:

¥(z1,... 2r,q,2,2) — P(0,... 0,9,2,2) = Y, z:.6i(21, ... 2r,4,2,2),[6,0.10].
Since each h;y € S, C T, and y € Y = supp(Oy/J), then h;(y) = 0 Vi.
Thus, there is an open neighbourhood T' of y in C™ such that for all =z € T,
(hi(z),... hy(z)) € V. It follows that for all (g,z.z) € (GN(C™ x T)) x D (which
is an open neighbourhood of (p,y,0) in C™ x C™ x C) we have:

P(h(z),... he(z),q,2,2) — ¥(0,... 0,q,2,2) =
= Zh,-(a:).&(hl(z),... k. (), ¢, z, 2).

Moreover, by the uniqueness of solution to differential equations,
f'(g,z.2) =9(0,... 0,q,z,2) and f(g,z,z) = Y(hi(z),... h(2),q,2,2), (in
a neighbourhood of (p,y,0)). This finishes the proof of f(p,y,O)"f(lp,y,o) € (0,5,,0).
Thus, we have an arrow (that by abuse of notation we shall denote f) such
that:
f : (Cm,Ocm) X (Y, 05y) X A — (Cm,Ocm), and

df /dz(p,y,2) = g(f(p, v, 2),9) f(P,y,0)=p  Vy€(Y,0Osy)

O

5.4 Lemma. Let (Y,0Osy) € H be defined by two coherent sheaves of ideals
J,S in Oy, where U is an open subset of C*, 8 C J. Let (po,%) EC™ xY, W
an open neighbourhood of (pg,yp) in C™ x C*, W C C™ x U, and ¢"W — C™
an holomorphic function. Let f,f' : W — C™ be holomorphic functions (where
W' is an open subset of C™ x C™ x C such that W x {0} C W/ C W x C, and
for all (p,y,z) € W', f(p,v,2),y) € W, f'(p,y,2z) € W) such that for each one of
the m coordinates, (that as before we denote without subindexes) we have:

-70 -



DUBUC & ZILBER - ON ANALYTIC MODELS OF SDG

(df /dz(p, ¥, 2) — 97 (£(P, Y1 2), ¥)(p0,90,0) € (0,8,0).
(f(p, Y, 0) - p)(po,yo,ﬂ) € (01 Syoi 0)'
(df,/dz(Pv Y, Z) -g~ (f'(p’ Y, z)v !/)(?o,yo,o) (S (01 Syoy 0)-
(f'(P, 9, 0) — P)(po,30,0) € (0,8y,,0).
The'n') (f(P, Y, Z) - f'(p’ Y, z))(pn,yo,o) € (0) Syo ) 0)

Proof. By hypothesis, there is an open neighbourhood H of (po,yo,0),
H C W', and there are holomorphic functions aj,as,b;,b; on H such that their
germs at (po, ¥, 0) belong to (0, S,,,0), and:

Y4 + bl(pa Y, Z),
P+ ba(p, v, 2).

df /dz(p, y, )
df’/dZ(p, Y, z)

HN(.f(P- Y, z),y)+a1(p, Y, Z), f(p1 Y z)
g~(fl(p1 Y, Z), y) + a2(p’ Y, Z), f’(pv Y, Z)

(the functions b, and b, actually do not depend on z).

By the classical theory of differential equations, there are open neighbourhoods
V of 0in C%V =V; x V3,G of (po,y) in C™ x C™, an open disk D centered
at 0in C, and an holomorphic function 4 : V x G x D — CM such that:

d"»b/dz(s) w, P Y, z) = g~(¢(s) w,Dp, Y, z); y) + s, 1)1’(3’ w,p, Y, 0) =p+tw.
By the uniqueness of solution to differential equations, if follows that

f(p1 Y, z) = ¢(a1(p, Y, z)’ bl(Px Y, z)’ »Y Z)
f'(pry, 2) = Y(az(p, v, 2), b2(p, ¥, 2), 2, y, 2).

Since yo € Y = supp(Oy/J), and the germs at (po, yo,0) of the functions
ay,az,by,b; are in S, C J,, we have that a;(po,y0,0) = 0,
a2(Po,¥0,0) = 0, by(po,;¥0,0) = 0, and b2(po,¥0,0) = 0. Then, there is an
open neighbourhood V' of (pg,¥0,0),V’ C H, such that for all (p,y,z) € V,
(al(pa Y, Z), bl(p7 Y, Z)) € Vv (Gz(P, Y, z)) b2(p1 Y, Z)) eV (a'nd (pa y) € G: z€ D) .

Asin 5.3, let »,u be holomorphic functions, 7,u: V xV x G x D — C™ such
that:

1/’(3’; 'wl»pv Y, z) - 1,b(s, w,p,Y, 7') =
= (s' - s).r(s,w, ¢, v',p, y,2) + (v — wu(s,w, &, v, p, y, 2).
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It follows that for (p,y,2) € V',

¢(a1a b17pa Y, z) - d’(aZa b2)p1 Y, z) =
= (al - az)-"(az, by, a4, b1,p, v, z) + (bl - bZ)'u(a2t bz, as, bl,P, Y, z)

That is,

f(p) Y, Z) - f’(pl Y, Z) =
= (al - dz).’l‘(ag, b21 ai, ber, Y, z) + (bl - b2)'u(a2’ b27 ai, bl)pr Y, Z).

Hence, (f — f')(po,y0,0) € (0, Sy, 0). (]

5.5 Theorem. In the topos T, the following holds:

Vge (CmvoC"")M) Jtfe MMxA | .f(pa 0) =D df/dz(p)z) = g(f(p1z))i
where M = (C™,Ogm).

Proof.  The existence is guaranteed by theorem (5.3) and the uniqueness
follows immediately from lemma (5.4). o
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