CAHIERS DE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

V. Koubek
J. Sichler

Finitely generated universal varieties of distributive double p-algebras

Cahiers de topologie et géométrie différentielle catégoriques, tome 35, n 2 (1994), p. 139-164
http://www.numdam.org/item?id=CTGDC_1994_35_2_139_0
© Andrée C. Ehresmann et les auteurs, 1994, tous droits réservés.
L'accès aux archives de la revue «Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

FINITELY GENERATED UNIVERSAL VARIETIES OF DISTRIBUTIVE DOUBLE p-ALGEBRAS
 by V. KOUBEK and J. SICHLER
 Dedicated to the memory of Jan Reiterman

Abstract

Résumé: Une catégorie C s'appelle universelle si la catégorie des graphes est pleinement plongeable dans \mathbf{C}. On se propose ici de caractériser parmi les variétés finiment engendrées de doubles algèbres distributives (DAD) celles qui sont universelles. On montre que pour une variété de DAD finiment engendrée \mathbf{V} les conditions suivantes sont équivalentes: \mathbf{V} est universelle; \mathbf{V} est monoïde-universelle (i.e. tout monoïde est isomorphe au monoïde des endomorphismes d'une algèbre appartenant à \mathbf{V}); \mathbf{V} admet une algèbre rigide infinie; tout groupe est isomorphe au monoïde des endomorphismes d'une algèbre appartenant à $\mathbf{V} ; \mathbf{V}$ contient une algèbre nucléaire A admettant trois éléments sup-irréductibles et comparables qui ne sont ni minimaux ni maximaux et au plus trois d'autres éléments sup-irréductibles non minimaux et non maximaux, et de plus telle que tout endomorphisme de A fixant ces éléments soit identité. On obtient comme corollaire que toute variété universelle finiment engendrée de DAD admet une sous variété universelle engendrée par au plus six algèbres finies sous-directement irréductibles, et qu'aucune variété de DAD engendrée par une seule algèbre finie et sous-directement irréductible n'est universelle. On montre cependant qu'il existe une variété universelle de DAD engendrée par deux algèbres finies sous-directement irréductibles.

1. Introduction

An algebra $A=\left(L, \vee, \wedge^{*},{ }^{+}, 0,1\right)$ of type $(2,2,1,1,0,0)$ is a distributive double p-algebra whenever $(L, \vee, \wedge, 0,1)$ is a distributive (0,1)-lattice in which * and ${ }^{+}$are the respective unary operations of pseudocomplementation and dual pseudocomplementation: the operation * is determined by the requirement that $x \leq a^{*}$ be equivalent to $x \wedge a=0$, while $y \geq a^{+}$exactly when $y \vee a=1$.

As shown in [6], the category of all distributive double \boldsymbol{p}-algebras and all their homomorphisms is universal, that is, it contains a copy of the category of graphs, and hence also a copy of any category of algebras as a full subcategory, see [12]. This fact implies that every monoid is isomorphic to the endomorphism monoid of some distributive double p-algebra larger than a given cardinal and, in particular,

[^0]the existence of a proper class of nonisomorphic rigid algebras, that is, algebras with no nontrivial endomorphisms, cf. [12]. We recall that [6] presented an example of a finitely generated universal variety of distributive double p-algebras and asked for a description of all such varieties.

The present paper fully characterizes finitely generated universal varieties of distributive double \boldsymbol{p}-algebras in structural terms.

To formulate our main result, we define the rudiment $\operatorname{Rud}(A)$ of a distributive double p-algebra A as the smallest sublattice of A containing all pseudocomplements and dual pseudocomplements of A which is closed also under relative complementation. We say that an algebra A is rudimentary if $\operatorname{Rud}(A)=A$, and call it a nucleus whenever $\operatorname{Rud}(A)=A$ is directly indecomposable. Finally, for any finite distributive double p-algebra A, we write $M i d(A)$ for the set of all its join irreducible elements which are neither maximal nor minimal.

Our aim is to prove the result below.
Theorem 1.1. The following eight properties are equivalent for any finitely generated variety V of distributive double p-algebras:
(1) V is universal;
(2) V contains a proper class of non-isomorphic rigid algebras;
(3) V contains an infinite rigid algebra;
(4) V contains a rigid algebra which is not rudimentary;
(5) every finite monoid is isomorphic to the endomorphism monoid of some algebra from \mathbf{V};
(6) every prime order cyclic group is isomorphic to the endomorphism monoid of some algebra from \mathbf{V};
(7) V contains a finite nucleus F such that the poset Mid(F) has an order component C with more than two elements, and such that the identity is the only endomorphism of F whose fixpoints include Mid(F);
(8) V contains a finite nucleus G such that $\operatorname{Mid}(G)$ has a three-element order component C and at most three other elements, and such that the identity is the only endomorphism of G whose fixpoints include C.

Let A be a distributive double p-algebra. For any $a \in A$ and $n \geq 0$, set $a^{0(+*)}=$ $a^{0(*+)}=a$, and recursively define $a^{(n+1)(+*)}=a^{n(+*)+*}$ and $a^{(n+1)(*+)}=a^{n(*+) *+}$. Recall that A is of range n if and only if it satisfies the identity $x^{(n+1)(+*)}=x^{n(+*)}$ or its equivalent dual form $x^{(n+1)(*+)}=x^{n(*+)}$. Thus the variety of Boolean algebras, which is not universal [8], consists of all distributive double p-algebras of range zero.

Following Beazer [1], we let Φ_{A} stand for the determination congruence of a distributive double p-algebra A, that is, the congruence consisting of all pairs $(a, b) \in$ A^{2} for which $a^{*}=b^{*}$ and $a^{+}=b^{+}$. For any directly indecomposable algebra A of finite range, the algebra A / Φ_{A} is simple [1]. From Davey's description [3] of duals of finite subdirectly irreducibles it follows that the determination congruence Φ_{A} is the least nontrivial congruence - the monolith - of any finite non-simple subdirectly
irreducible algebra.
Corollary 1.2. If V is a universal finitely generated variety of distributive double p-algebras, then
(1) V contains a universal subvariety W generated by a set of no more than six nonisomorphic subdirectly irreducible generators with a common monolith quotient, and
(2) \mathbf{V} must have at least two nonisomorphic subdirectly irreducible algebras which are not simple and have a common monolith quotient.

In the concluding section we give an example of a universal variety of range one generated by a pair of finite subdirectly irreducibles with a common monolith quotient.

Double \boldsymbol{p}-algebras whose determination congruence is trivial form the variety \mathbf{R} of regular distributive double \boldsymbol{p}-algebras; this variety is universal [7]. It may be of some interest to recall that, in fact, [7] demonstrates the universality of a regular variety generated by finitely many subdirectly irreducibles, none of which has a finite range.

To prove our main result, Theorem 1.1, we proceed as follows.
Since any universal category satisfies $1.1(2)$ and 1.1(5), see Pultr and Trnková $[12]$, it follows that $(1) \Rightarrow(2)$ and $(1) \Rightarrow(5)$. Implications $(2) \Rightarrow(3)$ and (5) $\Rightarrow(6)$ are trivial, while (3) \Rightarrow (4) will easily obtain once we show, in Section 3, that all rudimentary rigid algebras in \mathbf{V} are finite. The fourth section demonstrates that (4) $\Rightarrow(7)$ and $(6) \Rightarrow(7)$, and the two subsequent sections contain respective proofs of $(7) \Rightarrow(8)$ and $(8) \Rightarrow(1)$.

Throughout the paper, we use Priestley's duality for distributive (0,1)-lattices and its restriction to distributive double p-algebras.

2. Preliminaries

We begin with a brief review of the essentials of Priestley's duality.
Let (X, τ, \leq) be an ordered topological space, that is, let (X, τ) be a topological space and (X, \leq) a partially ordered set. For any $Z \subseteq X$ denote

$$
(Z]=\{x \in X \mid \exists z \in Z \quad x \leq z\} \quad \text { and } \quad[Z)=\{x \in X \mid \exists z \in Z \quad z \leq x\} .
$$

A subset Z of X is decreasing if $(Z]=Z$, increasing if $[Z)=Z$, and clopen if it is both τ-open and τ-closed. Any compact ordered topological space (X, τ, \leq) possessing a clopen decreasing set D such that $x \in D$ and $y \notin D$ for any $x, y \in X$ with $x \nsupseteq y$ is called a Priestley space. Let P denote the category of all Priestley spaces and all their continuous order preserving mappings.

Clopen decreasing sets of any Priestley space form a distributive (0,1)-lattice, and the inverse image map f^{-1} of any \mathbf{P}-morphism f is a (0,1)-homomorphism
of these lattices. This gives rise to a contravariant functor $D: \mathbf{P} \longrightarrow \mathbf{D}$ into the category D of all distributive (0,1)-lattices and all their (0,1)-homomorphisms.

Conversely, for any lattice $L \in \mathbf{D}$, let $P(L)=(F(L), \tau, \leq)$ be the ordered topological space for which $(F(L), \leq)$ is the set $F(L)$ of all prime filters of L ordered by the reversed inclusion, and such that all sets $\{x \in F(L) \mid A \in x\}$ and $\{x \in F(L) \mid A \notin x\}$ with $A \in L$ form an open subbasis of τ. If $h: L \longrightarrow L^{\prime}$ is a morphism in D then h^{-1} maps $P\left(L^{\prime}\right)$ into $P(L)$ and, according to [9], this determines a contravariant functor $\boldsymbol{P}: \mathbf{D} \longrightarrow \mathbf{P}$.

Theorem 2.1. (Priestley [9], [10]). The two composite functors $P \circ D: \mathbf{P} \longrightarrow \mathbf{P}$ and $D \circ P: D \longrightarrow D$ are naturally equivalent to the identity functors of their respective domains. Therefore \mathbf{D} is a category dually isomorphic to \mathbf{P}.

A morphism $f: L \longrightarrow L^{\prime}$ of D is surjective if and only if $P(f)$ is a both a homeomorphism and an order isomorphism of $P\left(L^{\prime}\right)$ onto a closed order subspace of $P(L)$, and it is one-to-one just when $P(f)$ is surjective.

Following is a useful separation property of Priestley spaces.
Proposition 2.2. For any closed disjoint subsets Y_{0} and Y_{1} of any Priestley space (X, τ, \leq) there exists a clopen set C containing Y_{1} and disjoint from Y_{0}. If, in addition, $Y_{0} \cap\left(Y_{1}\right]=\emptyset$, then C may be chosen to be a clopen decreasing set.

Let $\operatorname{Min}(X)$ and $\operatorname{Max}(X)$ respectively denote the sets of all minimal and maximal elements of an ordered topological space (X, τ, \leq). For any $Y \subseteq X$, write $\operatorname{Min}(Y)=(Y] \cap \operatorname{Min}(X), \operatorname{Max}(Y)=[Y) \cap \operatorname{Max}(X)$ and $\operatorname{Ext}(Y)=\operatorname{Min}(Y) \cup$ $\operatorname{Max}(Y)$. When $Y=\{y\}$, we write $\operatorname{Min}(y)$ instead of $\operatorname{Min}(\{y\})$, and similarly for Max and Ext. If (X, τ, \leq) is a Priestley space and $y \in X$, then the sets $M i n(y)$ and $\operatorname{Max}(y)$, and hence also their union $E x t(y)$ are nonvoid and closed.

Theorem 2.3. (Priestley [11]). Let $P: \mathbf{D} \longrightarrow \mathbf{P}$ be the functor assigning Priestley spaces to distributive (0,1)-lattices, and let $f: L \longrightarrow L^{\prime}$ be a morphism in \mathbf{D}. Then:
(a) L is a distributive double p-algebra if and only if (Y] is clopen for every clopen increasing subset Y of $P(L)$ and $[W)$ is clopen for any clopen decreasing set W; if this is the case, then $W^{*}=P(L) \backslash[W)=P(L) \backslash[\operatorname{Min}(W))$ and $W^{+}=(P(L) \backslash W]=(M a x(P(L)) \backslash W]$ for any clopen decreasing subset W of $P(L)$
(b) f is a double p-algebra homomorphism iff $P(f)(\operatorname{Min}(x))=\operatorname{Min}(P(f)(x))$ and $P(f)(\operatorname{Max}(x))=\operatorname{Max}(P(f)(x))$ for every $x \in P\left(L^{\prime}\right)$;
(c) the sets $M i n(P(A))$ and $M a x(P(A))$ are closed for any distributive double p-algebra A.

The Priestley space $P(A)$ of a distributive double p-algebra A will be called a $d p$ space, and the dual of a double p-algebra homomorphism a $d p$-map. We note that a $d p$-map $P(f): P(B) \longrightarrow P(A)$ is the Priestley dual of an injective homomorphism $f: A \longrightarrow B$ exactly when it is surjective. A double p-algebra homomorphism
$f: A \longrightarrow B$ is surjective if and only if $P(f): P(B) \longrightarrow P(A)$ is a homeomorphism and order isomorphism of $P(B)$ onto a closed order subspace $Z \subseteq P(A)$ satisfying $E x t(Z) \subseteq Z$. Any such subspace Z will be called a closed c-set. The kernel $\operatorname{Ker}(f)$ of f then consists of all pairs (d, e) $\in A^{2}$ such that $D \cap Z=E \cap Z$ for the clopen decreasing sets D, E respectively representing $d, e \in A$. It follows that congruences of A are in one-to-one order-reversing correspondence with closed c-sets in $P(A)$.

For any distributive double p-algebra A, let $\operatorname{Cen}(A)$ be the center of A, the set of all complemented elements of A.

For any filter F of $\operatorname{Cen}(A)$, let $\Theta(F)$ be the least congruence of A that collapses F. According to Beazer [2], the congruence $\Theta(F)$ consists of all $(x, y) \in A^{2}$ satisfying $x \wedge f=y \wedge f$ for some $f \in F$.

If $c \in \operatorname{Cen}(A) \backslash\{0,1\}$, then the complement $X_{1}=P(A) \backslash X_{0}$ of the nonvoid clopen decreasing set $X_{0} \subseteq P(A)$ representing c is also nonvoid, clopen and decreasing, and hence it represents the complement c^{\prime} of c. But then every clopen decreasing $E \subseteq$ $P(A)$ is a disjoint union of clopen decreasing sets $E \cap X_{0}$ and $E \cap X_{1}$. Furthermore, if $E_{i} \subseteq X_{i}$ are decreasing and clopen in X_{i} for $i=0,1$, then $E=E_{0} \cup E_{1}$ is decreasing and clopen in $P(A)$. Hence the algebra A is isomorphic to the product $D\left(X_{0}\right) \times D\left(X_{1}\right)$ whose factors $D\left(X_{0}\right) \cong A / \Theta([c))$ and $D\left(X_{1}\right) \cong A / \Theta\left(\left[c^{\prime}\right)\right)$ are nontrivial.

Conversely, if algebras A_{0} and A_{1} are nontrivial, and if $A=A_{0} \times A_{1}$, then the $d p$-space $P(A)$ is a disjoint union of nonvoid clopen decreasing sets $X_{i}=P\left(A_{i}\right)$ with $i=0,1$. But then X_{0} represents some $c \in \operatorname{Cen}(A)$ whose complement c^{\prime} is represented by X_{1} and, for $i=0,1$, the closed c-set X_{i} represents the kernel of the projection $A \longrightarrow A_{i}$. If $d, e \in A$ are respectively represented by clopen decreasing sets $D, E \subseteq P(A)$, then $D \cap X_{0}=E \cap X_{0}$ exactly when $(d, e) \in \Theta([c))$, so that the closed c-set X_{0} is the Priestley dual of $\Theta([c))$, and X_{1} similarly represents $\Theta\left(\left[c^{\prime}\right)\right)$.

Altogether, nontrivial direct decompositions of a distributive double p-algebra A are in one-to-one correspondence with elements $c \in \operatorname{Cen}(A) \backslash\{0,1\}$. For any such c, we have $A \cong A / \Theta([c)) \times A / \Theta\left(\left[c^{\prime}\right)\right)$. Furthermore, a distributive double p-algebra A is directly indecomposable exactly when $\operatorname{Cen}(A)=\{0,1\}$.

Let $f: A \longrightarrow D$ be a homomorphism from A to a directly indecomposable algebra D. Since $\operatorname{Cen}(D)=\{0,1\}$, the set $Q=f^{-1}\{1\} \cap \operatorname{Cen}(A)$ is a prime filter of the Boolean algebra $\operatorname{Cen}(A)$ and, because $f(q)=f(1)$ for every $q \in Q$, the kernel of f contains the least congruence $\Theta(Q)$ of A collapsing Q. If $\alpha_{Q}: A \longrightarrow$ $A / \Theta(Q)$ is the homomorphism with $\operatorname{Ker}\left(\alpha_{Q}\right)=\Theta(Q)$, then $f=f^{\prime} \circ \alpha_{Q}$ for some $f^{\prime}: A / \Theta(Q) \longrightarrow D$. For any prime filter Q of $\operatorname{Cen}(A)$, the algebra $A_{Q}=A / \Theta(Q)$, called a component of A, is then a maximal directly indecomposable quotient of A (a rationale for this terminology will soon become apparent).

If $f: A \longrightarrow B$ is a homomorphism and $\beta_{R}: B \longrightarrow B_{R}$ is the natural homomorphism onto a component B_{R} of B, then $Q=f^{-1}(R) \cap \operatorname{Cen}(A)$ is a prime filter of $\operatorname{Cen}(A)$ and $\beta_{R}(f(q))=1$ for every $q \in Q$. Thus $\operatorname{Ker}\left(\beta_{R} \circ f\right) \supseteq \Theta(Q)=\operatorname{Ker}\left(\alpha_{Q}\right)$, and there exists a homomorphism $f^{\prime}: A_{Q} \longrightarrow B_{R}$ such that $f^{\prime} \circ \alpha_{Q}=\beta_{R} \circ f$. The
claim below partially complements this observation.
Lemma 2.4. If $f: A \longrightarrow B$ is a homomorphism of distributive double p-algebras which is one-to-one on $\operatorname{Cen}(A)$, then for every component A_{Q} of A there exist a component B_{R} of B and a homomorphism $f^{\prime}: A_{Q} \longrightarrow B_{R}$ such that $f^{\prime} \circ \alpha_{Q}=\beta_{R} \circ f$ for the natural surjections $\alpha_{Q}: A \longrightarrow A_{Q}$ and $\beta_{R}: B \longrightarrow B_{R}$.

Proof. Since the restriction of f to $\operatorname{Cen}(A)$ is a one-to-one homomorphism of $\operatorname{Cen}(A)$ into $\operatorname{Cen}(B)$, the congruence extension property of Boolean algebras implies the existence of a prime filter $R \subseteq \operatorname{Cen}(B)$ with $f^{-1}(R)=Q$. But then $\beta_{R}(f(q))=1$ for all $q \in Q$, that is, $\operatorname{Ker}\left(\alpha_{Q}\right)=\Theta(Q) \subseteq \operatorname{Ker}\left(\beta_{R} \circ f\right)$, and the claim follows.

Next we intend to note that components of a distributive double p-algebra A from a variety \mathbf{V} of finite range correspond to order components of its $d p$-space $P(A)$.

We recall that elements x and y of a poset (X, \leq) are order connected whenever there exists a sequence $x=x_{0}, x_{1}, \ldots, x_{k}=y$ in which x_{i} is comparable to x_{i+1} for $i=0,1, \ldots, k-1$. The classes of the equivalence ε formed by all pairs of connected elements, that is, the maximal connected subsets in (X, \leq), are the order components of (X, \leq). It is clear that C is a component of a dp-space (X, τ, \leq) just when $\operatorname{Ext}(C)$ is a component of its closed order subspace $\operatorname{Ext}(X)$.

Any finitely generated variety \mathbf{V} of distributive double \boldsymbol{p}-algebras clearly satisfies, for some integer $n \geq 0$, the identity $x^{(n+1)(+*)}=x^{n(+*)}$ and its equivalent $x^{(n+1)(*+)}=x^{n(*+)}$, that is, any finitely generated variety \mathbf{V} consists of algebras of range n. According to [7], all order components of $d p$-spaces of such algebras are closed. If C_{0} and C_{1} are distinct components of the $d p$-space X of some algebra $A \in \mathbf{V}$ then, by 2.2 , there exists a clopen decreasing set $B \supseteq C_{1}$ such that $C_{0} \subseteq X \backslash B$. Since $B^{*+}=([B)]$ is clopén by 2.3 and because A is of range n, the clopen set $B^{n(*+)} \supseteq C_{1}$ is both increasing and decreasing, and disjoint from C_{0}. Any two components of X can be thus separated by complementary clopen decreasing sets and, as a result, the quotient space X / ε obtained by collapsing all order components of X is the Priestley dual of $\operatorname{Cen}(A)$.

It follows that the $d p$-space $X=P(A)$ of any algebra A of finite range is the disjoint union of its order components $C_{Q}=P\left(A_{Q}\right)$ indexed by $Q \in P(\operatorname{Cen}(A))$. In algebraic terms, any algebra A of finite range is subdirect in the product $\Pi\left\{A_{Q} \mid\right.$ $Q \in P(C e n(A))\}$ of its 'algebraic' components $A_{Q}=D\left(C_{Q}\right)$.

Next we describe $d p$-spaces of subdirectly irreducible algebras of finite range.
If $Y=P(B)$ is the dual of a subdirectly irreducible algebra B of a finite range then Y must be connected, and hence the $d p$-space of any nontrivial quotient algebra B^{\prime} of B must contain the connected closed set $E x t(Y)$. Since Y has a unique maximal closed order subspace Z satisfying $E x t(Z) \subseteq Z$ that represents the monolith of B, and because all points of $Y \backslash \operatorname{Ext}(Y)$ are closed, either $Y=\operatorname{Ext}(Y)$ and B is simple, or $Y \backslash \operatorname{Ext}(Y)$ is a singleton which is clopen because $\operatorname{Ext}(Y)$ is closed
in Y. Since the converse is clear, following Davey [3] we conclude that B is simple if and only if $Y=\operatorname{Ext}(Y)$ is connected, and that B is subdirectly irreducible but not simple just when Y is connected and $Y \backslash E x t(Y)$ is a clopen singleton; in the latter case, $E x t(Y)$ is the Priestley dual of the quotient of B modulo its monolith.

For any algebra A of finite range and any $x \in X=P(A)$, let $K(x)$ denote the component of X containing x. The subposet $E(x)=\{x\} \cup E x t(K(x))$ of X is then closed in X and $E x t(E(x))=E x t(K(x)) \subseteq E(x)$, so that $E(x)$ is the dp-space of a subdirectly irreducible quotient of A. Since X is the union of all its subspaces $E(x)$ with $x \in X$, the algebra A is a subdirect product of subdirectly irreducible algebras $D(E(x))$ with $x \in X$.

3. Rudimentary algebras and nuclei

For any double \boldsymbol{p}-algebra A, let $L(A)$ be the sublattice of A generated by the set

$$
Q(A)=\left\{a^{*} \mid a \in A\right\} \cup\left\{a^{+} \mid a \in A\right\}
$$

of all pseudocomplements and dual pseudocomplements of A. Clearly, any sublattice of A containing $Q(A)$ is a subalgebra of A. Recall that rudiment of A is the least sublattice of A containing $Q(A)$ and closed under relative complementation. Thus $L(A) \subseteq \operatorname{Rud}(A)$, and $\operatorname{Rud}(A)$ is the subalgebra of A obtained by intersecting all sublattices $S \subseteq A$ that contain $L(A)$ and include every $a \in A$ for which there is an $s \in S$ with $a \vee s \in S$ and $a \wedge s \in S$.

When $\operatorname{Rud}(A)=A$, we say that A is rudimentary. Any directly indecomposable and rudimentary algebra is called a nucleus.

The set $R(A)$ consisting of all $a \in A$ such that $g(a)=h(a)$ for any two homomorphisms $g, h: A \longrightarrow B$ that coincide on $Q(A)$ is a subalgebra of A containing $L(A)$. From the distributive law it immediately follows that $R(A)$ is closed under relative complementation; hence $R u d(A) \subseteq R(A)$.
Lemma 3.1. If A is a distributive double p-algebra, then:
(1) $R(A)=R u d(A)$; that is, $R(A)$ is the least sublatice of A that contains $Q(A)$ and is closed under relative complementation;
(2) the dual h of the inclusion $\operatorname{Rud}(A) \subseteq A$ satisfies $h(x)=h(y)$ just when $E x t(x)=E x t(y)$ in $P(A)$;
(3) the order of the Priestley dual of $\operatorname{Rud}(A)$ is the least partial order containing all pairs $(h(x), h(y))$ for which $x \leq y$ in the dual of A;
(4) A is rudimentary if and only if $E x t(x) \neq E x t(y)$ for any two distinct elements x, y of its Priestley dual.

Proof. Let X denote the $d p$-space of A. Then, for any $x \in X$ and any clopen decreasing $D \subseteq X$, we have $x \in X \backslash[D)=D^{*}$ just when $\operatorname{Min}(x) \cap D=0$, while $x \in(X \backslash D]=D^{+}$if and only if $\operatorname{Max}(x) \backslash D \neq \emptyset$. It easily follows that any two
prime ideals x, y of A satisfy $x \cap Q(A)=y \cap Q(A)$ just when $\operatorname{Ext}(x)=\operatorname{Ext}(y)$ in X. But then clearly $x \cap L(A)=y \cap L(A)$ and, because x, y are prime ideals, $x \cap \operatorname{Rud}(A)=y \cap \operatorname{Rud}(A)$. Therefore x, y coincide on $R u d(A)$ if and only if $E x t(x)=E x t(y)$ in the $d p$-space $X=P(A)$ of A. This demonstrates (2).

For any $d \in A \backslash \operatorname{Rud}(A)$ there are prime ideals $x, y \in X$ such that $d \in x, d \notin y$ and $x \cap \operatorname{Rud}(A)=y \cap \operatorname{Rud}(A)$, see, for instance, p . 141 of [4]. In the $d p$-space X of A, this means the existence of a clopen decreasing set $D \subseteq X$ and $x, y \in X$ with $E x t(x)=E x t(y)$ for which $y \in D$ and $x \notin D$. To show that $D \in A \backslash R(A)$, let $Y=\operatorname{Ext}(X) \cup\{e\}$ be a proper extension of the closed subapace $\operatorname{Ext}(X)$ of X by a clopen singleton $\{e\}$ for which $E x t(e)=E x t(x)=E x t(y)$. Then Y is a dp-space. For $z \in\{x, y\}$, let $f_{z}: Y \longrightarrow X$ be the extension of the identity mapping of $E x t(X)$ determined by $f_{z}(e)=z$. Then $D\left(f_{x}\right)$ and $D\left(f_{y}\right)$ agree on $Q(A)$, by 2.3. Since f_{x} and f_{y} are obviously $d p$-maps such that $e \notin f_{z}^{-1}(D)$ and $e \in f_{y}^{-1}(D)$, it follows that $d \in A \backslash R(A)$. Therefore (1) holds.

Since $\operatorname{Rud}(A)$ is the largest subalgebra of A whose dual is carried by the quotient space $h(X)$, the least order induced by h defines a dp-space of $R u d(A)$, so that (3) holds. Claim (4) is obviously true.
Remark 3.2. The following three claims are easily established:
(a) The dual h of the inclusion $\operatorname{Rud}(A) \subseteq A$ is one-to-one on $\operatorname{Max}(X)$ and on $\operatorname{Min}(X)$, but not on $\operatorname{Ext}(X)$: in fact, it collapses those (and only those) components C of X for which $\operatorname{Max}(C)$ and $\operatorname{Min}(C)$ are singletons.
(b) With any Priestley space we may associate its extremal pre-order \leq_{E} defined by $x \leq_{E} y$ just when $\operatorname{Min}(x) \subseteq \operatorname{Min}(y)$ and $\operatorname{Max}(x) \supseteq \operatorname{Max}(y)$. Then $E x t(x)=E x t(y)$ is equivalent to $x \leq_{E} y \leq_{E} x$ for $x, y \in \bar{X}$. The quotient of \leq_{E} on $h(X)$ is the partial order which, together with the quotient topology of $h(X)$, determines the $d p$-space of the subalgebra $L(A)$.
(c) Any sublattice S of A satisfying $L(A) \subseteq S \subseteq R u d(A)$ is a double p-algebra such that $L(S)=L(A)$; by the congruence extension property, the algebra S is also rudimentary.

Lemma 3.3. Let $f: A \longrightarrow B$ be a homomorphism of distributive double p algebras. Then $f(R u d(A)) \subseteq R u d(B)$. Moreover, if A is rudimentary and f is surjective, then B is rudimentary. In particular, every component of a rudimentary algebra is a nucleus.
Proof. To prove the first claim, let $g_{0}, g_{1}: B \longrightarrow C$ be any two homomorphisms for which $g_{0} \upharpoonright L(B)=g_{1} \backslash L(B)$. Since $f(L(A)) \subseteq L(B)$, the homomorphisms $g_{0} \circ f$ and $g_{1} \circ f$ coincide on $L(A)$, and hence also on $R u d(A)$. But then g_{0} coincides with g_{1} on $f(R u d(A))$, and $f(R u d(A)) \subseteq R u d(B)$ follows from the definition of $R u d(B)$.

Secondly, if $f: A \longrightarrow B$ is surjective and $A=R u d(A)$, then $B=f(A)=$ $f(R u d(A)) \subseteq R u d(B)$ as required.

We say that a double p-algebra A is uniform if all its components have isomorphic rudiments. For an algebra A of a finite range, this means that its quotients -
represented by the (closed) order components C of $X=P(A)$ - have isomorphic rudiments.

Any finitely generated variety \mathbf{V} of distributive double p-algebras contains only finitely many nonisomorphic nuclei, all of them finite. The claim below shows that the existence of homomorphisms determines a partial order on isomorphism classes of finite nuclei.

Lemma 3.4. Any endomorphism of a finite nucleus is invertible. Consequently, if F and G are nuclei for which there are homomorphisms $F \longrightarrow G$ and $G \longrightarrow F$, then $F \cong G$.
Proof. Write $X=P(F)$. Let $h: X \longrightarrow X$ be a $d p$-map. Then $h(E x t(X))=$ $\operatorname{Ext}(X)$ because $\operatorname{Ext}(X)$ is connected; since $\operatorname{Ext}(X)$ is finite, h permutes members of $\operatorname{Ext}(X)$. If $h(x)=h(y)$, then $h(E x t(x))=E x t(h(x))=E x t(h(y))=h(E x t(y))$. But then $\operatorname{Ext}(x)=\operatorname{Ext}(y)$ because $h \mid E x t(X)$ is one-to-one; since F is rudimentary, we obtain $x=y$. Therefore h is invertible.

With f, g as above, the composites $g \circ f$ and $f \circ g$ are automorphisms, so that $(g \circ f)^{k}=i d_{F}$ and $(f \circ g)^{k}=i d_{G}$ for some integer $k \geq 1$. Hence f is an isomorphism of F onto G.

Proposition 3.5. Any distributive double p-algebra A from a finitely generated variety V has a uniform direct factor.

Proof. Let K denote the finite set of non-isomorphic nuclei that occur as rudiments of maximal directly indecomposable factors of the algebra A. By 3.4, there exists a maximal $M \in K$ in the sense that there is no homomorphism from M to any $N \in$ $K \backslash\{M\}$. We aim to exhibit a direct factor B of A such that $R u d(B / \Theta(R)) \cong M$ for every prime filter R of $\operatorname{Cen}(B)$.

For any prime filter $Q \subseteq \operatorname{Cen}(A)$ of the center of A we have $A_{Q}=A / \Theta(Q)$ and $\operatorname{Rud}\left(A_{Q}\right) \in K$. Write

$$
\begin{aligned}
& I=\left\{Q \in P(\operatorname{Cen}(A)) \mid R u d\left(A_{Q}\right) \nsubseteq M\right\}, \text { and } \\
& J=\left\{Q \in P(\operatorname{Cen}(A)) \mid R u d\left(A_{Q}\right) \cong M\right\} .
\end{aligned}
$$

It is clear that I, J form a decomposition of $P=P(\operatorname{Cen}(A))$. Suppose that $I \neq \emptyset$, for else there is nothing to prove.

If D is a component of $S_{I}=\Pi\left\{\operatorname{Rud}\left(A_{Q}\right) \mid Q \in I\right\}$, then $D=S_{I} / \Theta(U)$ for some prime filter U of the center $\operatorname{Cen}\left(S_{I}\right)=2^{I}$. But then U is an ultrafilter on the set I, and hence $D=S_{I} / \Theta(U)$ is an ultraproduct of finite algebras isomorphic to members of the finite set $K \backslash\{M\}$. It follows that every component of S_{I} is isomorphic to a member of $K \backslash\{M\}$.

Let $\alpha_{Q}: A \longrightarrow A_{Q}$ be the surjective homomorphism with $\operatorname{Ker}\left(\alpha_{Q}\right)=\Theta(Q)$, and let a homomorphism $f: \operatorname{Rud}(A) \longrightarrow S_{I}$ be defined by $f(s)(Q)=\alpha_{Q}(s)$ for all $s \in \operatorname{Rud}(A)$ and $Q \in I$. For any $c \in \operatorname{Cen}(\operatorname{Rud}(A))$ with $f(c)=1$ we then have $(c, 1) \in \operatorname{Ker}\left(\alpha_{Q}\right)=\Theta(Q)$ for every $Q \in I$, and hence also $c \in \cap I$. Should
$\bigcap I=\{1\}$, the homomorphism f would be one-to-one on $\operatorname{Cen}(\operatorname{Rud}(A))$ and, by 2.4, any component of $\operatorname{Rud}(A)$ isomorphic to M would have a homomorphism to a component of S_{I} isomorphic to a member of $K \backslash\{M\}$. The choice of M makes this impossible, however, and we must have $\bigcap I \neq\{1\}$.

Select any $c \in \operatorname{Cen}(\operatorname{Rud}(A))=\operatorname{Cen}(A)$ with the complement $c^{\prime} \in \bigcap I \backslash\{1\}$. Then $B=A / \Theta([c))$ is a nontrivial direct factor of A; let $k: A \longrightarrow B$ be the homomorphism with $\operatorname{Ker}(k)=\Theta([c))$. To show that B is uniform, choose any prime filter $R \subseteq \operatorname{Cen}(B)$, and let $\beta_{R}: B \longrightarrow B_{R}$ be the surjective homomorphism with $\operatorname{Ker}\left(\beta_{R}\right)=\Theta(R)$. Then $Q=k^{-1}(R) \cap \operatorname{Cen}(A)$ is a prime filter of $\operatorname{Cen}(A)$, and $c \in Q$. Should $Q \in I$, then $0=c \wedge c^{\prime} \in Q$, a contradiction. Thus $Q \in J$ and $R u d\left(A_{Q}\right) \cong M$.

From $c \in Q$ it follows that $\Theta(Q)=\operatorname{Ker}\left(\alpha_{Q}\right) \subseteq \operatorname{Ker}\left(\beta_{R} \circ k\right)$, and we need only justify the reverse inclusion. To do this, choose any $x, y \in \operatorname{Ker}\left(\beta_{R} \circ k\right)$. Since $\operatorname{Ker}\left(\beta_{R}\right)=\Theta(R)$, there exists an $r \in R$ such that $k(x) \wedge r=k(y) \wedge r$. The homomorphism k is surjective, so that $k(a)=r$ for some $a \in A$. But A is of finite range, so that $q=a^{n(+*)} \in \operatorname{Cen}(A)$ for some $n \geq 1$; clearly $k(q)=r$. But then $q \in Q$ and $k(x \wedge q)=k(y \wedge q)$. From $\operatorname{Ker}(k)=\Theta([c))$ we obtain $x \wedge(q \wedge c)=y \wedge(q \wedge c)$, and then $(x, y) \in \Theta(Q)$ because $q \wedge c \in Q$.

Altogether, $B / \Theta(R) \cong A_{Q}$ and hence also $R u d(B / \Theta(R)) \cong R u d\left(A_{Q}\right) \cong M$, as was to be shown.

4. Nuclei in universal varieties

In this section we show that every finitely generated variety \mathbf{V} of distributive double p-algebras which satisfies 1.1(4) or 1.1(6) contains a nucleus F (which is, of course, finite) such that
(X1) there are three distinct non-extremal order connected join irreducible elements of F, and
(X2) the identity map is the only endomorphism of F which fixes every nonextremal join irreducible element of F.
Assume that \mathbf{V} either contains algebras with endomorphism monoids isomorphic to arbitrarily large prime order cyclic groups, or a rigid algebra which is not a product of finitely many nuclei. Since any finitely generated variety \mathbf{V} contains only finitely many non-isomorphic nuclei, the latter requirement is satisfied by any infinite rigid algebra in \mathbf{V}.

We shall consider $d p$-spaces rather than the algebras themselves, and extend all algebraic terminology to corresponding $d p$-spaces.

In terms of $d p$-spaces, we aim to exhibit a finite connected poset (X, \leq) dual to some algebra in V in which $\operatorname{Ext}(x)=E x t(y)$ only when $x=y$, and such that
(P1) $\operatorname{Mid}(X)=X \backslash \operatorname{Ext}(X)$ has a component with at least three elements, and
(P2) the identity of X is the only $d p$-map $f: X \longrightarrow X$ whose fixpoints include $\operatorname{Mid}(X)$.
Extending our earlier notation, for any subset U of a $d p$-space X, we write $K(U)$ for the set of all components of X intersecting U. If X is dual to an algebra of finite range then $K(U)$ is a union of components; furthermore,
$K(U)$ is closed whenever U is, and
$K(U)$ is clopen for any clopen $U \subseteq X$ which is increasing or decreasing.
The lemma below is of central importance.
Lemma 4.1. If X is the $d p$-space of a uniform algebra from a finitely generated variety, and if Y is the $d p$-space of the (finite) nucleus isomorphic to the rudiment of every component of X, then there exists a surjective $d p$-map $h: X \longrightarrow Y$.

Proof. With no loss of generality, we may assume that the space X is rudimentary.
We aim to show that every component C of the rudimentary uniform space X is contained in a clopen union X_{C} of components of X for which there exists a surjective $d p$-map $h_{C}: X_{C} \longrightarrow C$. The existence of the $d p$-map $h: X \longrightarrow Y$ then follows immediately from the compactness of X and the fact that C is isomorphic to Y.

Let C be an arbitrary component of X. Since there is nothing to prove when C is a singleton, we shall assume that $\operatorname{Max}(C) \cap \operatorname{Min}(C)=\emptyset$.
(a) First we construct a clopen union $D \supseteq C$ of components of X and a family of natural $d p$-maps $f_{C^{\prime}}: E x t(C) \longrightarrow E x t\left(C^{\prime}\right)$ indexed by components $C^{\prime} \subseteq D$.

Since C is finite and $\operatorname{Max}(X)$ is closed, for every $z \in \operatorname{Min}(C)$ there exists a clopen decreasing set $d A_{z} \subseteq X$ such that $d A_{z} \cap C=\{z\}$ and $d A_{z} \cap \operatorname{Max}(X)=\emptyset$. Then the set $\bigcup\left\{d A_{z} \mid z \in \operatorname{Min}(C)\right\}$ is clopen decreasing and disjoint from $\operatorname{Max}(X)$. Consequently, for each $u \in \operatorname{Max}(C)$ there is a clopen increasing set $i A_{u}$ such that $i A_{u} \cap C=\{u\}$ and $i A_{u} \cap d A_{z}=\emptyset$ for all $z \in \operatorname{Min}(C)$. For each $z \in \operatorname{Min}(C)$ and $u \in \operatorname{Max}(C)$, respectively, set

$$
\begin{aligned}
& d X_{z}=d A_{z} \backslash\left(\bigcup\left\{\left[d A_{t}\right) \mid t \in \operatorname{Min}(C) \backslash\{z\}\right\}\right), \text { and } \\
& i X_{u}=i A_{u} \backslash\left(\bigcup\left\{\left(i A_{v}\right] \mid v \in \operatorname{Max}(C) \backslash\{u\}\right\}\right) ;
\end{aligned}
$$

furthermore, denote

$$
\begin{aligned}
& d B_{z}=d X_{z} \cap\left(\bigcap\left\{\left(i X_{u}\right] \mid z<u\right\}\right), \text { and } \\
& i B_{u}=i X_{u} \cap\left(\cap\left\{\left[d X_{z}\right) \mid z<u\right\}\right) .
\end{aligned}
$$

Since $\left(d A_{t}\right]=d A_{t}$ for all $t \in \operatorname{Min}(C)$ and $\left[i A_{v}\right)=i A_{v}$ for all $v \in \operatorname{Max}(C)$, the finiteness of C and the fact that X is a $d p$-space imply that every $d B_{z}$ is clopen decreasing, and that every $i B_{u}$ is clopen increasing. Moreover, members of the family

$$
B=\left\{d B_{z} \mid z \in \operatorname{Min}(C)\right\} \cup\left\{i B_{u} \mid u \in \operatorname{Max}(C)\right\}
$$

are nonvoid and pairwise disjoint.
The set $D=\bigcap\{K(W) \mid W \in B\} \supseteq C$ is a clopen union of components of X. Thus each set $d D_{z}=d B_{z} \cap D$ with $z \in \operatorname{Min}(C)$ is nonvoid, clopen and decreasing,
while $i D_{u}=i B_{u} \cap D$ is nonvoid, clopen and increasing for each $u \in \operatorname{Max}(C)$. All of these sets are pairwise disjoint.

Let $C^{\prime} \subseteq D$ be any component of X. Since $\operatorname{Min}\left(C^{\prime}\right)$ is finite and bijective to $\operatorname{Min}(C)$, and because each $d D_{z}$ is decreasing, the set $d D_{z} \cap \operatorname{Min}\left(C^{\prime}\right)$ is nonvoid for every $z \in \operatorname{Min}(C)$; having recalled that the sets $d D_{z}$ are pairwise disjoint, we conclude that every $d D_{z} \cap \operatorname{Min}\left(C^{\prime}\right)$ must be a singleton. A similar observation applies to $i D_{\mathbf{k}} \cap \operatorname{Max}\left(C^{\prime}\right)$. Hence there is a bijection $f_{C^{\prime}}: E x t(C) \longrightarrow E x t\left(C^{\prime}\right)$ with $f_{C^{\prime}}(\operatorname{Max}(C))=M a x\left(C^{\prime}\right)$ and $f_{C^{\prime}}(\operatorname{Min}(C))=M i n\left(C^{\prime}\right)$ such that
$\left\{f_{C^{\prime}}(z)\right\}=d D_{z} \cap \operatorname{Min}\left(C^{\prime}\right)$ for all $z \in \operatorname{Min}(C)$, and
$\left\{f_{C^{\prime}}(u)\right\}=i D_{u} \cap M a x\left(C^{\prime}\right)$ for all $u \in \operatorname{Max}(C)$.
An analogous argument shows that $\left\{f_{C^{\prime}}(z)\right\}=d X_{z}^{\prime} \cap M i n\left(C^{\prime}\right)=d \dot{B}_{z} \cap M i n\left(C^{\prime}\right)$ for all $z \in \operatorname{Min}(C)$ and $\left\{f_{C^{\prime}}(u)\right\}=i X_{u} \cap \operatorname{Max}\left(C^{\prime}\right)=i B_{\mathbf{u}} \cap \operatorname{Max}\left(C^{\prime}\right)$ for all $u \in \operatorname{Max}(C)$. If $z \leq u$ in $E x t(C)$, then $f_{C^{\prime}}(z) \leq f_{C^{\prime}}(u)$ by the definition of $d B_{z}$; since $\operatorname{Ext}\left(C^{\prime}\right)$ is isomorphic to $\operatorname{Ext}(C)$ and both are finite, we conclude that the bijection $f_{C^{\prime}}$ is an order isomorphism - and hence a dp-map - of $E x t(C)$ onto $E x t\left(C^{\prime}\right)$.

For any $p \in d B_{z} \cap C^{\prime}$, the set $\operatorname{Min}(p)$ is nonvoid and $\operatorname{Min}(p) \subseteq d B_{z} \cap \operatorname{Min}\left(C^{\prime}\right)=$ $\left\{f_{C^{\prime}}(z)\right\} ;$ moreover, $\operatorname{Max}(p) \supseteq\left\{f_{C^{\prime}}(u) \mid u \in \operatorname{Max}(z)\right\}=\operatorname{Max}\left(f_{C^{\prime}}(z)\right)$. Hence $f_{C^{\prime}}(z) \leq p$ and $p \leq_{E} f_{C^{\prime}}(z)$ in the extremal order \leq_{E} of the rudimentary poset C^{\prime}, and this is possible only when $p=f_{C^{\prime}}(z)$. Therefore, for any component $C^{\prime} \subseteq D$, we have

$$
\begin{aligned}
& \left\{f_{C^{\prime}}(z)\right\}=d D_{z} \cap C^{\prime} \text { for all } z \in \operatorname{Min}(C), \text { and } \\
& \left\{f_{C^{\prime}}(u)\right\}=i D_{u} \cap C^{\prime} \text { for all } u \in \operatorname{Max}(C),
\end{aligned}
$$

where the second claim follows dually from the definition of $i B_{u}$. Consequently,

$$
d D_{z} \subseteq \operatorname{Min}(D) \text { and } i D_{u} \subseteq \operatorname{Max}(D)
$$

Together with the finiteness of $\operatorname{Ext}(C)$, this implies that $\operatorname{Min}(D)$ and $\operatorname{Max}(D)$ are clopen sets.
(b) Next we exhibit clopen sets needed in considerations of partial maps between components of the clopen set D.

For any $Z \subseteq \operatorname{Min}(C)$ and $U \subseteq \operatorname{Max}(C)$, write $d D_{z}=\bigcup\left\{d D_{z} \mid z \in Z\right\}$ and $i D_{U}=\bigcup\left\{i D_{u} \mid u \in U\right\}$. The following equalities are easily verified:

$$
\begin{aligned}
& \left\{y \in D \mid \operatorname{Min}(y) \subseteq d D_{z}\right\}=D \backslash\left[d D_{M i n(C) \backslash Z}\right), \\
& \left\{y \in D \mid \operatorname{Min}(y) \supseteq d D_{z} \cap K(y)\right\}=\bigcap\left\{\left[d D_{z}\right) \mid z \in Z\right\}, \\
& \begin{aligned}
P(Z) & =\left\{y \in D \mid \operatorname{Min}(y)=d D_{Z} \cap K(y)\right\} \\
& =\left(\bigcap\left\{\left[d D_{z}\right) \mid z \in Z\right\}\right) \cap\left(D \backslash\left[d D_{M i n(C) \backslash z}\right)\right)
\end{aligned}
\end{aligned}
$$

and, dually,

$$
\begin{aligned}
\left\{y \in D \mid \operatorname{Max}(y) \subseteq i D_{U}\right\} & =D \backslash\left(i D_{M a x(C) \backslash U}\right] \\
\left\{y \in D \mid M a x(y) \supseteq i D_{U} \cap K(y)\right\} & =\bigcap\left\{\left(i D_{u}\right] \mid u \in U\right\}
\end{aligned}
$$

$$
\begin{aligned}
R(U) & =\left\{y \in D \mid M a x(y)=i D_{U} \cap K(y)\right\} \\
& =\left(\bigcap\left\{\left(i D_{u}\right] \mid u \in U\right\}\right) \cap\left(D \backslash\left(i D_{M a x}(C) \backslash U\right]\right) .
\end{aligned}
$$

Since $\operatorname{Ext}(C)$ is finite and all sets $d D_{z}$ and $i D_{u}$ are clopen in the clopen $d p$-space D, all right hand sides of the above six equalities define sets that are clopen in X. Thus the set $S(Z, U)=P(Z) \cap R(U)$ below is also clopen:

$$
S(Z, U)=\left\{y \in D \mid \operatorname{Min}(y)=d D_{Z} \cap K(y) \text { and } \operatorname{Max}(y)=i D_{U} \cap K(y)\right\}
$$

For any $x \in D$, write $M n(x)=f_{K(x)}^{-1}(M i n(x))$ and $M x(x)=f_{K(x)}^{-1}(M a x(x))$, where $f_{K(x)}$ is the bijection of $\operatorname{Ext}(C)$ onto $\operatorname{Ext}(K(x))$ defined in (a). Clearly, the sets $M n(x) \subseteq \operatorname{Min}(C)$ and $M x(x) \subseteq M a x(C)$ satisfy

$$
\begin{aligned}
& d D_{M n(x)} \cap K(x)=f_{K(x)}(M n(x))=M i n(x) \text { and } \\
& i D_{M x(x)} \cap K(x)=f_{K(x)}(M x(x))=M a x(x) .
\end{aligned}
$$

Finally, for each $x \in D$ we now write $M(x)=S(M n(x), M x(x))$. The set $M(x)$ is clopen, $x \in M(x)$ and

$$
M(x)=\left\{y \in D \mid E x t(y)=f_{K(y)}(M n(x) \cup M x(x))\right\} ;
$$

equivalently, $y \in M(x)$ exactly when $f_{K(y)}\left(f_{K(x)}^{-1}(E x t(x))\right)=E x t(y)$.
Since D is rudimentary, the set $M(x) \cap C^{\prime}$ has at most one element for any component $C^{\prime} \subseteq D$. Moreover, since each $f_{C^{\prime}}: \operatorname{Ext}(C) \longrightarrow E x t\left(C^{\prime}\right)$ is a dp-map and because C^{\prime} is rudimentary, in fact we have $M(x) \cap C^{\prime}=\left\{f_{C^{\prime}}\left(f_{K(x)}^{-1}\{x\}\right)\right\}$ for every $x \in \operatorname{Ext}(D)$.
(c) For each $d p$-map $g: E x t(C) \longrightarrow E x t(C)$ we define a set P_{g} to be the union of all components $C^{\prime} \subseteq D$ for which $f_{C^{\prime}} \circ g$ extends to a $d p$-map $k: C \longrightarrow C^{\prime}$.

Next we show that the finitely many sets P_{g} form a decomposition of D.
By the hypothesis, for any component C^{\prime} of D there exists an isomorphism $\alpha: C \longrightarrow C^{\prime}$. The composite $g=f_{C^{\prime}}^{-1} \circ(\alpha \mid E x t(C))$ is, clearly, an automorphism g of $E x t(C)$ such that $f_{C^{\prime}} \circ g=\alpha \mid E x t(C)$ extends to the $d p$-map $\alpha: C \longrightarrow C^{\prime}$. This shows that every component C^{\prime} of D lies in some P_{g}.

If $C^{\prime} \subseteq P_{g} \cap P_{g^{\prime}}$ and $C^{\prime \prime} \subseteq P_{g}$ then there exist $d p$-maps h, h^{\prime} and k such that
$h\left|E x t(C)=f_{C^{\prime}} \circ g, h^{\prime}\right| E x t(C)=f_{C^{\prime}} \circ g^{\prime}$ and $k \mid E x t(C)=f_{C^{\prime \prime}} \circ g$.
Since the composite $d p$-map $k \circ h^{-1} \circ h^{\prime}: C \longrightarrow C^{\prime \prime}$ extends the isomorphism $f_{C^{\prime}} \circ f_{C^{\prime}}^{-1} \circ f_{C^{\prime}} \circ g^{\prime}=f_{C^{\prime \prime}} \circ g^{\prime}$, we have $C^{\prime \prime} \subseteq P_{g^{\prime}}$. Hence $P_{g} \subseteq P_{g^{\prime}}$ and, by symmetry, $P_{g^{\prime}}=P_{g}$. Therefore, the sets P_{g} form a finite decomposition of D as claimed.
(d) Next we show that every set P_{g} is closed; from (c) it then follows that every P_{g} is, in fact, clopen. To this end, for any $x, y \in D$ set

$$
T(x, y)=(M(x)] \cap M(y)
$$

Since $M(x)$ and $M(y)$ are closed, so is $T(x, y)$, and hence the union $K(T(x, y))$ of all components intersecting $T(x, y)$ is closed as well. Our claim will thus be proved once we show that, for a component $C^{\prime} \subseteq P_{g}$,

$$
P_{g}=\bigcap\left\{K(T(x, y)) \mid x, y \in C^{\prime} \text { and } x>y\right\} .
$$

Let C^{\prime} and $C^{\prime \prime}$ be components contained in P_{g} and let $x>y$ in C^{\prime}. If \boldsymbol{k}^{\prime} : $C \longrightarrow C^{\prime}$ and $k^{\prime \prime}: C \longrightarrow C^{\prime \prime}$ are $d p$-maps such that $k^{\prime} \mid E x t(C)=f_{C^{\prime}} \circ g$ and $k^{\prime \prime} \mid E x t(C)=f_{C^{\prime}} \circ g$, then $k=k^{\prime \prime} \circ\left(k^{\prime}\right)^{-1}: C^{\prime} \longrightarrow C^{\prime \prime}$ is a $d p$-map extending $f_{C^{\prime \prime}} \circ f_{C^{\prime}}^{-1}$. But then $\operatorname{Ext}(k(x))=k(E x t(x))=\left(f_{C^{\prime \prime}} \circ f_{C^{\prime}}^{-1}\right)(E x t(x))=f_{C^{\prime \prime}}^{\prime \prime}(M n(x) \cup$ $M x(x))$, so that $k(x) \in M(x)$; similarly we find that $k(y) \in M(y)$. In addition, $k(x) \geq k(y)$ because k preserves order, so that $k(y) \in(M(x)] \cap M(y)=T(x, y)$ and, consequently, $C^{\prime \prime} \subseteq K(T(x, y))$.

To prove the reverse inclusion, we need to show that for any component $C^{\prime \prime} \subseteq P_{g^{\prime}}$ with $P_{g^{\prime}} \cap P_{g}=0$ there exists a pair $x>y$ in C^{\prime} such that $T(x, y) \cap C^{\prime \prime}=0$.

Recall that, for any $x \in C^{\prime}$, either $M(x) \cap C^{\prime \prime}=\emptyset$ or $M(x) \cap C^{\prime \prime}=x^{\prime \prime}$ with $E x t\left(x^{\prime \prime}\right)=f_{C^{\prime \prime}}(M n(x) \cup M x(x))=f_{C^{\prime \prime}}\left(f_{C^{\prime}}^{-1}(E x t(x))\right)$. This fact allows us to define a partial mapping $\kappa: C^{\prime} \longrightarrow C^{\prime \prime}$ by setting $\kappa(x)=M(x) \cap C^{\prime \prime}$ whenever the latter set is nonvoid. Should κ be a $d p$-map, then the $d p$-map $\kappa \circ f_{C^{\prime}}: E x t(C) \longrightarrow E x t\left(C^{\prime \prime}\right)$ would coincide with $f_{C^{\prime}}$. If $k^{\prime}: C \longrightarrow C^{\prime}$ is the dp-map extending $f_{C^{\prime}} \circ g$, then $\left(\kappa \circ k^{\prime}\right)\left|E x t(C)=\left(\kappa \circ f_{C^{\prime}} \circ g\right)\right| E x t(C)=\left(f_{C^{\prime}} \circ g\right) \mid E x t(C)$, that is, the composite $\kappa \circ k^{\prime}$ extends $f_{C} \prime \circ \circ g$ in a contradiction to the choice of $C^{\prime \prime}$. Hence κ cannot be a $d p$-map.

If the domain of κ does not include all of C^{\prime}, then $M(x) \cap C^{\prime \prime}=\emptyset$ for some $x \in C^{\prime}$ and, by definition, $T(x, y) \cap C^{\prime \prime}=T(z, x) \cap C^{\prime \prime}=\emptyset$ whenever $x>y$ or $z>x$ in C^{\prime}. The existence of such y or z follows from the fact that C^{\prime} is not a singleton.

Suppose that $\kappa: C^{\prime} \longrightarrow C^{\prime \prime}$ is defined on all of C^{\prime}, so that $\{\kappa(x)\}=M(x) \cap$ $C^{\prime \prime}$ and $\operatorname{Ext}(\kappa(x))=\left(f_{C^{\prime \prime}} \circ f_{C^{\prime}}^{-1}\right)(E x t(x))$ for all $x \in C^{\prime}$. Since C^{\prime} and $C^{\prime \prime}$ are isomorphic finite nuclei, the mapping κ is a bijection of C^{\prime} onto $C^{\prime \prime}$ that maps $\operatorname{Ext}\left(C^{\prime}\right)$ isomorphically onto $\operatorname{Ext}\left(C^{\prime \prime}\right)$. Since κ is not a $d p$-map, there must exist a pair $y<x$ in C^{\prime} such that $\kappa(y) \notin \kappa(x)$ in $C^{\prime \prime}$. But then $T(x, y) \cap C^{\prime \prime}=(\kappa(x)] \cap$ $\kappa(y)=0$ again.

Every set P_{g} is thus clopen in D, and hence also in the original $d p$-space X.
(e) Select $g=i d_{E x t(C)}=i d$. Then $X_{C}=P_{i d}$ is a clopen union of components of X, and for every component $C^{\prime} \subseteq X_{C}$ there exists a $d p$-map k_{C} of C onto C^{\prime} that extends $f_{C^{\prime}}$. For every $x \in C$ we thus have $M(x) \cap C^{\prime}=\left\{k_{C^{\prime}}(x)\right\}$. Since each $M(x)$ is clopen, a mapping $h_{C}: X_{C} \longrightarrow C$ defined by $h_{C}^{-1}\{x\}=M(x)$ for all $x \in C$
is continuous; it is a $d p$-map because its restriction to any component C^{\prime} of X_{C} is the inverse of the $d p$-map $k_{C^{\prime}}$.

Together with the initial remarks, this completes the proof.
In algebraic terms, Lemma 4.1 says that any uniform algebra from a finitely generated variety \mathbf{V} contains an isomorphic copy of its nucleus F. If S is a rudimentary uniform algebra, then F is also a homomorphic image of S and, consequently, every rudimentary uniform rigid algebra must be a nucleus.

We say that the $d p$-space $X=P(A)$ of an algebra $A \in \mathbf{V}$ is \mathbf{V}-cyclic whenever the endomorphism monoid $\operatorname{End}(A)$ is isomorphic to the cyclic group C_{p} of an odd prime order $p>|\operatorname{Ext}(P(F))|$ for any nucleus $F \in \mathbf{V}$. The space X is said to be \mathbf{V}-rigid whenever it is rigid and non-rudimentary.
Lemma 4.2. Any dp-map $f: X \longrightarrow X$ of a V-cyclic space maps $\operatorname{Ext}(X)$ identically onto itself and, consequently, every V-cyclic space is non-rudimentary.
Proof. Let $f: X \longrightarrow X$ be any non-identity $d p$-map. Suppose that there exists a component C of X for which $f(C) \cap C=\emptyset$. Since f is invertible, $f(C)$ is another component of X and, by 2.2 , there exists a clopen decreasing set B such that $C \subseteq B$ and $f(C) \subseteq X \backslash B$. Since X represents an algebra of a finite range n, the clopen decreasing set $W=B^{n(+*)}$ is also increasing, contains C, and is disjoint from $f(C)$. Therefore $A=\bigcap\left\{W \backslash f^{i}(W) \mid i \in\{1,2, \ldots p-1\}\right\}$ is again clopen, both decreasing and increasing, and contains C; furthermore, $f^{i}(A)$ intersects $f^{j}(A)$ only when $i=j \in\{0,1, \ldots, p-1\}$.

It is now routine to verify that the mapping $g: X \longrightarrow X$ defined as the identity on $X \backslash(A \cup f(A))$ extended by $g|A=f| A$ and $g \upharpoonright(f(A))=f^{-1} \mid(f(A))$ is an invertible $d p$-map of order two, in contradiction to the hypothesis.

Therefore $f(C)=C$, and hence also $f(E x t(C))=E x t(C)$ for every component C of X; since the prime order p of f exceeds $|E x t(C)|$, all orbits of f on $E x t(C)$ must be trivial. Finally, if X were rudimentary then, by $3.1, f$ would have to be the identity on X.

We say that S is a set of mutually rigid objects if the identity morphisms are the only morphisms between members of S.

Lemma 4.3. Any rigid dp-space X with $D(X) \in \mathbf{V}$ which is not a finite disjoint union of mutually rigid nuclei must contain a V -rigid uniform subspace Y representing a direct factor of $D(X)$.
Proof. Recall that 4.1 implies that any rudimentary uniform rigid algebra from \mathbf{V} is a nucleus.

Let X be a rigid $d p$-space with $D(X) \in \mathbf{V}$. By 3.5, the space X contains a uniform subspace H_{0} representing a direct factor of $D(X)$. The rigidity of X implies that both H_{0} and $X_{1}=X \backslash H_{0}$ are rigid. If H_{0} is not rudimentary, then $Y=H_{0}$ is \mathbf{V}-rigid, and the conclusion follows. If H_{0} is rudimentary, and hence a nucleus, we apply 3.5 to the rigid $d p$-space $X_{1}=X \backslash H_{0}$ to obtain a uniform subspace H_{1}
of X_{1} representing a direct factor of $D\left(X_{1}\right)$. Again, if H_{1} is not rudimentary, then $Y=H_{1}$ is V-rigid, and we are done. Else H_{1} is a nucleus and, because X is rigid, there are no $d p$-maps between the rigid nuclei H_{0} and H_{1}. An inductive extension of this argument completes the proof because \mathbf{V} can contain only finitely many mutually rigid nuclei.

Lemma 4.4. Any V-cyclic $d p$-space X contains a uniform subspace Y representing a direct factor of $D(X)$ that is either \mathbf{V}-cyclic or \mathbf{V}-rigid.

Proof. As in 4.3, we note that every rigid rudimentary algebra in \mathbf{V} is a nucleus.
If the V-cyclic space X is not uniform then, according to 3.5 , it must contain a uniform subspace H_{0} representing a direct factor of $D(X)$. Since the respective endomorphism monoids satisfy $\operatorname{End}(X) \cong \operatorname{End}\left(H_{0}\right) \times \operatorname{End}\left(X \backslash H_{0}\right)$, and because $\operatorname{End}(X)$ is isomorphic to a prime order cyclic group, one of the subspaces $H_{0}, X \backslash H_{0}$ must be rigid and the other V -cyclic. There is nothing to prove if H_{0} is V -cyclic or V -rigid. In the remaining case, the space H_{0} is rigid and rudimentary - and hence a nucleus - while $X_{1}=X \backslash H_{0}$ must be V-cyclic. Applying the above argument to X_{1} instead of X and then extending it inductively, we find that this procedure terminates after finitely many steps because the variety V contains only a finite number of nuclei. But then the terminal step supplies a uniform subspace Y of X representing a uniform direct factor of $D(X)$ that is either V-cyclic or V-rigid.

Thus, in particular, any finitely generated universal variety contains a nonrudimentary uniform algebra A for which $\operatorname{End}(A)$ is a finite group.

Lemma 4.5. Let X be a uniform dp-space of an algebra from V such that all endomorphisms of X are invertible. Then either X is a chain with at most two elements or else $\operatorname{Ext}(e) \neq E x t(x)$ for all $e \in \operatorname{Ext}(X)$ and $x \in X \backslash\{e\}$.

Proof. If X has a singleton component $\{e\}$, then the constant map $k: X \longrightarrow X$ with $k(X)=\{e\}$ is an idempotent endomorphism of X, and k is invertible only when $X=\{e\}$. Secondly, assume that X has no singleton components and that $\{c, d\}$ with $c<d$ is a component of $\operatorname{Ext}(X)$. Since $\operatorname{Max}(X)$ and $\operatorname{Min}(X)$ are compact monotone disjoint sets, 2.2 supplies a clopen decreasing set C containing $\operatorname{Min}(X)$ and disjoint from $\operatorname{Max}(X)$. But then the mapping $f: X \longrightarrow X$ given by $f^{-1}\{c\}=C$ and $f^{-1}\{d\}=X \backslash C$ is an idempotent $d p$-map that is invertible only when $X=\{c, d\}$.

Suppose that all components of $\operatorname{Ext}(X)$ have more than two elements, so that $E x t(d) \neq E x t(e)$ whenever $d, e \in \operatorname{Ext}(X)$ are distinct. Let $h: X \longrightarrow S$ be the surjective $d p$-map dual to the inclusion homomorphism of the rudiment $D(S)=$ $\operatorname{Rud}(D(X))$ into $D(X)$. Then h is bijective on $\operatorname{Ext}(X)$, so that we may replace $\operatorname{Ext}(S) \subseteq S$ by $\operatorname{Ext}(X)$. For any $e \in \operatorname{Ext}(X)$, the set $K_{e}=\{x \in C \mid \operatorname{Ext}(x)=$ $E x t(e)\}=h^{-1}\{e\}$ is closed because h is continuous, and these sets are pairwise disjoint. Define $g: X \longrightarrow X$ by $g(x)=e$ for every $e \in E x t(X)$ and all $x \in K_{e}$, and by $g(x)=x$ for all other $x \in X$. To prove that g is a $d p$-map, it suffices to show
that it is continuous. Observe that, for every $Z \subseteq X$,

$$
g^{-1}(Z)=\left(Z \backslash\left(\bigcup\left\{K_{e} \mid e \in E x t(X)\right\}\right)\right) \cup h^{-1}(Z \cap E x t(X))
$$

If Z is closed then $g^{-1}(Z)$ is closed whenever $\bigcup\left\{K_{e} \mid e \in \operatorname{Ext}(X)\right\}$ is open because h is continuous and $\operatorname{Ext}(S)=\operatorname{Ext}(X)$ is closed. Let Y be the nucleus isomorphic to the rudiment of any component of X, and let $f: X \longrightarrow Y$ be the surjective $d p$-map from 4.1. Then $f^{-1}(E x t(Y))=\bigcup\left\{K_{e} \mid e \in E x t(X)\right\}$ and, because Y is finite and f is continuous, it follows that the set $\bigcup\left\{K_{e} \mid e \in \operatorname{Ext}(X)\right\}$ is, in fact, clopen.

Thus $g: X \longrightarrow X$ is a dp-map. Since all such maps are invertible, it follows that $\left|K_{e}\right|=1$ for every $e \in \operatorname{Ext}(X)$. But $e \in K_{e}$ and the claim follows.

In particular, by 3.1, for any V-rigid or V-cyclic space X, the dual $h: X \longrightarrow$ S of the inclusion of the rudiment $\operatorname{Rud}(D(X))$ into the algebra $D(X)$ satisfies $h^{-1}(h\{e\})=\{e\}$ for all $e \in \operatorname{Ext}(X)$.
Lemma 4.6. Let $Y=P(F)$, where F is the nucleus associated with the dual $D(X)$ of a uniform \mathbf{V}-rigid or \mathbf{V}-cyclic dp-space X. Then $\operatorname{Mid}(Y)=Y \backslash E x t(Y)$ has an order component with more than two elements.

Proof. Suppose, for contradiction, that all components of $\operatorname{Mid}(Y)$ are either singletons or two-element chains.

Let $h: X \longrightarrow Y$ be the $d p$-map from 4.1, and let C be an arbitrarily selected component of X. Then the restriction $k=h \mid C$ maps C onto Y. Since k is a $d p$-map, $k(u) \leq k(v)$ is equivalent to $u \leq v$ whenever u or v is extremal. By 4.5, k is the identity on $\operatorname{Ext}(C)=\operatorname{Ext}(Y)$ and $k(M i d(C))=M i d(Y)$ and, by 3.1, the order of $Y=k(C)$ is the induced quotient order. Since any order component of $\operatorname{Mid}(Y)$ has at most two elements, $k(u) \leq k(v)$ in $M i d(Y)$ if and only if $u^{\prime} \leq v^{\prime}$ in $\operatorname{Mid}(C)$ for some u^{\prime} and v^{\prime} satisfying $k\left(u^{\prime}\right)=k(u)$ and $k\left(v^{\prime}\right)=k(v)$. Hence there exists an order preserving mapping $f: Y \longrightarrow C$ for which $k \circ f=i d_{Y}$. Since Y is finite and f is the identity on $\operatorname{Ext}(Y)=\operatorname{Ext}(C)$, it follows that f is a dp-map. The composite $f \circ h: X \longrightarrow X$ is invertible only when $h=k$ is one-to-one. But then X is isomorphic to the rudimentary space Y, so that X can be neither V-rigid nor, by $4.2, \mathrm{~V}$-cyclic.

The proof of (P1) is now complete. The claim below provides a final step towards (P2).

Lemma 4.7. Assume the hypothesis of 4.6. Then the identity is the only endomorphism of F whose dual fixes $M i d(Y)$ elementwise.
Proof. Set $Y=P(F)$ as in 4.6, and suppose that $f: Y \longrightarrow Y$ is a $d p$-map such that $f(y)=y$ for every $y \in \operatorname{Mid}(Y)$.

Let $h: X \longrightarrow Y$ be the $d p$-map from 4.1, and let C_{Q} be a component of X. Then h maps $\operatorname{Ext}\left(C_{Q}\right)$ bijectively onto $\operatorname{Ext}(Y)$ and $h\left(\operatorname{Mid}\left(C_{Q}\right)\right)=\operatorname{Mid}(Y)$, so that there
is a unique mapping $g_{Q}: C_{Q} \longrightarrow C_{Q}$ such that g_{Q} is the identity on $M i d\left(C_{Q}\right)$ and $(f \circ h)\left|C_{Q}=\left(h \circ g_{Q}\right)\right| C_{Q}$. By 3.4, the $d p$-map f is a permutation of $E x t(Y)$ and, consequently, the mapping g_{Q} is a permutation of C_{Q} whose all nontrivial orbits, if any, are contained in $E x t\left(C_{Q}\right)$. In addition, $E x t\left(g_{Q}(x)\right)=E x t(x)$ for any nonextremal $x \in C_{Q}$. Since the action of g_{Q} copies that of f on $E x t\left(C_{Q}\right)$), it follows that g_{Q} preserves the order and $g_{Q}(E x t(x))=E x t\left(g_{Q}(x)\right)$ for all $x \in C_{Q}$. The continuity of g_{Q} follows from the fact that the (finitely many) extremal points it permutes are open in C_{Q}. Therefore each $g_{Q}: C_{Q} \longrightarrow C_{Q}$ is an invertible dp-map.

The mapping $g: X \longrightarrow X$ defined as the joint extension of all g_{Q} thus preserves order and satisfies $g(E x t(x))=E x t(g(x))$ and $f \circ h=h \circ g$.

Next we show that g is continuous. Since X is a totally disconnected compact space it suffices to show that $g^{-1}(Z)$ is clopen for every clopen $Z \subseteq X$. The mapping h is continuous and $Y=h(X)$ is finite, so that we may assume that $Z \subseteq h^{-1}(y)$ for some $y \in Y$. If $y \in \operatorname{Mid}(Y)$ then $g^{-1}(Z)=Z$ because $Z \subseteq \operatorname{Mid}(X)$ and g is the identity on $\operatorname{Mid}(X)$. Secondly, for $y \in \operatorname{Min}(Y)$ we have $Z \subseteq \operatorname{Min}(X)$ and, because $D(X)$ is of a finite range n, the union $Z^{n(*+)}$ of all components that intersect Z is clopen. Clearly, $g^{-1}(Z)=Z^{n(*+)} \cap(f \circ h)^{-1}\{y\}$. From the continuity of $f \circ h$ and the fact that the singleton $\{y\}$ is clopen in Y it follows that $g^{-1}(Z) \subseteq X$ is clopen as well. Since an analogous argument applies when $y \in \operatorname{Max}(Y)$, the continuity of g follows.

Therefore $g: X \longrightarrow X$ is a $d p$-map. If X is V-rigid then $g=i d_{X}$ follows immediately. For a V-cyclic X we apply 4.2 to obtain the same conclusion. Thus $f \circ h=h$, and $f=i d_{Y}$ follows because h is surjective.
Corollary 4.8. If V is a finitely generated universal variety of distributive double p-algebras, then V contains a nucleus whose $d p$-space X satisfies ($P 1$) and ($P 2$).

This completes the proof of the implications $(4) \Rightarrow(7)$ and $(6) \Rightarrow(7)$ in Theorem 1.1.

5. Smaller nuclei

To prove the implication $(7) \Rightarrow(8)$ of Theorem 1.1, we shall assume the existence of a nucleus $F \in \mathbf{V}$ whose $d p$-space $X=P(F)$ satisfies (P1) and (P2), and construct a nucleus $G \in \mathrm{~V}$ whose $d p$-space $Y=P(G)$ satisfies the following two conditions:
(Y1) Mid(Y) has exactly one three-element order component C and at most three other components, all of them singletons, and
(Y2) no $d p$-map $g: Y \longrightarrow Y$ other than the identity fixes all members of the three-element component C.
Recall that, for any $m \in \operatorname{Mid}(X)$, the induced subposet $E(m)=\operatorname{Ext}(X) \cup\{m\}$ of X is the dual of a subdirectly irreducible algebra from V.

Let $N \subseteq M i d(X)$, and let \leq be any partial order on N contained in the restriction of the extremal order \leq_{E} of X described in $3.2(\mathrm{~b})$ to the set N; in other words,
$n_{0} \leq n_{1}$ implies, but it is not necessarily equivalent to, $\operatorname{Min}\left(n_{0}\right) \subseteq \operatorname{Min}\left(n_{1}\right)$ and $\operatorname{Max}\left(n_{0}\right) \supseteq \operatorname{Max}\left(n_{1}\right)$. On the disjoint union $\operatorname{Ext}(X) \cup N$ we now define an extension $E(N, \leq)$ of (N, \leq) by the requirement that, for every $n \in N$, the subposet $E x t(X) \cup$ $\{n\}$ of $E(N, \leq)$ coincide with $E(n)$. It is clear that the inclusion of $E(n)$ into $E(N, \leq)$ is a $d p$-map, and that $E(N, \leq)$ is the union of all $E(n)$ with $n \in N$. Therefore, for any subposet (N, \leq) of $(\operatorname{Mid}(X), \leq E)$, the poset $E(N, \leq)$ is the $d p$ space of a nucleus in the variety \mathbf{V}.

While it is clear that any variety \mathbf{V} containing a nucleus F satisfying (P1) contains also a nucleus G for which (Y1) holds, in general, however, any such G may fail to satisfy (Y2). On the other hand, the subalgebra of F generated by any order connected triple of members of $M i d(F)$ satisfies (Y1) and (Y2), but need not be rudimentary. These difficulties will be resolved through careful selection of a generating set of G within a suitable quotient algebra of F. An adequate supply of suitable generators is ensured by the following claim.

Lemma 5.1. If X is the dp-space of a finite nucleus such that the identity is the only dp-map $f: X \longrightarrow X$ which fixes $\operatorname{Mid}(X)$, then
(a) $d, e \in \operatorname{Min}(X)$ and $[d) \backslash\{d\}=\{e) \backslash\{e\}$ imply $d=e$, and
(b) $d, e \in \operatorname{Max}(X)$ and $(d] \backslash\{d\}=(e] \backslash\{e\}$ imply $d=e$.

Proof. For distinct $d, e \in \operatorname{Min}(X)$ with $[d) \backslash\{d\}=[e) \backslash\{e\}$, define a mapping $f: X \longrightarrow X$ by $f(d)=e, f(e)=d$ and $f(x)=x$ for all $x \in X \backslash\{d, e\}$. Then f is a nontrivial $d p$-map such that $f \mid M i d(X)$ is the identity. This proves (a), and a similar argument leads to (b).

We say that $x \in \operatorname{Mid}(X)$ is \min-defective whenever $\operatorname{Max}(v)=\operatorname{Max}(x)$ for all $v \in \operatorname{Min}(x)$, and max-defective if $\operatorname{Min}(u)=\operatorname{Min}(x)$ for all $u \in \operatorname{Max}(x)$. A consequence of the conclusion of 5.1 is that for every min-defective $x \in \operatorname{Mid}(X)$ and any two distinct elements of $\operatorname{Min}(x)$ there exists some $y \in M i d(X)$ such that $\operatorname{Min}(y)$ contains exactly one of them.

Let A be a finite distributive double p-algebra. For any join irreducible $a \in A$, let \bar{a} be the largest element of A with $\bar{a} \nsupseteq a$; then \bar{a} is the join of all join irreducibles $j \nsupseteq a$. If $x \in P(A)$ represents the prime filter $[a) \subset A$, then $a \in A$ is represented by $(x] \subseteq P(A)$, and \bar{a} corresponds to $P(A) \backslash[x)$. When there is no danger of confusion, we shall also write $\bar{x}=P(A) \backslash[x)$.

Lemma 5.2. Let A be a finite distributive double p-algebra. Then the subalgebra B of A generated by the set $T(A)=\operatorname{Mid}(A) \cup\{\bar{a} \mid a \in \operatorname{Mid}(A)\}$ satisfies $\operatorname{Mid}(B) \cong$ $\operatorname{Mid}(A)$.

Moreover, if A is a nucleus with $|\operatorname{Mid}(A)| \geq 2$, then the algebra B is rudimentary whenever $X=P(A)$ is such that
(1) for every min-defective a which is minimal in $\operatorname{Mid}(X)$ there is some $y \in$ $\operatorname{Mid}(X)$ which splits Min(a) in the sense that both Min(a) $\cap \operatorname{Min}(y)$ and $\operatorname{Min}(a) \backslash \operatorname{Min}(y)$ are nonvoid and, dually,
(2) for every max-defective b which is maximal in $\operatorname{Mid}(X)$ there is some $z \in$ $\operatorname{Mid}(X)$ such that both $\operatorname{Max}(b) \cap \operatorname{Max}(z)$ and $\operatorname{Max}(b) \backslash \operatorname{Max}(z)$ are nonvoid.

Proof. Let $h: X \longrightarrow Y$ be the surjective $d p$-map dual to the inclusion $B \subseteq A$. Then $h\left(x_{0}\right) \leq h\left(x_{1}\right)$ in Y if and only if $x_{1} \in b$ implies $x_{0} \in b$ for every $b \subseteq X$ representing a member of B. Equivalently, $h\left(x_{0}\right) \notin h\left(x_{1}\right)$ exactly when there is a $b \in B$ such that $x_{1} \in b$ and $x_{0} \notin b$.

Let $x_{0} \in M i d(X)$. Then $\left(x_{0}\right]$ and \bar{x}_{0} represent members of B. If $x_{1} \nless x_{0}$ then $x_{0} \in\left(x_{0}\right] \not \supset x_{1}$ and the above observation implies that $h\left(x_{1}\right) \notin h\left(x_{0}\right)$. Similarly, for any $x_{1} \geq x_{0}$ it follows that $x_{1} \in \bar{x}_{0} \not \supset x_{0}$ and hence $h\left(x_{0}\right) \notin h\left(x_{1}\right)$. In particular, h is an order isomorphism of $\operatorname{Mid}(X)$ onto an order subspace of Y.

Should $x_{0} \in \operatorname{Mid}(X)$ and $h\left(x_{0}\right) \in \operatorname{Min}(Y)$, then $x \geq x_{0}$ and $h(x)=h\left(x_{0}\right)$ for every $x \in \operatorname{Min}\left(x_{0}\right)$, a contradiction. Dually, $h\left(x_{0}\right) \notin \operatorname{Max}(Y)$. Hence $h(\operatorname{Mid}(X)) \subseteq$ $\operatorname{Mid}(Y)$ and, since $h: X \longrightarrow Y$ is a surjective $d p$-map, $h(\operatorname{Mid}(X))=M i d(Y)$. Therefore h gives an isomorphism of $\operatorname{Mid}(X)$ onto $\operatorname{Mid}(Y)$.

Furthermore, if $x_{0} \in \operatorname{Mid}(X)$ and $h(x) \in \operatorname{Min}\left(h\left(x_{0}\right)\right)$, then $x \in \operatorname{Min}(X)$ and $x \leq$ x_{0}. Thus $h^{-1}\left(\operatorname{Min}\left(h\left(x_{0}\right)\right)=\operatorname{Min}\left(x_{0}\right)\right.$ and, dually, $h^{-1}\left(\operatorname{Max}\left(h\left(x_{0}\right)\right)=\operatorname{Max}\left(x_{0}\right)\right.$, for every $x_{0} \in M i d(X)$.

Let A be a nucleus. Suppose that $\operatorname{Ext}\left(w_{0}\right)=\operatorname{Ext}\left(w_{1}\right)$ in Y, and let $w_{i}=h\left(x_{i}\right)$ for $i=0,1$.

Let $w_{0} \in \operatorname{Mid}(Y)$, so that $x_{0} \in \operatorname{Mid}(X)$. For any $x \in \operatorname{Min}\left(x_{1}\right)$ we have $h(x) \in \operatorname{Min}\left(w_{1}\right)=\operatorname{Min}\left(h\left(x_{0}\right)\right)$, and hence $x \in \operatorname{Min}\left(x_{0}\right)$. Together with a dual observation, this shows that $\operatorname{Ext}\left(x_{1}\right) \subseteq \operatorname{Ext}\left(x_{0}\right)$. If also $w_{1} \in \operatorname{Mid}(Y)$, then $\operatorname{Ext}\left(x_{0}\right)=\operatorname{Ext}\left(x_{1}\right)$, and $w_{0}=w_{1}$ follows because X is rudimentary.

Next assume that $w_{0} \in \operatorname{Mid}(Y)$ and $w_{1} \in \operatorname{Min}(Y)$. Then $\operatorname{Ext}\left(h\left(x_{0}\right)\right)=$ $\left\{w_{1}\right\} \cup \operatorname{Max}\left(w_{1}\right)$ and, since $x_{0} \in \operatorname{Mid}(X)$, we have $\operatorname{Max}\left(x_{0}\right)=h^{-1}\left(\operatorname{Max}\left(w_{1}\right)\right)$ and $\operatorname{Min}\left(x_{0}\right)=h^{-1}\left\{w_{1}\right\}$. If $z \leq x_{0}$ and $u \in \operatorname{Max}(z)$, then $h(u) \in \operatorname{Max}\left(w_{1}\right)$, and hence $u \in \operatorname{Max}\left(x_{0}\right)$. But $\operatorname{Max}\left(x_{0}\right) \subseteq \operatorname{Max}(z)$ for all $z \leq x_{0}$, and $\operatorname{Max}\left(x_{0}\right)=\operatorname{Max}(z)$ follows. Should $z \in \operatorname{Mid}(X)$, then $\operatorname{Min}(z)=f^{-1}\left\{w_{1}\right\}$, so that $\operatorname{Ext}\left(x_{0}\right)=\operatorname{Ext}(z)$, and $x_{0}=z$ because X is rudimentary. Therefore x_{0} is minimal in $M i d(X)$ and, because $\operatorname{Max}(z)=\operatorname{Max}\left(x_{0}\right)$ for every $z \in \operatorname{Min}\left(x_{0}\right)$, the element x_{0} is also min-defective. If $\operatorname{Min}\left(x_{0}\right) \cap \operatorname{Min}(y) \neq \emptyset$ for some $y \in \operatorname{Mid}(X)$, then for every $z \in \operatorname{Min}\left(x_{0}\right)$ we have $h(z)=w_{1} \leq h(y)$ and, consequently, $z \in \operatorname{Min}(y)$. Thus no $y \in \operatorname{Mid}(X)$ splits $\operatorname{Min}\left(x_{0}\right)$, in contradiction to (1). A dual argument uses (2) to show that $E x t\left(w_{0}\right) \neq E x t\left(w_{1}\right)$ for any $w_{0} \in \operatorname{Mid}(Y)$ and $w_{1} \in \operatorname{Max}(Y)$.

Since Y is connected, for extremal w_{0} and w_{1} we need only consider the case when $\operatorname{Min}(Y)=\left\{w_{0}\right\}$ and $\operatorname{Max}(Y)=\left\{w_{1}\right\}$. But X contains at least two distinct $x, x^{\prime} \in \operatorname{Mid}(X)$; as shown earlier, $\operatorname{Ext}(h(x)) \neq \operatorname{Ext}\left(h\left(x^{\prime}\right)\right)$ in Y, so that this case cannot occur.

Let X be the $d p$-space of a nucleus F satisfying 1.1(7), and let \leq_{E} be the extremal order on $M i d(X)$. First we construct a three-element component C of \leq_{E} as follows.

If \leq_{E} contains a three-element chain, we select a \leq_{E}-chain $C=C_{0}=\{a, c, b\}$ in which a is an \leq_{E}-minimal and b is an \leq_{E}-maximal member of $\operatorname{Mid}(X)$.

Let C_{1} denote the poset in which $a<c$ and $b<c$, and where a is incomparable to b; let C_{2} denote the dual of C_{1}. If \leq_{E} has no three-element chains in $\operatorname{Mid}(X)$, then $\left(\operatorname{Mid}(X), \leq_{E}\right)$ must contain a copy of C_{1} or of C_{2}; we select $C=C_{i}$ accordingly and note that a is incomparable to b in the extremal order \leq_{E}. Furthermore, in all three cases, the extremal elements of C_{i} are also extremal in the poset ($\left.\operatorname{Mid}(X), \leq_{E}\right)$.

In each of the three cases, we shall select a subset K of $M i d(X)$ ordered so that C is a component of K while $K \backslash C$ is an antichain, and show that (Y1) and (Y2) hold for the subalgebra $G=D(Y)$ generated by the set $T(E)=K \cup\{\bar{n} \mid n \in K\}$ in the algebra dual to $E=E(K, \leq)$.

We begin with an observation that will be needed in all three cases.
Assume that a minimal element $a \in C$ is min-defective. Then $\operatorname{Min}(a)$ has at least two elements because X is rudimentary; by 5.1 ,

$$
M_{0}(a)=\{y \in \operatorname{Mid}(X) \mid \operatorname{Min}(a) \backslash \operatorname{Min}(y) \neq \emptyset \neq \operatorname{Min}(a) \cap \operatorname{Min}(y)\} \neq \emptyset
$$

For any $y \in M_{0}(a)$ we have $\operatorname{Max}(y) \subseteq \operatorname{Max}(a)$, so that for each $u \in \operatorname{Max}(y)$ it follows that $\operatorname{Min}(u) \backslash \operatorname{Min}(y) \neq 0$; thus y is not max-defective. Either $\operatorname{Max}(a) \backslash$ $\operatorname{Max}(y) \neq \emptyset$ and hence y is not min-defective, or else $\operatorname{Max}(y)=\operatorname{Max}(a)$ and then, since a is minimal in the extremal order of $\operatorname{Mid}(X)$, we must have $\operatorname{Min}(y) \backslash$ $\operatorname{Min}(a) \neq \emptyset$, and hence also $a \in M_{0}(y)$. This shows that adding any $y \in M_{0}(a)$ to an arbitrary poset containing $C \cup E x t(X)$ produces a space in which both a and y satisfy $5.2(1)$ and $5.2(2)$.

Dually, in the case of a max-defective maximal $b \in C$ the set $M_{1}(b)$ of all $z \in$ $\operatorname{Mid}(X)$ which split $\operatorname{Max}(b)$ in the sense that $\operatorname{Max}(b) \backslash \operatorname{Max}(z) \neq \emptyset \neq \operatorname{Max}(b) \cap$ $\operatorname{Max}(z)$ is nonvoid, no member of $M_{1}(b)$ is min-defective, and $b \in M_{1}(z)$ for any \max-defective $z \in M_{1}(b)$. Thus b and z satisfy (1) and (2) of 5.2 as well.

Case 0. The component $C_{0}=\{a, c, b\}$ with $a<c<b$.
If $M_{0}(a)$ intersects $M_{1}(b)$, select $y \in M_{0}(a) \cap M_{1}(b)$ arbitrarily and note that y is neither max-defective nor min-defective. Set $K=C_{0} \cup\{y\}$, and order K so that C_{0} and the singleton $\{y\}$ are the components of K. As indicated earlier, we set $Y=P(G)$, where G is generated within $E(K, \leq)$ by $K \cup\{\bar{k} \mid k \in K\}$. Then $\operatorname{Mid}(Y)=K$ and Y is rudimentary by 5.2. Therefore Y satisfies (Y1). Any $d p$-map g of the rudimentary space Y into itself is invertible, so that it maps the three-element chain C_{0} identically onto itself, and hence $g(y)=y$; thus $g(k)=k$ and, by the invertibility of g also $g(\bar{k})=\bar{k}$ for all $k \in K$. Altogether, g is the identity since it fixes every generator of $G=D(Y)$. Hence G is, in fact, rigid, and (Y2) follows.

If $M_{0}(a)$ and $M_{1}(b)$ are nonvoid and disjoint, select $y \in M_{0}(a)$ and $z \in M_{1}(b)$ arbitrarily. This time set $K=C_{0} \cup\{y, z\}$, again with the trivial extension of the order of C_{0}. If y is \min-defective then $a \in M_{0}(y)$, and dually for z, so that 5.2 applies again to yield a rudimentary Y with $\operatorname{Mid}(Y)=K$ which satisfies (Y1). To see that Y is rigid, note that, as before, any $d p$-map $g: Y \longrightarrow Y$ is invertible, fixes
elements of C_{0} and hence preserves the antichain $\{y, z\}$. Since $y \notin M_{1}(b)$, either $\operatorname{Max}(b) \subseteq \operatorname{Max}(y)$ or $\operatorname{Max}(b) \cap \operatorname{Max}(y)=\emptyset$, while z splits $\operatorname{Max}(b)$; thus $g(y)=y$ and $g(z)=z$ as required by (Y2).

If a is the only defective element in C_{0} then we set $K=C_{0} \cup\{y\}$ with an arbitrarily selected $y \in M_{0}(a)$, and make a dual selection when b is the only defective member of C_{0}. The arguments for these two cases coincide with those already used. Finally, when C_{0} has no defective elements, we set $K=C_{0}$.

In every possible instance we thus obtain a rigid nucleus $G_{0}=G$ such that $\operatorname{Mid}\left(G_{0}\right)$ is the union of a three-element chain $C_{0}=\{a, c, b\}$ with at most two other order components, both of which are singletons.
Case 1. The component $C_{1}=\{a, b, c\}$ with $a<c$ and $b<c$.
Recall that all three elements of C_{1} are extremal in the extremal ordering on $\operatorname{Mid}(X)$.

Assume first the existence of some $v \in \operatorname{Min}(a) \cap \operatorname{Min}(b)$. If a is min-defective, then $\operatorname{Max}(b) \subseteq \operatorname{Max}(v)=\operatorname{Max}(a)$. Since $a \not \backslash_{E} b$, we must have $\operatorname{Min}(a) \backslash \operatorname{Min}(b) \neq$ 0 , and this shows that b splits $\operatorname{Min}(a)$. Hence $5.2(1)$ holds true for a and, by symmetry, also for b, whenever $\operatorname{Min}(a) \cap \operatorname{Min}(b) \neq 0$. If c is max-defective, we select $z \in M_{1}(c)$ arbitrarily and define K as the disjoint union of the component C_{1} and the singleton $\{z\}$; otherwise we set $K=C_{1}$. Lemma 5.2 applies to either case, and the rudimentary space Y satisfies $\operatorname{Mid}(Y) \cong K$. Thus (Y1) holds. To demonstrate (Y2), we again recall that any $d p$-map $g: Y \longrightarrow Y$ is invertible; since g fixes C_{1} elementwise, it must also fix the complementary singleton component $\{z\}$ whenever there is one included in $\operatorname{Mid}(Y) \cong K$.

Secondly, for $\operatorname{Min}(a) \cap \operatorname{Min}(b)=\emptyset$, no member of C_{1} can split the extremal elements of another one, and we proceed as in the case of the chain component. To obtain K, we extend C_{1} by a least size antichain Z intersecting each set $M_{0}(a)$, $M_{0}(b)$ and $M_{1}(c)$ which is nonvoid. Then $|Z| \leq 3$ and, because of the minimality requirement, every $z \in Z$ is uniquely determined by its inclusion in, and its exclusion from each of these three sets. As in all previous cases, 5.2 applies and produces a nucleus whose $d p$-space Y satisfies $M i d(Y) \cong C_{1} \cup Z$, and hence also (Y1). Any $d p$-map $g: Y \longrightarrow Y$ fixing C_{1} elementwise permutes Z and, since each $z \in Z$ is uniquely determined by the set of members of C_{1} whose extremals it splits, the permutation $g \mid Z$ must be the identity on Z. Thus Y satisfies (Y2) as well.

The remaining case of the component C_{2} submits to arguments dual to those used for C_{1}. Altogether, 1.1(8) follows from 1.1(7), and gives the following consequence.

Corollary 5.3. Any finitely generated universal variety \mathbf{V} contains one of the nuclei G_{i} with $i \in\{0,1,2\}$ such that $\operatorname{Mid}\left(G_{i}\right)$ is the union of a component isomorphic to C_{i} and an antichain of at most three elements. Furthermore, the identity is the only endomorphism of G_{i} which is the identity on C_{i}.

This also concludes the proof of 1.2 .

6. The representation

In this section we prove the remaining implication (8) $\Rightarrow(1)$ of Theorem 1.1 by constructing, for each $i \in\{0,1,2\}$, a full embedding Φ_{i} of a universal category D_{i} of suitably augmented Priestley spaces into the dual of the variety $\operatorname{Var}\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$ generated by the nucleus G_{i} of 5.3 .

Each category $\mathbf{D}_{\boldsymbol{i}}$ is formed by Priestley spaces with two distinct open points \boldsymbol{u} and v and by all continuous order preserving mappings g for which $\{g(u), g(v)\}=$ $\{u, v\}$. In any object of D_{0} one of the elements u, v is maximal and the other is minimal, while both u and v are maximal for all spaces of D_{1} and both are minimal in all spaces of \mathbf{D}_{2}.

The following result of Koubek [5] will be used.
Theorem 6.1. [5]. Let \mathbf{H} be the universal (cf. [12]) category of all undirected graphs and all their compatible mappings. Then, for each $i \in\{0,1,2\}$, there is a full contravariant embedding $\Psi_{i}: \mathbf{H} \longrightarrow \mathbf{D}_{i}$ such that any \mathbf{D}_{i}-morphism g : $\Psi_{i}(H) \longrightarrow \Psi_{i}\left(H^{\prime}\right)$ satisfies $g(u)=u$ and $g(v)=v$.

For each $i \in\{0,1,2\}$ and any graph H, a connected $d p$-space $\Phi_{i}(H)$ dual to an algebra with the rudiment G_{i} will be constructed so that the Priestley space $\Psi_{i}(H)$ from 6.1 replaces the element c of $P\left(G_{i}\right)$ as follows.

Set $Y=P\left(G_{i}\right)$ and let $\Psi_{i}(H)=(X, \tau, \leq, u, v)$, where u and v are the two distinguished elements of $\Psi_{i}(H) \in \mathbf{D}_{i}$. Define $\Phi_{i}(H)=\Phi(H)=(W, \sigma, \leq)$ so that
$W=(Y \backslash\{c\}) \cup X$, where the union is disjoint,
σ is the union of τ and the discrete topology on the finite set $Y \backslash\{c\}$, the partial order \leq on W coincides with the respective orders of $Y \backslash\{c\}$ or of X on these subsets, and satisfies
$([x) \cup(x]) \cap Y=E x t(c)$ for all $x \in X \backslash\{u, v\}$,
$([u) \cup(u]) \cap Y=E x t(c) \cup\{a\}$ and $([v) \cup(v]) \cap Y=\operatorname{Ext}(c) \cup\{b\}$
in such a way that, in the latter two clauses, $u \geq a$ when u is maximal in X while $u \leq a$ when u is minimal and, similarly, $v \geq b$ for a maximal v while $v \leq b$ when v is minimal in X.
It is routine to verify that, in each of the three cases, this defines a partial order on W satisfying

$$
([a) \cup(a]) \cap X=\{u\} \text { and }([b) \cup(b]) \cap X=\{v\} .
$$

Lemma 6.2. The ordered space (W, σ, \leq) is the $d p$-space of an algebra A from the variety $\operatorname{Var}\left(G_{i}\right)$ generated by the nucleus $G=G_{i}$, and $G=R u d(A)$.

Proof. Since (X, τ) is compact and $Y \backslash\{c\}$ is finite, the space (W, σ) is compact.
For any $w \in W \backslash X$, the set $(w] \cap X$ is \emptyset or X, or one of the open singletons $\{u\},\{v\}$, and the same is true for the set $[w) \cap X$. Since (X, τ, \leq) is totally order disconnected, so is its extension (W, σ, \leq) by finitely many open points $y \in Y \backslash\{c\}$
such that $([y) \cup(y]) \cap X$ is τ-open. Furthermore, if $A \subseteq W$ is increasing or decreasing then $(A]=(\operatorname{Max}(A)]$ or $[A)=[\operatorname{Min}(A))$, respectively; since $\operatorname{Ext}(A) \subseteq W \backslash X$, either of the latter two sets intersects X in one of the σ-open sets $\theta, X,\{u\},\{v\}$, or $\{u, v\}$. Thus (W, σ, \leq) is a $d p$-space.

Since $\operatorname{Ext}(x)=\operatorname{Ext}(c)$ for all $x \in X$ and because $X \subseteq W$ is clopen and convex in (W, σ), the finite space Y is the rudimentary quotient of W. Depending on whether or not $w \in X$, the finite subspace $E(w)=\operatorname{Ext}(W) \cup\{w\}=\operatorname{Ext}(Y) \cup\{w\}$ is either isomorphic, or equal to, a subspace of Y. Therefore $\Phi(H)$ is the $d p$-space of an algebra in the variety generated by its nucleus G.

For any morphism $f: H \longrightarrow H^{\prime}$ of \mathbf{H} we now define $\Phi(f): \Phi(H) \longrightarrow \Phi\left(H^{\prime}\right)$ by

$$
\begin{aligned}
& \Phi(f)(x)=\Psi_{i}(f)(x) \text { for all } x \in X, \text { and } \\
& \Phi(f)(y)=y \text { for all } y \in Y \backslash\{c\} .
\end{aligned}
$$

The mapping $\Phi(f)$ is continuous and order preserving since $\Psi_{i}(f)$ is a morphism in \mathbf{D}_{i} and because $\Phi(f)$ is the identity on $W \backslash X$. The latter fact also implies that $\Phi(f)$ maps $E x t(w)$ onto $\operatorname{Ext}(\Phi(f)(w))$ for every $w \in \Phi(H)$. Therefore Φ is a contravariant functor from the category \mathbf{H} of all graphs and all their compatible mappings into the category of all $d p$-spaces of algebras from the variety \mathbf{V}.

Once we prove that the functor Φ is full, from 6.1 it will follow that the category H has a full covariant embedding into the variety V.

To do this, assume $g: \Phi(H) \longrightarrow \Phi\left(H^{\prime}\right)$ to be a dp-map, and write $\Phi(H)=W=$ $((Y \backslash\{c\}) \cup X, \sigma, \leq)$ and $\Phi\left(H^{\prime}\right)=W^{\prime}=\left((Y \backslash\{c\}) \cup X^{\prime}, \sigma^{\prime}, \leq\right)$.

By 3.3, the homomorphism $D(g)$ maps the rudiment of $D\left(W^{\prime}\right)$ into the rudiment of $D(W)$; since the nucleus G is the rudiment of either algebra, the restriction of $D(g)$ to G is an automorphism of $D(G)$, by 3.4. Thus the unique three-element component $C_{i}=\{a, b, c\}$ of $\operatorname{Mid}(G)$ is preserved by $D(g)$. Since c is, respectively, the unique non-extremal, maximal, or minimal member of $\operatorname{Mid}\left(G_{i}\right)$ for $i=0,1,2$, it follows that $D(g)(c)=c$ and $\{D(g)(a), D(g)(b)\}=\{a, b\}$ in all three cases.

When interpreted through the duality, this implies that $g(X) \subseteq X^{\prime}$, that g permutes $Y \backslash\{c\}=W \backslash X=W^{\prime} \backslash X^{\prime}$, and that $\{g(a), g(b)\}=\{a, b\}$. Since u is the only member of X or X^{\prime} comparable to a and v is the only element of X or X^{\prime} comparable to b in each of the three cases, it follows that $\{g(u), g(v)\}=\{u, v\}$. Hence the restriction of g to X is a morphism in the appropriate category D_{i}. By 6.1, the restriction of g to X is the image $\Psi_{i}(f)$ of some morphism $f: H^{\prime} \longrightarrow H$ of H, and $g(u)=u$ and $g(v)=v$. Since a and b are uniquely determined non-extremal elements of $Y \backslash\{c\}$ comparable to u and v, respectively, the restriction of $D(g)$ to $C_{i}=\{a, b, c\}$ is the identity. But then $D(g)$ is the identity on the rudiment G and hence g maps $W \backslash X$ identically onto $W^{\prime} \backslash X^{\prime}$. Altogether, $g=\Phi(f)$, and the functor Φ is full, as required.

The proof of Theorem 1.1. is now complete.

7. Concluding remarks

There exists a universal variety \mathbf{V} of range one generated by two finite subdirectly irreducibles with the same monolith quotient. To see this, let $\mathbf{V}=\operatorname{Var}(F)$, where F is the nucleus whose poset $X=\{p, q, r, s, a, b, c, u\}$ of join irreducibles is given by the following requirements:

$$
\begin{aligned}
& \operatorname{Max}(X)=\{u\} \text { and } \operatorname{Min}(X)=\{p, q, r, s\}, \\
& \operatorname{Min}(a)=\{p, q\}, \operatorname{Min}(b)=\{q, r\} \text { and } \operatorname{Min}(c)=\{p, q, r\}, \\
& a \leq c \text { and } b \leq c .
\end{aligned}
$$

It is easily seen that $E(a)=\operatorname{Ext}(X) \cup\{a\}$ is isomorphic to $E(b)$ but not to $E(c)$. These posets are $d p$-spaces of subdirectly irreducible members of \mathbf{V} whose common monolith quotient is represented by the $d p$-space $\operatorname{Ext}(X)$. The variety \mathbf{V} is of range one: since $\operatorname{Max}(X)$ is a singleton, we have $f^{+}=1$ for any $f \in F \backslash\{1\}$. The universality of V then easily follows when $1.1(8)$ is applied.

This example also shows why the lower limit in 1.2(2) cannot be higher than two.
We are tempted to call for a characterization of all universal varieties of distributive double p-algebras, even though such project may be a little too ambitious at this time. A more realistic approach might attempt a syntactic characterization of finitely generated universal varieties suitable for a description of minimal ones, or aim to describe minimal finitely generated universal varieties of a small finite range.

References

1. R. Beazer, The determination congruence on double p-algebras, Algebra Universalis 6 (1976), 121-129.
2. , Congruence uniform algebras with pseudocomplementation, Studia Sci. Math. Hungar. (1985), 43-48.
3. B. Davey, Subdirectly irreducible distributive double p-algebras, Algebra Universalis 8 (1978), 73-88.
4. G. Grätzer, Lattice Theory, First Concepts and Distributive Lattices, H. Freeman, San Francisco, 1971.
5. V. Koubek, Infinite image homomorphisms of distributive bounded lattices, Lectures in universal algebra, Szeged (Hungary) 1983, North-Holland, Amsterdam, 1985, pp. 241-281, in Colloq. Math. Soc. János Bolyai 43.
6. V. Koubek and J. Sichler, Universal varieties of distributive double p-algebras, Glasgow Math. J. 26 (1985), 121-131.
7. Categorical universality of regular double p-algebras, Glasgow Math. J. 32 (1990), 329-340.
8. R. McKenzie and J. D. Monk,, On automorphism groups of Boolean algebras, Infinite and finite sets, Keszthely (Hungary) 1973; dedicated to P. Erdös on his 60th birthday, Vol. 2, NorthHolland, Amsterdam, 1975, pp. 951-988, in Colloq. Math. Soc. János Bolyai 10.
9. H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.
10. Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507-530.
11. , Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 36-90.
12. A. Pultr and V. Trnková, Combinatorial, algebraic and topological representations of groups, semigroups and categories, North-Holland, Amsterdam, 1980.

MFF KU

Malostranské nám. 25
11800 Praha 1
Czech Republic
E-mail address: vkoubek@cspguk11.bitnet

Department of Mathematics
University of Manitoba
Winnipeg, Manitoba
Canada R3T 2N2
E-mail address: sichler@ccm.umanitoba.ca

[^0]: 1991 Mathematics Subject Classification. 06D15, 08C05, 18B15.
 Key words and phrases. distributive double p-algebra, full embedding, universal variety. The support of the NSERC of Canada is gratefully acknowledged by both authors.

