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FINITELY GENERATED UNIVERSAL VARIETIES
OF DISTRIBUTIVE DOUBLE p-ALGEBRAS

by V. KOUBEK and J. SICHLER

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXV-2 (1994)

Dedicated to the memory of Jan Reiterman

R6sumi: Une cat6gorie C s’appelle universelle si la cat6gorie des graphes est pleine-
ment plongeable dans C. On se propose ici de caract6riser parmi les vari6t6s finiment
engenclr6es de doubles algebres distributives (DAD) celles qui sont universelles. On
montre que pour une variete de DAD finiment engendr6e V les conditions suivantes
sont 6quivalentes: V est universelle; V est monoide-universelle (i.e. tout monoide est
isomorphe au mondide des endomorphismes d’une algebre appartenant a V); V admet
une algebre rigide infinie; tout groupe est isomorphe au monoide des endomorphismes
d’une algebre appartenant a V; V contient une algebre nucl6aire A admettant trois
elements sup-irréductibles et comparables qui ne sont ni minimaux ni maximaux et au
plus trois d’autres elements sup-irréductibles non minimaux et non maximaux, et de
plus telle que tout endomorphisme de A fixant ces elements soit identité. On obtient
comme corollaire que toute variété universelle finiment engendr6e de DAD admet
une sous variété universelle engendree par au plus six algebres finies sous-directement
irréductibles, et qu’aucune variété de DAD engendr6e par une seule algebre finie
et sous-directement irréductible n’est universelle. On montre cependant qu’il existe
une variété universelle de DAD engendr6e par deux algebres finies sous-directement
irr6ductibles.

1. INTRODUCTION

An algebra A = (L, V, A,* ,+ , 0, 1) of type (2, 2, 1,1, 0, 0) is a distributive double
p-al2ebra whenever (L, V, A, 0,1) is a distributive (0,1)-lattice in which * and + are
the respective unary operations of pseudocomplementation and dual pseudocom-
plementation : the operation * is determined by the requirement that z  a* be

equivalent to a A a = 0, while y &#x3E; a+ exactly when y V a = 1.
As shown in [6], the category of all distributive double p-algebras and all their

homomorphisms is universal, that is, it contains a copy of the category of graphs,
and hence also a copy of any category of algebras as a full subcategory, see [12].
This fact implies that every monoid is isomorphic to the endomorphism monoid of
some distributive double p-algebra larger than a given cardinal and, in particular,
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the existence of a proper class of nonisomorphic algebras, that is, algebras with
no nontrivial endomorphisms, cf. [12]. We recall that [6] presented an example of a
finitely generated universal variety of distributive double p-algebras and asked for
a description of all such varieties.

The present paper fully characterizes finitely generated universal varieties of
distributive double p-algebras in structural terms.

To formulate our main result, we define the rudiment Rud(A) of a distributive
double p-algebra A as the smallest sublattice of A containing all pseudocomplements
and dual pseudocomplements of A which is closed also under relative complemen-
tation. We say that an algebra A is rudimentary if Rud(A) = A, and call it a
nucleus whenever Rud(A) = A is directly indecomposable. Finally, for any finite
distributive double p-algebra A, we write Mid(A) for the set of all its join irreducible
elements which are neither maximal nor minimal.

Our aim is to prove the result below.

Theorem 1.1. The following eight properties are equivalent for any finitely gen-
erated variety V of dis tri b u ti ve double p-algebras:

(1) V is universal;
(2) V contains a proper class of non-isomorphic rigid algebras;
(3) V contains an infinite rigid algebra;
(4) V contains a rigid algebra which is not rudimentary;
(5) every finite monoid is isomorphic to the endomorphism monoid of some

algebra from V;
(6) every prime order cyclic group is isomorphic to the endomorphism monoid

of some algebra from V;
(7) V contains a finite nucleus F such that the poset Mid(F) has an order

component C with more than two elements, and such that the identity is
the only endomorphism of F whose fixpoints include Mid(F);

(8) V contains a finite nucleus G such that Mid(G) has a three-element order
component C and at most three other elements, and such that the identity
is the only endomorphism of G whose fixpoints include C.

Let A be a distributive double p-algebra. For any a E A and n &#x3E; 0, set a0(+*)=
a0(*+) = a, and recursively define a(n+1)(+*) = an(+*)+* and a(n+1)(*+) = dn(*+)*+.
Recall that A is of ranae n if and only if it satisfies the identity x(n+1)(+*) = xn(+*) or
its equivalent dual form m(n+l)(*+) = z"(*+). Thus the variety of Boolean algebras,
which is not universal [8], consists of all distributive double p-algebras of range zero.

Following Beazer [1], we let 4) A stand for the determination congruence of a
distributive double p-algebra A, that is, the congruence consisting of all pairs (a, b) E
A2 for which a* = b* and a+ = b+. For any directly indecomposable algebra A of
finite range, the algebra A/4» A is simple [1]. From Davey’s description [3] of duals
of finite subdirectly irreducibles it follows that the determination congruence 4» A is
the least nontrivial congruence - the monolith - of any finite non-simple subdirectly
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irreducible algebra.

Corollary 1.2. If v is a universal finitely generated variety of distributive double
p-atgebras, then

(1) V contains a universal subvariety W generated by a set ofno more than six
nonisomorphic subdirectly irreducible generators with a common monolith
quotient, and

(2) V must have at least two nonisomorphic subdirectly irreducible algebras
which are not simple and have a common monolith quotient.

In the concluding section we give an example of a universal variety of range
one generated by a pair of finite subdirectly irreducibles with a common monolith
quotient.

Double p-algebras whose determination congruence is trivial form the variety R
of regular distributive double p-algebras; this variety is universal [7]. It may be of
some interest to recall that, in fact, [7] demonstrates the universality of a regular
variety generated by finitely many subdirectly irreducibles, none of which has a
finite range.

To prove our main result, Theorem 1.1, we proceed as follows.
Since any universal category satisfies 1.1(2) and 1.1(5), see Pultr and Trnkova

[12], it follows that (1) = (2) and (1) = (5). Implications (2) = (3) and (5) = (6)
are trivial, while (3) = (4) will easily obtain once we show, in Section 3, that all
rudimentary rigid algebras in V are finite. The fourth section demonstrates that
(4) = (7) and (6) = (7), and the two subsequent sections contain respective proofs
of (7) = (8) and (8) = (1).

Throughout the paper, we use Priestley’s duality for distributive (0,1)-lattices
and its restriction to distributive double p-algebras.

2. PRELIMINARIES

We begin with a brief review of the essentials of Priestley’s duality.
Let (X, r, ) be an ordered topological space, that is, let (X, r) be a topological

space and (X, ) a partially ordered set. For any Z C X denote

A subset Z of X is decreasing if (Z] = Z, increasing if [Z) = Z, and clopen if
it is both r-open and T-closed. Any compact ordered topological space (X, T, )
possessing a clopen decreasing set D such that x E D and y E D for any z, y E X
with x y is called a Priestley space. Let P denote the category of all Priestley
spaces and all their continuous order preserving mappings.

Clopen decreasing sets of any Priestley space form a distributive (0,1)-lattice,
and the inverse image map f -1 of any P-morphism f is a (0,1)-homomorphism
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of these lattices. This gives rise to a contravariant functor D : P - D into the
category D of all distributive (0,1)-lattices and all their ( 0,1 )-homomorphisms.

Conversely, for any lattice L E D, let P(L) = (F(L), r, ) be the ordered
topological space for which (F(L), ) is the set F(L) of all prime filters of L or-
dered by the reversed inclusion, and such that all sets {z E F(L) I A E zl and
{x E F(L) I A rt z} with A E L form an open subbasis of T. If h : L - L’
is a morphism in D then h-1 maps P(L’) into P(L) and, according to [9], this
determines a contravariant functor P : D - P.

Theorem 2.1. (Priestley [9], [10]). The two composite functors P o D : P - P
and D o P : D - D are naturally equivalent to the identity functors of their
respective domains. Therefore D is a category dually isomorphic to P.
A morphism f : L - L’ of D is surjective if and only if P( f ) is a both a

homeomorphism and an order isomorphism of P (L’) onto a closed order subspace
of P(L), and it is one-to-one just when P( f ) is surjective. 0

Following is a useful separation property of Priestley spaces.

Proposition 2.2. For any closed disjoint subsets Yo and Y1 of any Priestley space
(X, r, ) there exists a clopen set C containing Yl and disjoint from Yo. If, in

addition, Yo n (Yl] = 0, then C may be chosen to be a clopen decreasing set. 0

Let Min(X) and Maz(X) respectively denote the sets of all minimal and max-
imal elements of an ordered topological space (X, r,:5). For any Y C X, write
Min(Y) = (Y] n Min(X), Maz(Y) = [Y) n Maz(X) and Ezt(Y) = Min(Y) u
Maz(Y). When Y = lyl, we write Min(y) instead of Min(lyl), and similarly for
Maz and Ezt. If (X, r, _) is a Priestley space and y E X, then the sets Min(y)
and Max (y), and hence also their union Ext (y) are nonvoid and closed.

Theorem 2.3. (Priestley [11]). Let P : D --i P be the functor assigning Priestley
spaces to distributive (0,1)-lattices, and let f : L --+ L’ be a morphism in D. Then:

(a) L is a distributive double p-algebra if and only if (Y] is clopen for every
clopen increasing subset Y of P(L) and [W) is clopen for any clopen de-
creasing set W; if this is the case, then W * = P(L) B [W) = P(L) B [Min(W))
and W+ = (P(L)BW] = (Max(P(L)) B W] for any clopen decreasing subset
W of P(L);

(b) f is a double p-algebra homomorphism iff P( f )(Min(x)) = Min(P(f)(z))
and P(f)(Maz(z)) = Max(P( f )(x)) for every z E P(L’);

(c) the sets Min(P(A)) and Maz(P(A)) are closed for any distributive double
p-algebra A. 0

The Priestley space P(A) of a distributive double p-algebra A will be called a dp-
space, and the dual of a double p-algebra homomorphism a dp-maD. We note that a
dp-map P( f ) : P(B) - P(A) is the Priestley dual of an injective homomorphism
f : A - B exactly when it is surjective. A double p-algebra homomorphism
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f : A - B is surjective if and only if P( f ) : P(B) -- P(A) is a homeomorphism
and order isomorphism of P(B) onto a closed order subspace Z C P(A) satisfying
Ezt(Z) g Z. Any such subspace Z will be called a closed c-set. The kernel Ker(f)
of f then consists of all pairs (d, e) E A2 such that D fl Z = E n Z for the clopen
decreasing sets D, E respectively representing d, e E A. It follows that congruences
of A are in one-to-one order-reversing correspondence with closed c-sets in P(A).

For any distributive double p-algebra A, let Cen(A) be the center of A, the set
of all complemented elements of A.

For any filter F of Cen(A), let 9(F) be the least congruence of A that collapses F.
According to Beazer [2], the congruence 9(F) consists of all (z, y) E A2 satisfying
z A f = y A f for some f E F.

If c E Cen(A)B{0,1}, then the complement Xl = P(A)BXo of the nonvoid clopen
decreasing set Xo C P (A) representing c is also nonvoid, clopen and decreasing, and
hence it represents the complement c’ of c. But then every clopen decreasing E C
P(A) is a disjoint union of clopen decreasing sets E rl Xo and EnX1. Furthermore,
if E; C X; are decreasing and clopen in Xi for i = 0,1, then E = Eo U El is

decreasing and clopen in P(A). Hence the algebra A is isomorphic to the product
D(Xo) x D(Xi) whose factors D(Xo) = A/O([c)) and D(XI) :::: A/O([c’)) are
nontrivial.

Conversely, if algebras Ao and A1 are nontrivial, and if A = Ao x .4i, then the
dp-space P(A) is a disjoint union of nonvoid clopen decreasing sets Xi= P(Ai)
with i = 0,1. But then Xo represents some c E Cen(A) whose complement c’ is
represented by X, and, for i = 0, 1, the closed c-set Xi represents the kernel of the
projection A - A; . If d, e E A are respectively represented by clopen decreasing
sets D, E C P(A), then D fl Xo = E n Xo exactly when (d, e) E 0([c)), so that the
closed c-set Xo is the Priestley dual of O ([c)), and Xl similarly represents O ( [c’)).

Altogether, nontrivial direct decompositions of a distributive double p-algebra A
are in one-to-one correspondence with elements c E Cen(A) B {0, 11. For any such
c, we have A= A/O ( [c) ) x A/O ( [c’)). Furthermore, a distributive double p-algebra
A is directly indecomposable exactly when Cen(A) = {0,1}.

Let f : A -· D be a homomorphism from A to a directly indecomposable
algebra D. Since Cen(D) = {0,1}, the set Q = f - 1 111 fl Cen(A) is a prime filter
of the Boolean algebra Cen(A) and, because f(q) = f (1) for every q E Q, the
kernel of f contains the least congruence O(Q) of A collapsing Q. If aQ : A -

A/9(Q) is the homomorphism with Ker(aQ) = 9(Q), then f = f’ o aQ for some
f’ : A/9(Q) - D. For any prime filter Q of Cen(A), the algebra AQ = AIO(Q),
called a component of A, is then a maximal directly indecomposable quotient of A
(a rationale for this terminology will soon become apparent).

If f : A - B is a homomorphism and /3R : B - BR is the natural homomor-
phism onto a component BR of B, then Q = f-1 (R) rl Cen(A) is a prime filter of
Cen(A) and BR( f (q)) . = 1 for every q E Q. Thus Ker(/3R o f ) D 9(Q) = Ker(aQ),
and there exists a homomorphism f’ : AQ - BR such that f’ o aQ =BR o f . The
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claim below partially complements this observation.

Lemma 2.4. If f : A - B is a homomorphism of distributive double p-algebras
which is one-to-one on Cen(A), then for every component AQ of A there exist a
component BR of B and a homomorphism f’ : AQ - BR such that I’ oOQ = f3R o f
for the natural surjections aQ : A - AQ and f3R : B - BR.

Prvof. Since the restriction of f to Cen(A) is a one-to-one homomorphism of
Cen(A) into Cen(B), the congruence extension property of Boolean algebras im-
plies the existence of a prime filter R C Cen(B) with f -1 (R) = Q. But then

BR( f (q)) = 1 for all q E Q, that is, Ker(aQ) = O(Q) g Ker(BR o f), and the claim
follows. 0

Next we intend to note that components of a distributive double p-algebra A
from a variety V of finite range correspond to order components of its dp-space
P(A).
We recall that elements z and y of a poset (X, ) are order connected when-

ever there exists a sequence z - zo, Z1, ..., zk = y in which zi is comparable to
z;+1 for i = 0,1, ... , k - 1. The classes of the equivalence c formed by all pairs
of connected elements, that is, the maximal connected subsets in (X, ), are the
order components of (X, ). It is clear that C is a component of a dp-space (X, r, )
just when Ezt(C) is a component of its closed order subspace Ext(X ).

Any finitely generated variety V of distributive double p-algebras clearly satis-
fies, for some integer n &#x3E; 0, the identity x(n+1)(+*) = xn (+*) and its equivalent
x(n+1) (*+) xn (*+), that is, any finitely generated variety V consists of algebras
of range n. According to [7], all order components of dp-spaces of such algebras
are closed. If Co and C1 are distinct components of the dp-space X of some al-
gebra A E V then, by 2.2, there exists a clopen decreasing set B D C1 such that
Co C X B B. Since B*+ = ([B)] is clopen by 2.3 and because A is of range n,
the clopen set Bn(*+) D Cl is both increasing and decreasing, and disjoint from
Co. Any two components of X can be thus separated by complementary clopen
decreasing sets and, as a result, the quotient space Xle obtained by collapsing all
order components of X is the Priestley dual of Cen(A).

It follows that the dp-space X = P(A) of any algebra A of finite range is the
disjoint union of its order components CQ = P(AQ) indexed by Q E P(Cen(A)).
In algebraic terms, any algebra A of finite range is subdirect in the product II(AQ j 
Q E P(Cen(A))) of its ’algebraic’ components AQ = D(CQ).

Next we describe dp-spaces of subdirectly irreducible algebras of finite range.
If Y = P(B) is the dual of a subdirectly irreducible algebra B of a finite range

then Y must be connected, and hence the dp-space of any nontrivial quotient alge-
bra B’ of B must contain the connected closed set Ext (Y) . Since Y has a unique
maximal closed order subspace Z satisfying Ext(Z) C Z that represents the mono-
lith of B, and because all points of Y B Ext (Y) are closed, either Y = Ext (Y) and
B is simple, or Y B Ezt(Y) is a singleton which is clopen because Ezt(Y) is closed
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in Y. Since the converse is clear, following Davey [3] we conclude that B is simple
if and only if Y = Ext (Y) is connected, and that B is subdirectly irreducible but
not simple just when Y is connected and Y B Ezt(Y) is a clopen singleton; in the
latter case, Ext(Y) is the Priestley dual of the quotient of B modulo its monolith.

For any algebra A of finite range and any z E X = P(A), let K(z) denote the
component of X containing z. The subposet E(x)= fzl U Ext(K(x)) of X is then
closed in X and Eat(E(z)) = Ext(K(x)) g E(z), so that E(z) is the dp-space of
a subdirectly irreducible quotient of A. Since X is the union of all its subspaces
E(z) with x E X, the algebra A is a subdirect product of subdirectly irreducible
algebras D(E(z)) with z E X.

3. RUDIMENTARY ALGEBRAS AND NUCLEI

For any double p-algebra A, let L(A) be the sublattice of A generated by the set

of all pseudocomplements and dual pseudocomplements of A. Clearly, any sublattice
of A containing Q(A) is a subalgebra of A. Recall that rudiment of A is the least
sublattice of A containing Q(A) and closed under relative complementation. Thus
L(A) g Rud(A), and Rud(A) is the subalgebra of A obtained by intersecting all
sublattices S C A that contain L(A) and include every a E A for which there is an
sES with aVs E S and a A sE S.
When Rud(A) = A, we say that A is rudimentary. Any directly indecomposable

and rudimentary algebra is called a nucleus.
The set R(A) consisting of all a E A such that g(a) = h(a) for any two homo-

morphisms g, h : A - B that coincide on Q(A) is a subalgebra of A containing
L(A). From the distributive law it immediately follows that R(A) is closed under
relative complementation; hence Rud(A) C R(A).
Lemma 3.1. If A is a distributive double p-algebra, then:

(1) R(A) = Rud(A); that is, R(A) is the least sublattice of A that contains
Q(A) and is closed under relative complementation;

(2) the dual h of the inclusion Rud(A) C A satisfies h(z) = h(y) just when
Ezt(z) = Ezt(y) in P(A);

(3) the order of the Priestley dual of Rud(A) is the least partial order containing
all pairs (h(z), h(y)) for which x  y in the dual of A;

(4) A is rudimentary if and only if Ext(z) :0 Ezt(y) for any two distinct ele-
ments z, y of its Priestley dual.

Proof. Let X denote the dp-space of A. Then, for any z E X and any clopen
decreasing D C X, we have z E X B [D) = D* just when Min(z) n D = 0, while
ac E (X B D] = D+ if and only if Maz(z) D 0 0. It easily follows that any two
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prime ideals z, y of A satisfy z n Q(A) = y fl Q(A) just when Ezt(z) = Ezt(y)
in X . But then clearly z rl L(A) = y rl L(A) and, because ac, y are prime ideals,
ae n Rud(A) = y n Rud(A). Therefore z, y coincide on Rud(A) if and only if
Ext(x) = Ext (y) in the dp-space X = P(A) of A. This demonstrates (2).

For any d E A B Rud(A) there are prime ideals z, y E X such that d E z, d 0 y
and z n Rud(A) = y n Rud(A), see, for instance, p. 141 of [4]. In the dp-space X
of A, this means the existence of a clopen decreasing set D C X and z, y E X with
Ezt(z) = Ext(y) for which y E D and x E D. To show that D E A B R(A), let
Y = Ext(X) U {e} be a proper extension of the closed subspace Ext(X) of X by a
clopen singleton {e} for which Ezt(e) = Ezt(z) = Ezt(y). Then Y is a dp-space.
For z E {x, yl, let f, : Y - X be the extension of the identity mapping of Ext(X)
determined by f,(e) = z. Then D(fx) and D(fy) agree on Q(A), by 2.3. Since f--
and fy are obviously dp-maps such that e E f-1 s(D) and e E f-1 y (D), it follows that
d E A B R(A). Therefore (1) holds.

Since Rud(A) is the largest subalgebra of A whose dual is carried by the quotient
space h(X), the least order induced by h defines a dp-space of Rud(A), so that (3)
holds. Claim (4) is obviously true. 0

Remark 3.2. The following three claims are easily established:

(a) The dual h of the inclusion Rud(A) C A is one-to-one on Max (X) and on
Min(X), but not on Ext (X): in fact, it collapses those (and only those)
components C of X for which Max(C) and Min(C) are singletons.

(b) With any Priestley space we may associate its extremal pre-order E defined
by z E y just when Min(z) ç Min(y) and Maz(z) D Maz(y). Then
Ext(x) = Eat(y) is equivalent to z E y E a for z, y E X. The quotient of
E on h(X ) is the partial order which, together with the quotient topology
of h(X ), determines the dp-space of the subalgebra L(A).

(c) Any sublattice S of A satisfying L(A) g S C Rud(A) is a double p-algebra
such that L(S) = L(A); by the congruence extension property, the algebra
S is also rudimentary.

Lemma 3.3. Let f : A - B be a homomorphism of distributive double p-
algebras. Then f (Rud(A)) C Rud(B). Moreover, if A is rudimentary and f is
surjective, then B is rudimentary. In particular, every component of a rudimentary
algebra is a nucleus.

Proof. To prove the first claim, let go, 91 : B --+ C be any two homomorphisms for
which go ( L(B) = gi lL(B). Since f (L(A)) C L(B), the homomorphisms go o f
and 910 I coincide on L(A), and hence also on Rud(A). But then go coincides with
gi on f (Rud(A)), and f (Rud(A)) C Rud(B) follows from the definition of Rud(B).

Secondly, if f : A - B is surjective and A = Rud(A), then B = f (A) =
f (Rud(A)) g Rud(B) as required. Cl

We say that a double p-algebra A is uniform if all its components have isomorphic
rudiments. For an algebra A of a finite range, this means that its quotients -
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represented by the (closed) order components C of X = P(A) - have isomorphic
rudiments. 

Any finitely generated variety V of distributive double p-algebras contains only
finitely many nonisomorphic nuclei, all of them finite. The claim below shows that
the existence of homomorphisms determines a partial order on isomorphism classes
of finite nuclei.

Lemma 3.4. Any endomorphism of a finite nucleus is invertible. Consequently, if
F and G are nuclei for which there are homomorphisms F - G and G - F,
then P 25 G.

Proof. Write X = P(F). Let h : X - X be a dp-map. Then h(Ext(X)) =
Ext (X) because Ext (X ) is connected; since Ext(X) is finite, h permutes members
of Ext(X). If h(z) = h(y), then h(Ezt(z)) = Ezt(h(z)) = Ezt(h(y») = h(Ezt(y)).
But then Ezt(x) = Ext(y) because Ezt(X) is one-to-one; since F is rudimen-
tary, we obtain z = y. Therefore h is invertible.

With f , g as above, the composites g o f and f o g are automorphisms, so that
(g o f )k = idF and (f o g)k - idG for some integer k &#x3E; 1. Hence f is an isomorphism
of F onto G. 0

Proposition 3.5. Any distributive double p-algebra A from a finitely generated
variety V has a uniform direct factor.

Proof. Let K denote the finite set of non-isomorphic nuclei that occur as rudiments
of maximal directly indecomposable factors of the algebra A. By 3.4, there exists a
maximal M E K in the sense that there is no homomorphism from M to any N E
KB {M}. We aim to exhibit a direct factor B of A such that Rud(B/O(R))= M
for every prime filter R of Cen(B).

For any prime filter Q C Cen(A) of the center of A we have AQ = A/9(Q) and
Rud(AQ ) E K. Write

It is clear that I, J form a decomposition of P = P(Cen(A)). Suppose that I= 0,
for else there is nothing to prove.

If D is a component of S, = II{Rud(AQ) I Q E I}, then D = SI/O(U) for
some prime filter U of the center Cen(SI ) = 21. But then U is an ultrafilter on
the set I, and hence D = S¡j0(U) is an ultraproduct of finite algebras isomorphic
to members of the finite set K B {M}. It follows that every component of Sj is

isomorphic to a member of K B {M}.
Let aQ : A - AQ be the surjective homomorphism with Ker(03B1Q) - O(Q),

and let a homomorphism f : Rud(A) - Si be defined by f (s) (Q) = aQ (a) for
all s E Rud(A) and Q E I. For any c E Cen(Rud(A)) with f (c) = 1 we then
have (c, 1) E Ker(aQ) = 0(Q) for every Q E I, and hence also c n I. Should
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n I = {1}, the homomorphism f would be one-to-one on Cen(Rud(A)) and, by
2.4, any component of Rud(A) isomorphic to M would have a homomorphism to a
component of SI isomorphic to a member of K B {M}. The choice of M makes this
impossible, however, and we must have n I={1}.

Select any c E Cen(Rud(A)) = Cen(A) with the complement J E n I B {1}.
Then B = A/O([c)) is a nontrivial direct factor of A; let k : A - B be the

homomorphism with Ker(k) = 0([c)). To show that B is uniform, choose any
prime filter R C Cen(B), and let 8R : B - BR be the surjective homomorphism
with Ker(aR) = 9(R). Then Q = k-1(R) n Cen(A) is a prime filter of Cen(A),
and c E Q. Should Q E I, then 0 = c A c’ E Q, a contradiction. Thus Q E J and

Rud(AQ) = M.
From c E Q it follows that O(Q) = Ker(aQ) g Ker(BR o k), and we need only

justify the reverse inclusion. To do this, choose any z, y E Ker(BR o k). Since

Ker(QR) = 9(R), there exists an r E R such that k(z) A r = k(y) A r. The

homomorphism k is surjective, so that k(a) = r for some a E A. But A is of finite
range, so that q = an(+*) E Cen(A) for some n &#x3E; 1; clearly k(q) = r. But then

q E Q and k(znq) = k(yAq). From Ker(k) = 0([c)) we obtain aA(qAc) = yA(qAc),
and then (z, y) E 0(Q) because q A c E Q.

Altogether, B/O(R)= AQ and hence also Rud(B/O(R)) = Rud(AQ) = M, as
was to be shown. 0

4. NUCLEI IN UNIVERSAL VARIETIES

In this section we show that every finitely generated variety V of distributive
double p-algebras which satisfies 1.1(4) or 1.1(6) contains a nucleus F (which is, of
course, finite) such that

(X1) there are three distinct non-extremal order connected join irreducible ele-
ments of F, and

(X2) the identity map is the only endomorphism of F which fixes every non-
extremal join irreducible element of F.

Assume that V either contains algebras with endomorphism monoids isomorphic
to arbitrarily large prime order cyclic groups, or a rigid algebra which is not a
product of finitely many nuclei. Since any finitely generated variety V contains
only finitely many non-isomorphic nuclei, the latter requirement is satisfied by any
infinite rigid algebra in V.
We shall consider dp-spaces rather than the algebras themselves, and extend all

algebraic terminology to corresponding dp-spaces.
In terms of dp-spaces, we aim to exhibit a finite connected poset (X, ) dual to

some algebra in V in which Ezt(a) = Ezt(y) only when z = y, and such that

(P1) Mid(X) = X B Ezt(X) has a component with at least three elements, and
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(P2) the identity of X is the only dp-map f : X - X whose fixpoints include
Mid(X).

Extending our earlier notation, for any subset U of a dp-space X , we write K(U)
for the set of all components of X intersecting U. If X is dual to an algebra of finite
range then K(U) is a union of components; furthermore,

K(U) is closed whenever U is, and
K(U) is clopen for any clopen U C X which is increasing or decreasing.

The lemma below is of central importance.
Lemma 4.1. If X is the dp-space of a uniform algebra from a finitely generated
variety, and if Y is the dp-space of the (finite) nucleus isomorphic to the rudiment
of every component of X, then there exists a surjective dp-map h : X - Y.

Proof. With no loss of generality, we may assume that the space X is rudimentary.
We aim to show that every component C of the rudimentary uniform space X

is contained in a clopen union Xc of components of X for which there exists a
surjective dp-map hc : Xc - C. The existence of the dpmap h : X - Y then
follows immediately from the compactness of X and the fact that C is isomorphic
to Y.

Let C be an arbitrary component of X. Since there is nothing to prove when C
is a singleton, we shall assume that Max(C) n Min(C) = 0.

(a) First we construct a clopen union D D C of components of X and a family
of natural dp-maps fc’ : Ezt(C) -&#x3E; Ezt(C’) indexed by components C’ C D.

Since C is finite and Max(X) is closed, for every z E Min(C) there exists a
clopen decreasing set dAz C X such that dA, n C = {z} and dAx rl Maz(X) = 0.
Then the set U{dAzl z E Min(C)} is clopen decreasing and disjoint from Maz(X).
Consequently, for each u E Maz(C) there is a clopen increasing set iA. such that
iAg n C = Jul and iAu n dAz = 0 for all z E Min(C). For each z E Min(C) and
u E Max(C), respectively, set

furthermore, denote

Since (dAt] = dAt for all t E Min(C) and [iA,,) = iAv for all v E Max(C), the
finiteness of C and the fact that X is a dp-space imply that every dBx is clopen
decreasing, and that every iB. is clopen increasing. Moreover, members of the
family

are nonvoid and pairwise disjoint.
The set D = n{K(W) I W E B) 2 C is a clopen union of components of X.

Thus each set dDz = dBZ rl D with z E Min(C) is nonvoid, clopen and decreasing,



150

while iDu = iBu n D is nonvoid, clopen and increasing for each u E Maz(C). All
of these sets are pairwise disjoint.

Let C’ C D be any component of X. Since Min(C’) is finite and bijective to
Min(C), and because each dD, is decreasing, the set dD, n Min(C’) is nonvoid
for every z E Min(C); having recalled that the sets dD. are pairwise disjoint, we
conclude that every dD, n Min(C’) must be a singleton. A similar observation
applies to iDid n Maz(C’). Hence there is a bijection fc, : Ezt(C) - Ezt(C’)
with fc, (Maz (C)) = Maz(C’) and fc, (Min(C)) = Min(C’) such that

{fc’ (z)} = dD, fl Min(C’) for all z E Min(C), and
{fc’ (u)} = iDu fl Maz(C’) for all u E Maz(C).

An analogous argument shows that {fc’· (z)} = dXz n Min(C’) = dBzn Min(C’)
for all z E Min(C) and {fc’ (u)}= iXu n Max(C’)= iBu n Maz(C’) for all
u E Maz(C). If z u in Ezt(C), then fc’ (x)  fc, (u) by the definition of dB..;
since Ext (C’) is isomorphic to Ext(C) and both are finite, we conclude that the
bijection fc, is an order isomorphism - and hence a dp-map - of Ezt( C) onto
Ezt(C’).

For any p E dBz n C’, the set Min(p) is nonvoid and Min(p) ç dB, n Min(C’) =
{fc,(z)}; moreover, Maa(p) D {fc’ (u)l u E Maz(z)l = Max( fc’ (z)). Hence

fc· (z)  p and p E fc, (z) in the extremal order :5E of the rudimentary poset C’,
and this is possible only when p = fc, (z). Therefore, for any component C’ C D,
we have

, and

where the second claim follows dually from the definition of iBu . Consequently,

Together with the finiteness of Ext(C), this implies that Min(D) and Maz(D)
are clopen sets.

(b) Next we exhibit clopen sets needed in considerations of partial maps between
components of the clopen set D.

For any Z C Min(C) and U C Max(C), write dDz = UldD, I z E Z} and
iDu = U(iDu j u E U}. The following equalities are easily verified:
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and, dually,

Since Ext (C) is finite and all sets dD, and iD. are clopen in the clopen dpspace
D, all right hand sides of the above six equalities define sets that are clopen in X.
Thus the set S(Z, U) = P(Z) rl R(U) below is also clopen:

For any z E D, write . ) and
is the bijection of Ezt(C) onto Ext(K(x)) defined in (a). Clearly, the

Finally, for each x E D we now write 
is clopen, ac E M(x) and

equivalently, y E M(x) exactly when fK(y)(f-1 K(x) (Ext(x))) = Ezt(y). 
Since D is rudimentary, the set M(z) n C’ has at most one element for any

component C’ C D. Moreover, since each fc, : Ezt(C) --r Ext(C’) is a dp-map
and because C’ is rudimentary, in fact we have M(z) n C’={fc’ (f-1 K(x) {x})} for
every z E Ext (D).

(c) For each dp-map g : Ezt(C) - Ezt(C) we define a set Pg to be the union
of all components C’ C D for which fc, o g extends to a dp-map k : C --i C’.

Next we show that the finitely many sets Pg form a decomposition of D.
By the hypothesis, for any component C’ of D there exists an isomorphism

a : C - C’. The composite g = f-1 C’ o (a Ezt(C)) is, clearly, an automorphism
g of Ezt(C) such that fc, o g = a lExt (C) extends to the dp-map a : C - C’.
This shows that every component C’ of D lies in some Pg.

If C’ c Pg n Pg, and C" C Pg then there exist dp-maps h, h’ and k such that
h [ Ext(C) = fC’ o g, h’ Ext(C) = fc, o g’ and k [ Ext(C) = /c" o g.
Since the composite dp-map k o h-1 o h’ : C - C" extends the isomorphism

fc , of-1 C’  ofC’ o g’ = ICII o g’, we have C" C Pg’ . Hence Pg g Pg, and, by symmetry,
Pg’ = Pg. Therefore, the sets Pg form a finite decomposition of D as claimed.
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(d) Next we show that every set P. is closed; from (c) it then follows that every
Pg is, in fact, clopen. To this end, for any z, y E D set

Since M(z) and M(y) are closed, so is T(z, y), and hence the union K(T(z, y)) of
all components intersecting T(x, y) is closed as well. Our claim will thus be proved
once we show that, for a component C’ C Pg,

Let C’ and C" be components contained in Pg and let z &#x3E; y in C’. If k’ :
C - C’ and k" : C - C" are dp-maps such that k’ l Ezt(C) - fc, o g and
k" Ext (C) = fC" o g, then k = k" o (k’ ) -1 : C’ - C" is a dp-map extending
fc" of f-1 C’. But then Ext(k(x)) = k(Ext(x)) = ( fC"of-1C’)(Ext(x)) = fC" (Mn(x) U
Mz(x)), so that k(a) E M(x); similarly we find that k(y) E M(y). In addition,
k(x) &#x3E; k(y) because k preserves order, so that k(y) E (M(x)] fl M(y) = T(z, y)
and, consequently, C" C K (T (x, y)).

To prove the reverse inclusion, we need to show that for any component C" C P9,
with Pg, fl Pg = 0 there exists a pair z &#x3E; y in C’ such that T (x, y) fl C" = 0.

Recall that, for any z E C’, either M(z) rl C" = 0 or M(z) n C" = z" with
Ext(z") = fC"(Mn(x)UMx(x)) = f"(f-1C’(Ext(x)))). This fact allows us to define
a mapping r. : C’ - C" by setting x(x) = M(x) n C" whenever the latter
set is nonvoid. Should K be a dp-map, then the dp-map Ko fc, : Ezt(C) - Ezt(C")
would coincide with fc,,. If k’ : C - C’ is the dp-map extending fc, o g, then
(K o k’) r Ezt(C) = (K, o fc, o g) l Ezt(C) - (fc,, o g) l Ezt(C), that is, the
composite If, o k’ extends fc,, o g in a contradiction to the choice of C". Hence K
cannot be a dp-map.

If the domain of K does not include all of C’, then M(x) n C" = 0 for some z E C’
and, by definition, T(x, y) n C" = T(z, z) fl C" = 0 whenever z &#x3E; y or z &#x3E; z in C’.
The existence of such y or z follows from the fact that C’ is not a singleton.

Suppose that K : C’ 2013 C" is defined on all of C’, so that (K(z)) = M(z) n
C" and Ext(K(x)) = (fc,, o f-1C’)(Ext(x)) for all z E C’. Since C’ and C" are

isomorphic finite nuclei, the mapping is a bijection of C’ onto C" that maps
Ezt(C’) isomorphically onto Ext(C"). Since K is not a dp-map, there must exist a
pair y  z in C’ such that K(y) rc(z) in C". But then T(z, y) fl C" = (K(x)]n
rc(y) = 0 again.

Every set Pg is thus clopen in D, and hence also in the original dp-space X.
(e) Select g = idEzt(c) = id. Then Xc = P;d is a clopen union of components

of X, and for every component C’ C Xc there exists a dp-map kC’, of C onto C’
that extends fc,. For every z E C we thus have M(x) n C’ = {kC’(x)}. Since each
M(z) is clopen, a mapping hc : Xc - C defined by hcllzl = M(z) for all z E C
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is continuous; it is a dp-map because its restriction to any component C’ of Xc is
the inverse of the dp-map kc,.

Together with the initial remarks, this completes the proof. D

In algebraic terms, Lemma 4.1 says that any uniform algebra from a finitely gen-
erated variety V contains an isomorphic copy of its nucleus F. If S is a rudimentary
uniform algebra, then F is also a homomorphic image of S and, consequently, every
rudimentary uniform rigid algebra must be a nucleus.
We say that the dp-space X = P (A) of an algebra A E V is Y-c clic whenever

the endomorphism monoid End(A) is isomorphic to the cyclic group Cp of an odd
prime order p &#x3E;l Ext (P(F)) for any nucleus F E V. The space X is said to be
V -rigid whenever it is rigid and non-rudimentary.
Lemma 4.2. Any dp-map f : X - X of a V -cyclic space maps Ext(X) identi-
cally onto itself and, consequently, every V -cyclic space is non-rudimentary.

Proof. Let f : X - X be any non-identity dp-map. Suppose that there exists a
component C of X for which f (C) n C = 0. Since f is invertible, f (C) is another
component of X and, by 2.2, there exists a clopen decreasing set B such that C C B
and f (C) g X B B. Since X represents an algebra of a finite range n, the clopen
decreasing set W = B"(+*) is also increasing, contains C, and is disjoint from f (C).
Therefore A = n{W B fi (W) l  i E {1, 2, ... p - 1}} is again clopen, both decreasing
and increasing, and contains C; furthermore, fi (A) intersects fj (A) only when
i = j E {0, 1, ... ,p - 1}.

It is now routine to verify that the mapping g : X - X defined as the identity
on X B (A U f (A)) extended by g A = f A and g r (f(A)) = f- 1 r (f(A)) is an
invertible dp-map of order two, in contradiction to the hypothesis.

Therefore f (C) = C, and hence also f (Ezt(C)) = Ezt(C) for every component
C of X; since the prime order p of f exceeds lExt(C) 1, all orbits of f on Ezt(C)
must be trivial. Finally, if X were rudimentary then, by 3.1, f would have to be
the identity on X. 0

We say that S is a set of mutually rigid objects if the identity morphisms are the
only morphisms between members of S.

Lemma 4.3. Any rigid dp-space X with D(X) E V which is not a finite disjoint
union of m u t ually rigid nuclei must contain a Y-rigid uniform su bspace Y repre-
senting a direct fac tor of D(X).
Proof. Recall that 4.1 implies that any rudimentary uniform rigid algebra from V
is a nucleus.

Let X be a rigid dp-space with D(X) E V. By 3.5, the space X contains a
uniform subspace Ho representing a direct factor of D(X ). The rigidity of X implies
that both Ho and X1 = X B Ho are rigid. If Ho is not rudimentary, then Y = Ho
is V-rigid, and the conclusion follows. If Ho is rudimentary, and hence a nucleus,
we apply 3.5 to the rigid dp-space X1 = X B Ho to obtain a uniform subspace H1
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of X1 representing a direct factor of D(X1). Again, if H1 is not rudimentary, then
Y = Hl is V-rigid, and we are done. Else H, is a nucleus and, because X is rigid,
there are no dp-maps between the rigid nuclei Ho and Hl. An inductive extension
of this argument completes the proof because V can contain only finitely many
mutually rigid nuclei. D

Lemma 4.4. Any Y-cyclic dp-space X contains a uniform subspaee Y representing
a direct factor of D(X) that is either v-cyclic or V-rigid.

Proof. As in 4.3, we note that every rigid rudimentary algebra in V is a nucleus.
If the V-cyclic space X is not uniform then, according to 3.5, it must contain

a uniform subspace Ho representing a direct factor of D(X). Since the respective
endomorphism monoids satisfy End(X) = End(Ho) x End(X B Ho), and because
End(X ) is isomorphic to a prime order cyclic group, one of the subspaces Ho, XBH0
must be rigid and the other Y-cyclic. There is nothing to prove if Ho is V-cyclic or
Y-rigid. In the remaining case, the space Ha is rigid and rudimentary - and hence
a nucleus - while X, = X B Ho must be V-cyclic. Applying the above argument
to X1 instead of X and then extending it inductively, we find that this procedure
terminates after finitely many steps because the variety V contains only a finite
number of nuclei. But then the terminal step supplies a uniform subspace Y of X
representing a uniform direct factor of D(X) that is either V-cyclic or V-rigid. 0

Thus, in particular, any finitely generated universal variety contains a non-
rudimentary uniform algebra A for which End(A) is a finite group.
Lemma 4.5. Let X be a uniform dp-space of an algebra from V such that all
endomorphisms of X are invertible. Then either X is a chain with at most two
elements or else Ext(e) = Ext(z) for all e E Ezt(X) and z E X B (e).

Proof. If X has a singleton component fel, then the constant map k : X - X
with k(X) = {e} is an idempotent endomorphism of X, and k is invertible only
when X = {e}. Secondly, assume that X has no singleton components and that
{c,d} with c  d is a component of Ezt(X). Since Max(X) and Min(X) are
compact monotone disjoint sets, 2.2 supplies a clopen decreasing set C containing
Min(X) and disjoint from Max(X). But then the mapping f : X --+ X given by
f-1 {c} = C and f -1 {d} = X B C is an idempotent dp-map that is invertible only
when X = {c, d}.

Suppose that all components of Ext (X) have more than two elements, so that
Ext(d) :A Ezt(e) whenever d, e E Ezt(X) are distinct. Let h : X - .S be the

surjective dp-map dual to the inclusion homomorphism of the rudiment D(S) =
Rud(D(X)) into D(X). Then h is bijective on Ezt(X), so that we may replace
Ext(S) C S by Ext(X). For any e E Ezt(X), the set Ke = lx E C I Ext(z) =
Ext(e)} = h-1{e} is closed because h is continuous, and these sets are pairwise
disjoint. Define g : X - X by g(z) = e for every e E Ezt(X) and all z EKe, and
by g(z) = z for all other z E X. To prove that g is a dp-map, it suffices to show
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that it is continuous. Observe that, for every Z C X,

If Z is closed then g-1(Z) is closed whenever U{Ke I e E Ext(X)} is open
because h is continuous and Ext(S) - Ezt(X) is closed. Let Y be the nucleus

isomorphic to the rudiment of any component of X , and let f : X - Y be the
surjective dp-map from 4.1. Then f-1(Ext(Y)) = U{Ke I e E Ext (X)} and,
because Y is finite and f is continuous, it follows that the set U { Ke e E Ext(X)}
is, in fact, clopen.

Thus g : X - X is a dp-map. Since all such maps are invertible, it follows that
j Ke 1= 1 for every e E Ext(X). But e E Ke and the claim follows. 0

In particular, by 3.1, for any V-rigid or V-cyclic space X , the dual h : X --i
S of the inclusion of the rudiment Rud(D(X)) into the algebra D(X) satisfies

h-1 (h{e})= {e} for all e E Ext(X).
Lemma 4.6. Let Y = P(F), where F is the nucleus associated with the dual D(X)
of a uniform Y-rigid or V-cyclic dp-space X. Then Mid(Y) = Y B Ezt(Y) has an
order component with more than two elements.

Proof. Suppose, for contradiction, that all components of Mid(Y) are either single-
tons or two-element chains.

Let h : X - Y be the dp-map from 4.1, and let C be an arbitrarily selected
component of X . Then the restriction k = h ( C maps C onto Y. Since k is a

dp-map, k(u)  k(v) is equivalent to u  v whenever u or v is extremal. By 4.5,
k is the identity on Ezt(C) = Ezt(Y) and k(Mid(C)) = Mid(Y) and, by 3.1, the
order of Y = k(C) is the induced quotient order. Since any order component of

Mid(Y) has at most two elements, k(u)  k(v) in Mid(Y) if and only if u’  v’ in

Mid(C) for some u’ and v’ satisfying k(u’) = k(u) and k(v’) = k(v). Hence there
exists an order preserving mapping f : Y - C for which k o f = idY. Since Y is
finite and f is the identity on Ext (Y) = Ext (C), it follows that f is a dp-map. The
composite f o h : X - X is invertible only when h = k is one-to-one. But then
X is isomorphic to the rudimentary space Y, so that X can be neither V-rigid nor,
by 4.2, V-cyclic. 0

The proof of (P1) is now complete. The claim below provides a final step towards
(P2).
Lemma 4.7. Assume the hypothesis of 4.6. Then the identity is the only endo-
morphism of F whose d ual fixes Mid(Y) elementyvise.

Proof. Set Y = P(F) as in 4.6, and suppose that f : Y - Y is a dp-map such
that f (y) = y for every y E Mid(Y).

Let h : X - Y be the dp-map from 4.1, and let CQ be a component of X. Then
h maps Ext(CQ) bijectively onto Ezt(Y) and h(Mid(Cq)) = Mid(Y), so that there
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is a unique mapping gQ : CQ - CQ such that 9Q is the identity on Mid(CQ) and
(foh) lCQ= (h o gQ) l CQ. By 3.4, the dp-map f is a permutation of Ezt(Y) and,
consequently, the mapping gQ is a permutation of CQ whose all nontrivial orbits,
if any, are contained in Ext(CQ). In addition, Ezt(gQ (z» = E2t(2) for any non-
extremal x E CQ. Since the action of gQ copies that of f on Ext(CQ)), it follows
that gQ preserves the order and gQ (Ext(x)) = Ext(gQ(x)) for all z E CQ. The
continuity of gQ follows from the fact that the (finitely many) extremal points it
permutes are open in CQ. Therefore each gQ : CQ - CQ is an invertible dp-map.

The mapping g : X - X defined as the joint extension of all gQ thus preserves
order and satisfies g(Ext(x)) = Ezt(g(z)) and f o h = h o g.

Next we show that g is continuous. Since X is a totally disconnected compact
space it suffices to show that g-1 (Z) is clopen for every clopen Z C X. The mapping
h is continuous and Y = h(X) is finite, so that we may assume that Z C h-1 (y) for
some y E Y. If y E Mid(Y) then g- 1 (Z) = Z because Z C Mid(X) and g is the
identity on Mid(X). Secondly, for y E Min(Y) we have Z C Min(X) and, because
D(X) is of a finite range n, the union Zn(*+) of all components that intersect Z is
clopen. Clearly, g-1 (Z) = Zn(*+) n ( f o h)-1{y}. From the continuity of f o h and
the fact that the singleton {y} is clopen in Y it follows that g-1 (Z) g X is clopen
as well. Since an analogous argument applies when y E Maz(Y), the continuity of
g follows.

Therefore g : X --i X is a dp-map. If X is V-rigid then g = idx follows
immediately. For a V-cyclic X we apply 4.2 to obtain the same conclusion. Thus
f o h = h, and f = idy follows because h is surjective. 0

Corollary 4.8. If V is a finitely generated universal variety of distributive double
p-algebras, then V contains a nucleus whose dp-space X satisfies (P1) and (P2). 0

This completes the proof of the implications (4) # (7) and (6) =&#x3E; (7) in Theorem
1.1.

5. SMALLER NUCLEI

To prove the implication (7) =&#x3E; (8) of Theorem 1.1, we shall assume the existence
of a nucleus F E V whose dp-space X = P(F) satisfies (P1) and (P2), and construct
a nucleus G E V whose dp-space Y = P(G) satisfies the following two conditions:
(Y1) Mid(Y) has exactly one three-element order component C and at most three

other components, all of them singletons, and
(Y2) no dp-map g : Y - Y other than the identity fixes all members of the

three-element component C.

Recall that, for any m E Mid(X), the induced subposet E(m) = Ext (X) U iml
of X is the dual of a subdirectly irreducible algebra from V.

Let N C Mid(X), and let  be any partial order on N contained in the restriction
of the extremal order E of X described in 3.2(b) to the set N; in other words,
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no  ni implies, but it is not necessarily equivalent to, Min(n0) ç Min(ni) and
Maz(no) D Max(n1). On the disjoint union Ezt(X)UN we now define an extension
E(N, ) of (N, ) by the requirement that, for every n E N, the subposet Ext(X) U
lnj of E(N, ) coincide with E(n). It is clear that the inclusion of E(n) into
E(N, ) is a dp-map, and that E(N, ) is the union of all E(n) with n E N.
Therefore, for any subposet (N, ) of (Mid(X), E), the poset E(N, ) is the dp-
space of a nucleus in the variety V.

While it is clear that any variety V containing a nucleus F satisfying (PI) con-
tains also a nucleus G for which (Y1) holds, in general, however, any such G may
fail to satisfy (Y2). On the other hand, the subalgebra of F generated by any order
connected triple of members of Mid(F) satisfies (Y1) and (Y2), but need not be
rudimentary. These difficulties will be resolved through careful selection of a gen-
erating set of G within a suitable quotient algebra of F. An adequate supply of
suitable generators is ensured by the following claim.

Lemma 5.1. If X is the dp-space of a finite nucleus such that the identity is the
only dp-map f : X - X which fixes Mid(X), then

Proof. For distinct d, e E Min(X) with [d) B Idl = [e) B fel, define a mapping
f : X 2013X by f (d) = e, f (e) = d and f (x) = z for all z E X B {d, e}. Then f is
a nontrivial dp-map such that f l Mid(X) is the identity. This proves (a), and a
similar argument leads to (b). 0

We say that x E Mid(X) is min-defective whenever Maz(v) = Maz(z) for
all v E Min(z), and max-defective if Min(u) = Min(z) for all u E Maz(z). A
consequence of the conclusion of 5.1 is that for every min-defective z E Mid(X)
and any two distinct elements of Min(x) there exists some y E Mid(X) such that
Min(y) contains exactly one of them.

Let A be a finite distributive double p-algebra. For any join irreducible a E A,
let a be the largest element of A with t z a; then a is the join of all join irreducibles
j z a. If z E P(A) represents the prime filter [a) C A, then a E A is represented by
(x] g P(A), and a corresponds to P(A) B (x). When there is no danger of confusion,
we shall also write z = P(A) B [z).
Lemma 5.2. Let A be a finite distributive double p-algebra. Then the subalgebra
B of A generated by the set T(A) = Mid(A) U {a I a E Mid(A)l satisfies Mid(B) =
Mid(A).

Moreover, ifA is a nucleus with Mid(A) l&#x3E; 2, then the algebra B is rudimentary
whenever X = P(A) is such that

(1) for every min-defec tive a which is minimal in Mid(X) there is some y E
Mid(X) which splits Min(a) in the sense that both Min(a) fl Min(y) and
Min(a) B Min(y) are nonvoid and, dually,
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(2) for every max-defective b which is maximal in Mid(X) there is some z E
Mid(X) such that both Max(b)rlMaz(z) and Maz(b)BMaz(z) are nonvoid.

Proof. Let h : X - Y be the surjective dp-map dual to the inclusion B C A.
Then h(x0)  h(x1) in Y if and only if x1 E b implies zo E b for every b c X
representing a member of B. Equivalently, h(zo) f h(zl) exactly when there is a
b E B such that x1 E b and zo E b.

Let zo E Mid(X). Then (zo] and Zo represent members of B. If Zl 1:. zo then
2o E (zo] z xl and the above observation implies that h(x1) h(x0). Similarly, for
any zi z zo it follows that zi e °1o z zo and hence h(zo) f h(zi). In particular, h
is an order isomorphism of Mid(X) onto an order subspace of Y.

Should zo E Mid(X) and h(zo) E Min(Y), then x zo and h(z) = h(zo) for
every z E Min(zo), a contradiction. Dually, h(zo) r/. Max(Y). Hence h(Mid(X)) g
Mid(Y) and, since h : X - Y is a surjective dp-map, h(Mid(X )) = Mid(Y).
Therefore h gives an isomorphism of Mid(X) onto Mid(Y). 

Furthermore, if zo E Mid(X) and h(z) E Min(h(zo)), then z E Min(X ) and x 
zo. Thus h-1(Min(h(xo)) = Min(zo) and, dually, h-1(Max(h(x0)) = Maz(zo),
for every ao E Mid(X).

Let A be a nucleus. Suppose that Ext(w0) = Ext(wl) in Y, and let w; = h(z;)
for i = 0, 1.

Let wo E Mid(Y), so that zo E Mid(X). For any x E Min(zl) we have
h(a) E Min(wi) = Min(h(zo)), and hence z E Min(zo). Together with a dual
observation, this shows that Ext(xl) ç Ezt(zo). If also wi E Mid(Y), then
Ext(x0) = Eat(zl), and wo = w, follows because X is rudimentary.

Next assume that wo E Mid(Y) and tul E Min(Y). Then Ext(h(x0)) =
{w1}U Max(w1) and, since zo E Mid(X), we have Maz(zo) = h’ 1 (Maz(wl)) and
Min(xo) = h-1{w1}. If z  x0 and u E Maa(z), then h(u) E Maa(wl), and hence
u E Max(x0). But Max(x0) g Maz(z) for all z  zo, and Max(zo) = Max(z) fol-
lows. Should z E Mid(X), then Min(z) = f-1{w1}, so that Ezt(zo) = Ezt(z), and
zo = z because X is rudimentary. Therefore ao is minimal in Mid(X) and, because
Max(z) = Maz(zo) for every z E Min(zo), the element Zo is also min-defective.
If Min(x0) fl Min(y) = 0 for some y E Mid(X), then for every z E Min(zo) we
have h(z) = w1  h(y) and, consequently, z E Min(y). Thus no y E Mid(X)
splits Min(zo), in contradiction to (1). A dual argument uses (2) to show that
Ext(wo):A Eat(wl) for any wo E Mid(Y) and wi E Maz(Y). ,

Since Y is connected, for extremal wo and w, we need only consider the case
when Min(Y) = {w0} and Max(Y)= fwll. But X contains at least two distinct
x, z’ E Mid(X); as shown earlier, Ext(h(x))= Ezt(h(z’)) in Y, so that this case
cannot occur. 0

Let X be the dp-space of a nucleus F satisfying 1.1(7), and let E be the extremal
order on Mid(X). First we construct a three-element component C of E as follows.

If  E contains a three-element chain, we select a  E-chain C = Co = {a, c, b} in
which a is an E-minimal and b is an E-maximal member of Mid(X).
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Let 01 denote the poset in which a  c and b  c, and where a is incomparable to
b; let C2 denote the dual of Cl . If E has no three-element chains in Mid(X), then
(Mid(X), E ) must contain a copy of Cl or of C2; we select C = C; accordingly and
note that a is incomparable to b in the extremal order E. Furthermore, in all three
cases, the extremal elements of Ci are also extremal in the poset (Mid(X ), E).

In each of the three cases, we shall select a subset K of Mid(X ) ordered so that
C is a component of K while K B C is an antichain, and show that (Yl) and (Y2)
hold for the subalgebra G = D(Y) generated by the set T(E) = K U {nl n E KI
in the algebra dual to E = E(K, ).
We begin with an observation that will be needed in all three cases.
Assume that a minimal element a E C is min-defective. Then Min(a) has at

least two elements because X is rudimentary; by 5.1,

For any y E M0 (a) we have Max (y) g Max (a), so that for each u E Max (y) it
follows that Min(u) B Min(y) = 0; thus y is not max-defective. Either Maz(a) B
Max(y) = 0 and hence y is not min-defective, or else Max (y) = Maz(a) and
then, since a is minimal in the extremal order of Mid(X), we must have Min(y) B
Min(a) = 0, and hence also a E M0 (y). This shows that adding any y E Mo (a) to
an arbitrary poset containing C U Ezt(X) produces a space in which both a and y
satisfy 5.2 (1) and 5.2(2).

Dually, in the case of a max-defective maximal b E C the set Ml (b) of all x E
Mid(X) which split Max(b) in the sense that Maz(b) B Maz(z) 0 0 :A Maz(b) n
Max(z) is nonvoid, no member of Ml (b) is min-defective, and b E M1 (x) for any
max-defective z E Ml(b). Thus b and z satisfy (1) and (2) of 5.2 as well.

Case 0. The component Co = la, c, b} with a  c  b.
If M0 (a) intersects Mi (b), select y E M0 (a) n Mi (b) arbitrarily and note that

y is neither max-defective nor min-defective. Set K = Co U fyl, and order K
so that Co and the singleton {y} are the components of K. As indicated earlier,
we set Y = P(G), where G is generated within E(K, ) by K U {k k E KI.
Then Mid(Y) = K and Y is rudimentary by 5.2. Therefore Y satisfies (Yl). Any
dp-map g of the rudimentary space Y into itself is invertible, so that it maps the
three-element chain Co identically onto itself, and hence g(y) = y; thus g(k) = k
and, by the invertibility of g also g(k) - k for all k E K. Altogether, g is the
identity since it fixes every generator of G = D(Y). Hence G is, in fact, rigid, and
(Y2) follows.

If Mo (a) and M1 (b) are nonvoid and disjoint, select y E M0 (a) and z E M1 (b)
arbitrarily. This time set K = Co U ly, zl, again with the trivial extension of the
order of Co. If y is min-defective then a E Mo(y), and dually for z, so that 5.2
applies again to yield a rudimentary Y with Mid(Y) = K which satisfies (Yl). To
see that Y is rigid, note that, as before, any dp-map g : Y - Y is invertible, fixes
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elements of Co and hence preserves the antichain ly, z}. Since y E M1(b), either
Maz(b) C Maz(y) or Max(b) rl Maz(y) = 0, while z splits Maz(b); thus g(y) = y
and g(z) = z as required by (Y2).

If a is the only defective element in Co then we set K = Co U jyj with an
arbitrarily selected y E Mo (a), and make a dual selection when b is the only defective
member of Co. The arguments for these two cases coincide with those already used.
Finally, when Co has no defective elements, we set K = Co.

In every possible instance we thus obtain a rigid nucleus Go = G such that
Mid(Go) is the union of a three-element chain Co = {a, c, b} with at most two
other order components, both of which are singletons.

Case 1. The component C1 = (a, b, c} with a  c and b  c.

Recall that all three elements of C1 are extremal in the extremal ordering on
Mid(X).

Assume first the existence of some v E Min(a) n Min(b). If a is min-defective,
then Max(b) C Maz(v) = Max(a). Since a iE b, we must have Min(a)BMin(b) =
0, and this shows that b splits Min(a). Hence 5.2(1) holds true for a and, by
symmetry, also for b, whenever Min(a) n Min(b) = 0. If c is max-defective, we
select z E Mi (c) arbitrarily and define K as the disjoint union of the component
C1 and the singleton {z}; otherwise we set K = Cl. Lemma 5.2 applies to either
case, and the rudimentary space Y satisfies Mid(Y) !I--- K. Thus (YI) holds. To
demonstrate (Y2), we again recall that any dp-map g : Y - Y is invertible; since
g fixes C1 elementwise, it must also fix the complementary singleton component fzl
whenever there is one included in Mid (Y) = K.

Secondly, for Min(a) rl Min(b) = 0, no member of C1 can split the extremal
elements of another one, and we proceed as in the case of the chain component. To
obtain K, we extend C1 by a least size antichain Z intersecting each set Mo(a),
M0 (b) and M1 (c) which is nonvoid. Then I Z I 3 and, because of the minimality
requirement, every z E Z is uniquely determined by its inclusion in, and its exclusion
from each of these three sets. As in all previous cases, 5.2 applies and produces a
nucleus whose dp-space Y satisfies Mid(Y) = C1 U Z, and hence also (Y1). Any
dp-map g : Y - Y fixing C1 elementwise permutes Z and, since each z E Z is
uniquely determined by the set of members of C1 whose extremals it splits, the
permutation g Z must be the identity on Z. Thus Y satisfies (Y2) as well.

The remaining case of the component C2 submits to arguments dual to those used
for Cl. Altogether, 1.1(8) follows from 1.1(7), and gives the following consequence.

Corollary 5.3. Any finitely generated universal variety V contains one of the nu-
clei Gi with i E {0, 1, 2} such that Mid(Gi) is the union of a component isomorphic
to Ci and an antichain of at most three elements. Furthermore, the identity is the
only endomorphism of G; which is the identity on C¡. 0

This also concludes the proof of 1.2.
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6. THE REPRESENTATION

In this section we prove the remaining implication (8) = (1) of Theorem 1.1 by
constructing, for each i E {0, 1, 2}, a full embedding Oi of a universal category Di of
suitably augmented Priestley spaces into the dual of the variety Var(G;) generated
by the nucleus Gi of 5.3.

Each category Di is formed by Priestley spaces with two distinct open points u
and v and by all continuous order preserving mappings g for which {g(u), g(v)}=
lu, vl. In any object of Do one of the elements u, v is maximal and the other is
minimal, while both u and v are maximal for all spaces of D 1 and both are minimal
in all spaces of D2.

The following result of Koubek [5] will be used.

Theorem 6.1. [5]. Let H be the universal (cf. [12]) category of all undirected
graphs and all their compatible mappings. Then, for each i E {0, 1, 2}, there is
a full contravariant embedding Ti : H --i Di such that any Di-morphism 9 :
Vi (H) - Yi (H’) satisfies g(u) = u and g(v) = v. 0

For each i E {0, 1, 2} and any graph H, a connected dp-space Oi(H) dual to an
algebra with the rudiment Gi will be constructed so that the Priestley space ’Fi(H)
from 6.1 replaces the element c of P(G¡) as follows.

Set Y = P(Gi) and let Yi (H) = (X, r, , u, v), where u and v are the two
distinguished elements of *i(H) E Di. Define Oi(H) = 4t(H) = (W,o ) so that

W = (Y B {c}) U X, where the union is disjoint,
o is the union of T and the discrete topology on the finite set Y B {c},
the partial order  on W coincides with the respective orders of Y B {c} or
of X on these subsets, and satisfies
( [x) U (z]) fl Y = Ext (c) for all z E X B lu, vl,
([u) U (u]) n Y = Ezt(c) U fal and ([v) U (v]) rl Y = Ezt(c) U fbl
in such a way that, in the latter two clauses, u &#x3E; a when u is maximal in X
while u  a when u is minimal and, similarly, v &#x3E; b for a maximal v while
v  b when v is minimal in X.

It is routine to verify that, in each of the three cases, this defines a partial order
on W satisfying

Lemma 6.2. The ordered space (W, (7’, ) is the dp-space of an algebra A from the
variety Var(G¡) generated by the nucleus G = G¡, and G = Rud(A).

Proof. Since (X,T) is compact and Y B fc) is finite, the space (W, o) is compact.
For any w E W B X , the set (w] n X is 0 or X, or one of the open singletons

Jul, iv), and the same is true for the set [w) rl X. Since (X, T, ) is totally order
disconnected, so is its extension (W, (o,) by finitely many open points y E Y B {c}
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such that ([y) (y] n X is r-open. Furthermore, if A C W is increasing or decreasing
then (A] = (Maz(A)] or [A) = [Min(A)), respectively; since Ezt(A) g W B X,
either of the latter two sets intersects X in one of the u-open sets 0, X, {u}, fvl,
or lu, v}. Thus (W, 0", ) is a dp-space.

Since Ext (x) = Ext(c) for all z E X and because X C W is clopen and convex in
(W, o), the finite space Y is the rudimentary quotient of W . Depending on whether
or not w E X , the finite subspace E(w) = Ext(W) U {w} = Ext(Y) u {w} is either
isomorphic, or equal to, a subspace of Y. Therefore O(H) is the dp-space of an
algebra in the variety generated by its nucleus G. 0

For any morphism f : H - H’ of H we now define O (f) O (H) - +(H’) by

The mapping O(f) is continuous and order preserving since Yi (f) is a morphism
in Di and because O(f) is the identity on W B X. The latter fact also implies
that O(f) maps Ezt(w) onto Ext(O(f)(w)) for every w E O(H). Therefore O is
a contravariant functor from the category H of all graphs and all their compatible
mappings into the category of all dp-spaces of algebras from the variety V.

Once we prove that the functor O is full, from 6.1 it will follow that the category
H has a full covariant embedding into the variety V.

To do this, assume g : O(H) 2013 O(H’) to be a dp-map, and write O(H) = W =
((Y B {c}) U X,o) and O(H’) = W’= ((Y B {c}) U X’, o’, ).

By 3.3, the homomorphism D(g) maps the rudiment of D(W’) into the rudiment
of D(W); since the nucleus G is the rudiment of either algebra, the restriction of
D(g) to G is an automorphism of D(G), by 3.4. Thus the unique three-element
component Ci = {a,b,c} of Mid(G) is preserved by D(g). Since c is, respectively,
the unique non-extremal, maximal, or minimal member of Mid(Gi ) for i = 0,1, 2,
it follows that D(g)(c) = c and ID(g)(a), D(g)(b)} = la, b} in all three cases.
When interpreted through the duality, this implies that g(X) ç X’, that g

permutes Y B {c} = W B X = W’ B X’, and that {g(a), g(b)} = la, b}. Since u is
the only member of X or X’ comparable to a and v is the only element of X or
X’ comparable to b in each of the three cases, it follows that {g(u), g(v)}= lu, v}.
Hence the restriction of g to X is a morphism in the appropriate category Di . By
6.1, the restriction of g to X is the image Yi(f) of some morphism f : H’ - H of
H, and g(u) = u and g(v) = v. Since a and b are uniquely determined non-extremal
elements of Y B {c} comparable to u and v, respectively, the restriction of D(g) to
Ci = la, b, c} is the identity. But then D(g) is the identity on the rudiment G and
hence g maps W B X identically onto W’ B X’ . Altogether, g = O (f), and the functor
O is full, as required.

The proof of Theorem 1.1. is now complete.
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7. CONCLUDING REMARKS

There exists a universal variety V of range one generated by two finite subdirectly
irreducibles with the same monolith quotient. To see this, let V = Var(F), where
F is the nucleus whose poset X = {p, q, r, I, a, b, c, ul of join irreducibles is given by
’the following requirements:

It is easily seen that E(a) = Ezt(X) U fal is isomorphic to E(b) but not to
E(c). These posets are dp-spaces of subdirectly irreducible members of V whose
common monolith quotient is represented by the dp-space Ext (X). The variety V
is of range one: since Max (X) is a singleton, we have f + = 1 for any f E F B {1}.
The universality of v then easily follows when 1.1(8) is applied.

This example also shows why the lower limit in 1.2(2) cannot be higher than two.
We are tempted to call for a characterization of all universal varieties of distribu-

tive double p-algebras, even though such project may be a little too ambitious at
this time. A more realistic approach might attempt a syntactic characterization of
finitely generated universal varieties suitable for a description of minimal ones, or
aim to describe minimal finitely generated universal varieties of a small finite range.
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