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ON THE CONSTRUCTION OF THE
EXTENSIONAL TOPOLOGICAL HULL

by I. W. ALDERTON1, F.SCHWARTZ2 and S. WECK-SCHWARZ

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXV-2 (1994)

Dedicated to the Memory of Honza Reiterman

R4sum4. Les objets (X, a) de 1’enveloppe topologique extensionelle,
d’une cat6gorie A sont caractérisés, parmi les objets d’une extension
quelconque de A qui est topologique, extensionelle, et engendr6e finale-
ment par A, au moyent d’un test essentiellement base sur 1’information in-
trinsèquement contenue dans (X, a). En tant qu’outil utile, on d6veloppe
le concept d’une extension a points multiples qui, a beaucoup d’6gards,
est parallèle a celui de 1’extension a un seul point. Le th6or6me de car-
act6risation est alors appliqu6 pour distinguer 1’enveloppe topologique ex-
tensionelle de la cat6gorie des espaces de Cauchy (respectivement, des
espaces aux limites uniformes) de la cat6gorie des espaces semi-Cauchy
(respectivement, des espaces aux limites semi-uniformes).

1. Introduction

A number of properties that a topological category may possess have proved
useful and convenient in a variety of connections: being cartesian closed, exten-
sional, or a topological universe. Since many important categories lack one or the
other of these desirable properties, extensions where such properties are present are
of considerable interest, and among them, in particular, extensions of various types
that are as small as possible: i.e., hulls.

If such hulls exist, they can be found as subcategories of the quasicategory
of structured sinks [11]. However, the resulting internal descriptions are quite ab-
stract and fairly complicated. A major step towards simplification was achieved
by Adimek, Reiterman and Strecker in [7] for the cartesian closed topological hull
and, with a similar approach, in [2] for the topological universe hull (an analogous
description of the extensional topological hull is possible): the hulls are described
as consisting of "closed collections" , which are structured sinks of inclusion maps
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(subject to an appropriate closure condition). The construction principle of [7] is
based on the existence of a finally dense subclass (subject to additional conditions)
of the category A whose hull is to be determined. This assumption is fulfilled in
the following situation: the category A (supposed to be topological for simplicity
of exposition) is contained as a bireflective subcategory in a topological category
B which has the desired convenience property, and A has a subclass H which is
finally dense in B and closed under formation of quotients in B.

The main advantage of the method of closed collections is the fact that an

object of the hull under consideration is described by subsets carrying H-structures.
We concentrate, in this paper, on the extensional topological hull, and present an
alternative approach which allows one to characterize its objects as infima (with
respect to the usual categorical order) of objects closely related to subspaces. While
a closed collection provides a substitute for a certain final structure, and hence
an "approximation from below" , infima are initial structures and approximate the
objects of the extensional topological hull "from above". This theory, and the
concept of a many-point extension as a useful tool, are developed in Section 3. By
application of the main result (3.7), some counterexamples are obtained in Section 4.

2. Preliminaries

In this paper a topological category is taken to be one in the sense of [10],
viz., a small-fibred category of structured sets such that there are unique initial
structures, and the empty set and the singletons carry only one structure. If A
is a topological category and X is a set, then A(X) will denote the set of all
A-structures on X. Pair notation will be used for A-objects, e.g., (X, a), where
a E A(X). No notational distinction will be made between A-morphisms and
their underlying maps; in particular, an identity map will always be written as 1,
regardless of whether it is an identity in A. The set A(X) can be partially ordered
as follows: a  Q if and only if the identity map 1 : (X, a) - (X, B) is an A-

morphism. The infimum of a family (ai)sEI of A-structures on X, i.e., the initial
structure with respect to (i : X - (X, ai))iEI’ is denoted by 1B1 a;. If (X, a) E A
and Z CX, then the initial structure with respect to the inclusion Z - (X, a) is
denoted by alZ, and (Z, alZ) will be called a subspace of (X, a). Background on
categorical topology can be found in [3] and [15].

A topological category B is called extensional provided that each (Y,B) E B
is a subspace of an object (Yl,,81), where YO = Y U {oo} and oo 0 Y, with the
property that for every partial morphism f : (Z, alZ) --+ (y, (3) from (X, a) to
(Y,B), the map IX : (X, a) - (yll, Bll), defined by f X (x) = f (x) if x E Z,
f X (x) = oo if x E X - Z, is a B-morphism. The object (Yl,Bl) is called a one-
põint extension of (Y, (3) [1], [12]. If A is a subcategory of B, then Aa I denotes
the class {(X l , al) I (X, a) E A}. A topological category B is said to be an
extensional topological hull of a topological category A (in symbols: B = ETHA)
if B is extensional, A is finally dense in B, and A’ is initially dense in B [12].
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3. Construction of the extensional topological hull

For this entire section it is assumed that A is a topological category which
is finally dense, and hence bireflective, in an extensional topological category B,
the bireflector B - A being denoted by (-). (These assumptions may strike
the reader as being rather restrictive. One could, in fact, just assume that A is a
topological category which is contained in an extensional topological category C,
and is closed under subspaces in C. If B denotes the final hull of A in C, then A
and B satisfy the conditions stated above. One could even weaken the assumption
that A is topological.)

By the final density of A in B, the extensional topological hull of A is the
bireflective hull of Al in B, i.e., the objects of ETHA are given as the domains
of inital sources in B of the form ( f; : (X, a) - (yil, Bli ))iEI with all (Yi,,8i) in
A. In order to transform this description into a simpler one that is mainly based
on (X, a), we introduce the concept of a many-point extension of (X, a), which is
derived from that of the one-point extension of (X, a) and shares many of its nice
properties. In particular, it can be characterized as carrying the largest B-structure
which makes (X, a) a subspace. Cf. results 3.3 and 3.4.

3.1 Definition. For (X, a) E B and Y D X, we denote by [a]xy the initial
structure with respect to q : Y ---&#x3E; (Xl, al), where q is defined by q(y) = y if y E X ,
q(y) = oo if y E Y - X. The object (Y, [a]XY) is called a many-poznt extension of
(X, a).

The map q is, of course, on the level of sets, just the map 1 y given by the
universal property of the one-point extension of (X, a). In the case of Y = XI, it
is an identity map, and (Y, [a]XY) = (XU, aU).

3.2 Proposition. Suppose that (X, a) E B, and (Xi)iEI is a family of subsets
of X . The following are equivalent:
(1) a is the largest B-structure on X for which each (Xi, aIXi) is a subspace.
(2) The source (qi : (X, a) - (Xli, (aIXi)IiEI is initzal (where each qi is defined,

aszn3.l, by qi(x) = x ifxEXi, qi(x) = ooi if x E X - Xi.)

Proof: (1) =&#x3E; (2): Each qi : (X, a) - (xi, (alXi)l) is a morphism by ex-
tensionality. If B is initial with respect to (qi : X --+ (Xli, (alXi)ll)) iEI then
a  Q, so each inclusion ji : (Xi, aIXi) - (X, (J) is a morphism. Since each

composition (Xi, olxi) Å (X, B) ...!4 (Xl, (aIXi)I) is initial, it follows that each
ii : (Xi, alXi) - (X, B) is initial. Hence the assumption in (1) yields B a.

- 

(2) = (1): Suppose Q E B (X) is such that each inclusion ji : (Xi ,al Xi) -
(X, 03B2) is initial. Then each qi : (X,,Q) - (xl, (alXi)l) is a morphism, by exten-
sionality. From the initiality assumed in (2) it follows that Q  a.

In the following characterization of many-point extensions, observe that condi-
tion (2) is an analogue of the universal property which defines one-point extensions.



-168-

3.3 Proposition (cf. 2.6 of [17]). For B-objects (X, a) and (Y, JL) zuith X C

Y, the following are equivalent:
(1) (Y, p) is a many-point extension of (X, a).
(2) (X, a) is a subspace of (Y, p); and given a partial morphism f : (Z, ,8IZ) -

(X, a) from (W,,8) to (X, a), every map f : W - Y with f IZ = f and
f (W - Z) C Y - X is a morphism f : (W,B) - (Y, u).

(3) u is the largest B-structure on Y such that (X, a) is a subspace of (Y, u).
Proof: (1) = (2): Since (X, a) is a subspace of (Xl , al), the initiality of

q : (Y, p) - (Xl, al) implies that the inclusion (X, a) - (Y, p) is an initial B-
morphism. Further, let f , f be as described in (2). Then fW = q o f , so the fact that
f is a B-morphism is, again, a consequence of the initiality of q : (Y, p) - (Xl, al) .

(2) = (3): Suppose p’ E B(X) such that (X, a) is a subspace of (Y, 1/). Now
take f in condition (2) to be the identity 1 : (X, a) - (X, a). Then 1 : (Y, p’) -
(Y, p) is a morphism.

(3) = (1) : This follows from 3.2. -

Obviously, a necessary (but not sufficient) condition for (Y, p) with Y D X
to be a many-point extension of (X, a) is that ulY - X) is indiscrete. The next
lemma collects together further basic properties of the many-point extension.

3.4 Lemma. Suppose X C Y.
(1) (cf. 2.13 of [17]) If as E B(X) for each i E I and a = ÂI ai, Then [a]XY=

Proof: (1) The equality al = ÂI ali follows from 2.13 of [17]. For each i E I
it holds that

so (1 : (Y, [a]XY) - (Y, [ai]XY))iEI is initial, being the first factor of an initial
source.

(2) is an immediate consequence of 3.3(1),(3).
(3) By extensionality it is obtained from a  B that al (31. But

and the inequality [a]XY [B]XY is then a consequence of initiality.
The following proposition shows that the B-objects (X, a) which are domains of

initial sources with all codomains of the type (Yl, Bl) can be described as being do-
mains of initial sources of the more restricted form (qi  (X, a) - (Xli , (alXi)l ))iEI
with Xi C X for all i E I. This result and Proposition 3.6 constitute the crucial
ingredients in the proof of the Characterization Theorem 3.7.
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3.5 Proposition. If (fi : (X, a) - (Yli, Bli))iEI is snstial, then (qi :
(X,c,) - (Xli, (alXi)l))iEI is initial, where Xi = f-1i(Yi) and qi is defined as
in 3.2 for each i E I.

Proof: Let S’ = ( f; : (X , a) - (Yli , Bli)) i E I be initial. Proposition 3.2 will
be applied. Assume that Q E B (X) is such that each (Xi, a iXi) is a subspace of
(X,B). From the initiality of the inclusions (Yi, Bi) - (Yli,Bli) it follows that the
restrictions lilXi : (Xi, alXi) - (Yi, Bi) are morphisms. Extensionality arguments
then yield the conclusion that each fi : (X, B) - (Yli,Bli) is a morphism. Since S
is initial, we obtain Q  a.

3.6 Proposition. ,Suppose that (X, a) E B, and (X¡)iEJ is a family of subsets
of X . If a = AI[Bi]XiX, where allBi E A(Xi), then a = Ailalxilxix-

Proof: Let i E I. Since a  [Bi] XiX we have alXi  [Bi]XiXClXi = Bi. Then
alXi alXi  Bi because Bi E A(X). The chain of inequalities

now results from application of Lemma 3.4(2),(3).
3.7 Theorem (Characterization of the objects of the extensional topological

hull). If A is a finally dense subcategory of an extensional topological category B,
then for (X, a) E B, the following are equivalent:
(1) (X, a) belongs to the extensional topological hull of A. 
(2) There exists a famzly (X;)iEI of subsets of X such that a = AI[a]lXi]XiX
(3) a = AZCX[alZ]ZX
Moreover, the equality sign in (2) and (3) can be replaced by &#x3E;.

Proof: (1) = (2): Assume that (f; : (X, a) - (Yli,Bli))iEI is initial in

B, where each (Yi, Bi) E A. For each i E I take ai to be initial with respect
to fi : X - {Yli,Bli). Then a = AI ai. With Xi = f-1 i (Yi), it follows from

Proposition 3.5 that every qi : (X, ai) - (xl, (ai IXi)l) is initial. Hence ai -

[ailXi]XiX, and a = AI[ailXi]XiX. Initiality of fi: (X, a;) - (Yil,,8i’) yields
initiality of the domain-range restriction (Xi , ailXi) - (Yi , Bi) for each i E I.
Thus (Yi,Bi) E A implies (Xi, ailXi) E A, and application of Proposition 3.6
completes the proof.

(2) = (1): Condition (2) means that the source

is initial. By composing each member of S with the initial morphism given by the
definition of the many-point extension, one obtains an initial source with domain
(X, a) and all codomains in Al.

The fact that conditions (2) and (3) above are equivalent to the respective
modifications where the equality sign is replaced by &#x3E; follows immediately from
3.4(2),(3). The remaining implication (2) = (3) is then trivial.
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4. Some applications

We now apply the Characterization Theorem from Section 3 to construct two
counterexamples. For the convenience of the reader, we collect in 4.1 the definitions
of the categories we will be considering; more information and further references
can be found in [16], for example.

IF(X) will denote the set of all filters on a given set X; note that the power set
P(X) is also considered to be a filter. Lattice operations on IF(X) are understood
to be with respect to the ordering by set inclusion. The filter generated by a non-
empty family A C IF(X) is written [A], with the usual abbreviations [A] if A = {A}
for some A C X and i if A = {{x}} for some x E X . Given a map f : X - Y
and F E IF(X), the filter generated by { f (F) I F e 0 ) is denoted by f (F).

4.1 Definition. A semiuniform limit space [18] is a set X equipped with a
non-empty family a C JF(X x X) subject to the following conditions:
(1) If 9 E EF(X x X) with!g D for some F E a, then 9 E a.
(2) F, G E a implies F U 9 E a.
(3) xxxEaforallxEX.

A map f : (X, a) - (Y, B) between two semiuniform limit spaces is uniformly
continuous if 17 E a implies ( f x f)(0) E (3. The category of semiuniform limit
spaces and uniformly continuous maps is denoted by SULim.

(X, a) E SULim is called a uniform limit space [18] if a satisfies, in addition,
the following condition:
(5) 0 o G E a whenever F,G E a (where F o G = {F o G I F, G E a}] and

F o G = {(x, y) I there is a z E X with (x, z) E F and (z, y) E G}).
The resulting full subcategory of SULim is denoted by ULim.

A filter space (or filter- merotopic space, [13]) is a set X, together with a non-
empty family a C IF(X) which contains all principal ultrafilters on X and is closed
under finer filters. If the structure a is induced by a semiuniform limit structure
on X, i.e., if a satisfies
(6) G E a whenever there are. F1 ...... Fn E a such that (:F1 x F1) n ...n (Fn x -Fn) C

C x C,
then (X, a) is called a semi- Cauchy space [16]. A Cauchy space [14] is a filter space
(X, a) such that 
(7) F nG E a whenever :F, 9 E a with 0 V G 54 P(X).
A map f : (X, a) - (Y, B) between (semi-)Cauchy spaces is continuous if F E a. 

implies f(0) E B; the resulting categories are denoted by S Chy and Chy, respec-
tively.

It is known from [16] that the Cauchy spaces form a finally dense (hence bireflee-
tive) subcategory of the topological universe SChy, i.e., A = Chy and B = SChy
fulfill the assumptions of Section 3. An application of Theorem 3.7 to this situa-
tion yields the description of ETHChy as given in 3.6 of [8]. Since the topological
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universe hull (TUH) of a category can be obtained in two steps, by first forming
the extensional topological hull of the given category, and then the cartesian closed
topological hull of the resulting category [6], the following result gives a partial
answer to the question [16] whether SChy = TUHChy.

4.2 Theorem. The extensional topological hull of Chy is strictly contained
in SChy.

Proof: Put X = IR (the reals) and

for some open interval C of length 1} .

Then (X, a) is a semi-Cauchy space which is not in ETHChy.
To prove the latter fact, we consider the filter ’H = [A] generated by the half-

open interval A =] 0, 1], and show that 1-(, E [a I Z] zx for every Z C IR. Since,
obviously,1í ft. a, application of 3.7 then completes the proof.

It is well-known that a[Z = {F[Z l FE a) and

We distinguish the following cases:
Case 1: 1 E Z. With C = ] 0,1 [, we have [C] E a, and consequently, C =

[CIIZ E a lZ C a lZ. Since 1t D [G] n [m. - Z], it follows that 1t E [al Z] Zx.
Case 2: 1 E Z. If Z C IR-] 0,1 [, we have HD i n (IR - Z] E [alZ] ZX . If not,

there is a z E ] 0,1 [n Z. Choose some x with 0  x  z. Putting A = x, x +1 [ and
B = 0,1 [, we obtain z E A n B fl z A 0, and consequently, [A]l Z V [B]lZ=P (Z).
It follows that G = [A]l Z n [B]l Z E alZ. Finally, observe that 7/ D [9] n (IR - Z] E
lo,lZ]zx. 0

Adimek and Reiterman recently gave a description of the topological universe
hull of the category Unif of uniform spaces [4], (5J. In the course of their investiga-
tions, the natural conjecture arose that the category of semiuniform spaces, which
is an extensional topological category containing Unif as a finally dense, bireflec-
tive subcategory, might constitute the extensional topological hull of Unif. This
conjecture was disproved by Behling [9]. The semiuniform space given by Behling
as a counterexample can also be used to distinguish between ETHULim and the
category SULim (which is a topological universe containing ULim as a bireflective
subcategory). As in 4.2, our proof is an application of 3.7.

- 

4.3 Theorem. The extensional topological hull of ULim is strictly contained
in SULim.

Proof: If it were true that SULim = ETHULim, then every semiuniform
limit space (X, a) would have a representation according to 3.7. Now put X = IR,
N= {(x,y) EIRxIR llx - y]  1},N= [N] and a= {FE IF(IRxIR) lFDN}
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Then (X, a) is a semiuniform limit space. We will show that n{ [alZ]ZX i Z C
IR I 5t a. This means we have to find a filter F E IF(IR x IR) such that 0 / a, but
0 E [alZ]ZX for every Z C IR. We define

F={FCIRxIRIFDNUPE for some finite EC IR},
where , Obviously, N £ 0 and consequently,

Now consider Z C IR. We have:

where Nz k = NZ o ... o Nz (k times), and

As an abbreviation, put MZ,k = Nzk U ((IR x IR) - (Z x Z)) . To prove 0 E

[alZ] ZX , it is now sufficient to show that there is a natural number k &#x3E; 1 with

MZ,k E F, i.e., with PE C Mz,k for some finite E C IR. This is done by classifying
Z according to its large gaps intersecting 1, 2 [.

We call a non-empty subset A C IR a gap of Z if

A = U { C I C is an interval of IR with x E C and C n Z = 0}
for some (and hence for all) x E A. (We do not require an interval to be bounded;
i.e., the intervals are exactly the convex subsets of IR.) Obviously, every gap A of
Z is an interval with A n Z = 0. A gap A is said to be large iff its length is at least
1, i.e. if A is unbounded or V A - A A &#x3E; 1.

Now the following cases can occur:
Case 1: A n] 1,2[= 0 for every large gap A of Z. Considering (x, x - 1)

with x E ] 1, 2[, we have (x, x - 1) E (IR x IR) - (Z x Z) whenever x E Z or
x - 1 E Z.. If both x and x - 1 belong to Z, then Z n x - 1, x [ cannot be empty,
because otherwise, there would be a large gap A of Z with x - 1, x C A, whence
A n 1, 2 [ = 0, contradicting the assumption. Take z E Z with x - 1  z  x. Then

(x, z), (z, x - 1) E NZ, and (x, x - 1) E NZ o Nz. It follows that Po C MZ,2.
Case 2: There is a large gap A of Z with 1, 2 C A. Then Po C (IR-Z) x IR C

MZ,l.
Case 3: There is a large gap A of Z with An] 1,2 [1= 0 and V A  2. Put

s = V A and r == 1B A (if 1B A exists; otherwise, put r = 0). Then r  1  s  2.



- 173

Now consider (x, x - 1) with x e 1, 2 [-{s}. If x  s, then x E A, and (x, x - 1) E
(IR - Z) x IR. If x &#x3E; s, then r s - 1  x - 1  1  s implies x - 1 E A, and
(x, x - 1) E IR x (IR - Z). Hence P{s} C Mz,l.

Case 4: There is a large gap A of Z with An] 1,2 [= 0 and A A &#x3E; 1, but
B n 1, 2 [ = 0 for any large gap B = A of Z. Then Po C MZ,2 can be shown like in
Case 1.

Since Unif is a bireflective subcategory of ULim, and the filter N in the proof
of 4.3 is a semiuniformity on IR, Behling’s result is now obtained as an immediate
consequence.

4.4 Corollary [9]. The extensional topological hull of the category of uniform
spaces is strictly contained in the category of semiuniform spaces.
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