CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

H. HU M. Makkai

Accessible embeddings and the solution-set condition

Cahiers de topologie et géométrie différentielle catégoriques, tome 35, nº 2 (1994), p. 99-108

<http://www.numdam.org/item?id=CTGDC_1994__35_2_99_0>

© Andrée C. Ehresmann et les auteurs, 1994, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE ET GEOMETRIE DIFFERENTIELLE CATEGORI<u>Q</u>UES Volume XXXV (1994)

ACCESSIBLE EMBEDDINGS AND THE SOLUTION-SET CONDITION by H. HU and M. MAKKAI Dedicated to the memory of Jan Reiterman

Résumé. Pour chaque catégorie localement présentable, on démontre qu'une sous-catégorie accessiblement plongée d'une catégorie localement présentable est accessible si et seulement si elle satisfait la condition de l'ensemble-solution.

Introduction

The connection between accessibility and the solution set condition has been pointed out in several papers, including [7] and [9]. J. Adámek and J. Rosický have recently proved that each locally presentable category has the following property: a full subcategory closed under products and κ -filtered limits (for some infinite regular cardinal κ) is accessible if the embedding satisfies the solution set condition, see [3]. It is well-known that a category is locally presentable iff it is accessible and complete, or equivalently cocomplete (cf. [7]), but no assumption is made of the existence of any particular limits for accessible categories. One is impelled to ask: does the above mentioned result hold for any full subcategory closed under κ -filtered colimits? In this paper we provide an affirmative answer to this question. We will show that, for any locally presentable category **B**, a full subcategory **A** of **B** closed under κ -filtered colimits is accessible iff the embedding satisfies the solution set condition. The proof of this result is a modification of the proof of the above mentioned result of J. Adámek and J. Rosický in [3].

1 Generalities on Accessible Categories

Let κ be an infinite regular cardinal. Recall that a category **A** is κ -filtered if for any graph **G** of cardinality less than κ , any diagram $D : \mathbf{G} \to \mathbf{A}$ has a cocone on it. **A** has κ -filtered colimits, if **A** has colimits of all diagrams whose domain is a κ -filtered category. Another concept is limit of κ -diagram, where a κ -diagram is a diagram whose domain category is of size less than κ . An object A of a category A is said to be κ -presentable if the representable functor $\mathbf{A}(A, -)$ preserves κ -filtered colimits existing in A. The full subcategory of A whose objects are the κ -presentable ones is denoted by \mathbf{A}_{κ} . Note that for any category, a κ -colimit of a diagram in which the objects are κ -presentable is κ -presentable itself (see [5] and [7]).

Definition 1.1 ([7]) A category A is κ -accessible if:

(i) A has κ -filtered colimits;

(ii) There is a small full subcategory \mathbf{C} of \mathbf{A}_{κ} such that every object of \mathbf{A} is a κ -filtered colimit of a diagram of objects in \mathbf{C} .

A category is accessible if it is κ -accessible for some infinite regular cardinal κ .

Recall from [4] that a category is called locally κ -presentable if it is locally small, cocomplete, and has a small strong generator consisting of κ -presentable objects. A theorem (Theorem 6.1.4. in [7]) says that an accessible category is complete iff it is cocomplete. P. Gabriel and F. Ulmer have shown in [4] that a category **B** is locally κ -presentable if it is equivalent to the category of the form $L_{\kappa}(\mathbf{C}, \mathbf{Set})$, the category of all functors preserving κ -limits; here **C** is a small category with κ -limits, and **Set** denotes the category of small sets.

Let **B** be a κ -accessible category, and **A** a full subcategory of **B**. **A** is said to be κ -accessibly embedded if **A** is closed under κ -filtered colimits in **B**. **A** is accessibly embedded if it is λ -accessibly embedded for some regular cardinal λ with $\lambda \geq \kappa$.

Recall from [3] that a full subcategory \mathbf{A} of \mathbf{B} is said to be cone-reflective if the inclusion functor $\mathbf{A} \to \mathbf{B}$ satisfies the solution set condition, i.e., for each object B of \mathbf{B} there exists a small cone $\langle r_i : B \to A_i \rangle_{i \in I}$ with $A_i \in \mathbf{A}$ such that for any $A \in \mathbf{A}$, every morphism $B \to A$ factors through some r_i . Let \mathbf{D} be a set of objects of \mathbf{A} . We say that \mathbf{D} weakly reflects B (in \mathbf{A}) if for every $A \in \mathbf{A}$ and $f : B \to A$ there is $D \in \mathbf{D}$ and a factorization

where m and f' are some morphisms. Note that \mathbf{A} is cone-reflective in \mathbf{B} iff for every $B \in \mathbf{B}$, there is a small set $\mathbf{D} \subset \mathbf{A}$ weakly reflecting B. If \mathbf{B} is accessible, then this is equivalent to saying that for every $B \in \mathbf{B}$ there is κ such that $\mathbf{D}_{\kappa} = \mathbf{A} \bigcap \mathbf{B}_{\kappa}$ weakly reflects B. Note that, of course, if $\kappa < \kappa'$ and \mathbf{D}_{κ} weakly reflects B, so does $\mathbf{D}_{\kappa'}$. The following lemma can be found in [7] (Lemma 1.1.2.).

Lemma 1.2 Suppose that \mathbf{J} is κ -filtered and the functor $F : \mathbf{I} \to \mathbf{J}$ satisfies that for every $J \in \mathbf{J}$, there exists I in \mathbf{I} and a morphism $J \to F(I)$. If F is full and faithful, then \mathbf{I} is κ -filtered and F is final, i.e., for any diagram $\Sigma : \mathbf{J} \to \mathbf{A}$, colim Σ exists if and only if colim $\Sigma \circ F$ exists and the canonical morphism colim $\Sigma(F) \to \text{colim}\Sigma$ is an isomorphism.

Proposition 1.3 Let **B** be a κ -accessible category, and **A** a κ -accessibly embedded subcategory of **B**. If every $B \in \mathbf{B}_{\kappa}$ is weakly reflected in **A** by $\mathbf{D} = \mathbf{A} \bigcap \mathbf{B}_{\kappa}$, then **A** is κ -accessible.

Proof: A has κ -filtered colimits, by assumption. For any $A \in \mathbf{A}$, we have a canonical diagram $G : \mathbf{B}_{\kappa}/A \to \mathbf{B}$, and A = colimG, by Proposition 2.1.5. in [7]. This colimit is κ -filtered. Let $\mathbf{D} = \mathbf{A} \bigcap \mathbf{B}_{\kappa}$. Since \mathbf{A} is closed under κ -filtered colimits in \mathbf{B} , all objects in \mathbf{D} are κ -presentable in \mathbf{A} . We have a full and faithful functor $F : \mathbf{D}/A \to \mathbf{B}_{\kappa}/A$. Let $G' : \mathbf{D}/A \to \mathbf{B}$ be the canonical diagram. Given an object $f : B \to A$ in \mathbf{B}_{κ}/A , by assumption, there is a factorization $f = f' \circ m$, with $f' : D \to A$ in \mathbf{D}/A . By Lemma 1.2, A is the κ -filtered colimit colimG' in \mathbf{B} , and as a consequence, also in \mathbf{A} . Thus, \mathbf{A} is κ -accessible.

2 Main Theorem and Some Remarks

In what follows, κ , λ and subscripted variants of them always denote infinite cardinals.

The proof of the following theorem follows closely the lines of the corresponding proof in [3].

Theorem 2.1 Let **B** be a locally presentable category, and **A** an accessibly embedded subcategory of **B**. If **A** is cone-reflective, then it is accessible.

Proof: We may assume that **B** is a functor category (**C**, **Set**), for some small category **C**. The reason is that every locally presentable category is a reflective subcategory of a functor category (**C**, **Set**) with **C** small, and the inclusion functor is accessibly embedded. If λ is a regular cardinal bigger than the cardinality of **C** and \aleph_0 , then a functor $F \in \mathbf{B}$ is λ -presentable in **B** iff the cardinality of $\prod_{C \in \mathbf{C}} F(C)$ is less than λ . It easily follows that if $\mu = \sup_{i < \nu} \kappa_i$ with $\kappa_i \leq \kappa_j$ for $i < j < \nu$, and $B \in \mathbf{B}_{\mu+}$, then we can write B as a colimit of a ν -chain, $B = colim_{i < \nu} B_i$, with $B_i \in \mathbf{B}_{\kappa_i}$.

Let κ be a regular cardinal such that **A** is closed under κ -filtered colimits in **B**. Let us define κ_i for $i < \kappa$ by transfinite induction. Let $\kappa_0 = \kappa$. Given $0 < i < \kappa$, having defined κ_j for all j < i, for *i* limit, let κ_i be a regular cardinal bigger than κ_j for all j < i, and for $i = j + 1 < \kappa$, let κ_{j+1} be a regular cardinal $\geq \kappa_j$ such that all objects in \mathbf{B}_{κ_j} have a weak reflection in $\mathbf{D}_{\kappa_{j+1}}$; since each $\mathbf{B}_{\kappa'}$ is small, and since every $B \in \mathbf{B}$ has a weak reflection in $\mathbf{D}_{\kappa'}$, for some κ' , such κ_{j+1} clearly exists.

Let $\mu = \sup_{i < \kappa} \kappa_i$, and $\lambda = \mu^+$. We claim that every $B \in \mathbf{B}_{\lambda}$ has a weak reflection in \mathbf{D}_{λ} . Since **B** is clearly κ' -accessible for all $\kappa' \ge \aleph_0$, in particular, for $\lambda = \kappa'$, and $\lambda > \kappa$, by Proposition 1.3, this will suffice for the proof of the theorem. Let $B \in \mathbf{B}_{\lambda}$. As above, let us represent B as the colimit of a κ -chain $(b_{i,j})$:

 $B_i \to B_j)_{i < j < \kappa}$, with $B_i \in \mathbf{B}_{\kappa_i}$. Let $\phi_i : B_i \to B$ be the colimit coprojection. Let $A \in \mathbf{A}$ and $f : B \to A$ be arbitrary; we want to find $A^* \in \mathbf{D}_{\lambda}$ with a factorization

By transfinite induction on $i < \kappa$, we will define objects $A_i \in \mathbf{D}_{\kappa_{i+1}}$ and morphisms $a_{i,j} : A_i \to A_j, f_i : B_i \to A_i, \psi_i : A_i \to A$ such that the morphisms $a_{i,j}$ form a chain, the morphisms ψ_i form a compatible cocone, and the following diagram

commutes.

For i = 0, we let $A_0 \in \mathbf{D}_{\kappa_1}$, $f_0 : B_0 \to A_0$ and $\psi_0 : A_0 \to A$ such that

commutes; these items are obtained from a suitable factorization of the morphism $f \circ \phi_0 : B_0 \to A$, possible by the choice of κ_1 and $B_0 \in \mathbf{D}_{\kappa_0}$.

Fix k, $0 < k < \kappa$, and assume that all items with indices < k have been defined. Let $C = colim(a_{i,j} : A_i \to A_j)_{i < j < k}$ with coprojections $a_i : A_i \to C$, and $B^* = colim(b_{i,j} : B_i \to B_j)_{i < j < k} \text{ with coprojections } b_i^* : B_i \to B^*.$ Since $A_i \in \mathbf{B}_{\kappa_i} \subset \mathbf{B}_{\kappa_k}$, and \mathbf{B}_{κ_k} is closed under $< \kappa \le \kappa_k$ -sized colimits,

 $C \in \mathbf{B}_{\kappa_k}$. Similarly, $B_i \in \mathbf{B}_{\kappa_{i+1}} \subset \mathbf{B}_{\kappa_k}$, and so $B^* \in \mathbf{B}_{\kappa_k}$.

By the universal property of B^* , we have $b^*: B^* \to B_k$ such that

commute, and $c: B^* \to C$ such that

commute, for all i < k.

By the universal property of C, we have $a: C \to A$ such that

commute for all i < k. We form the pushout of c and b^* :

Since $B^*, B_k, C \in \mathbf{B}_{\kappa_k}$, we have $D \in \mathbf{B}_{\kappa_k}$. We prove that $a \circ c = f \circ \phi_k \circ b^*$ by showing that

$$a \circ c \circ b_i^* = a \circ a_i \circ f_i$$

= $\psi_i \circ f_i$
= $f \circ \phi_i$
= $f \circ \phi_k \circ b^* \circ b_i^*$

for each projection b_i^* . By using the universal property of pushout D, we have a unique morphism $l: D \to A$ such that $a = l \circ g$ and $f \circ \phi_k = l \circ h$. Since $D \in \mathbf{B}_{\kappa_k}$, and every object in \mathbf{B}_{κ_k} is weakly reflected by $\mathbf{D}_{\kappa_{k+1}}$, there is $A_k \in \mathbf{D}_{\kappa_{k+1}}$ with $\psi_k: A_k \to A$ such that the diagram

commutes. We have defined the items A_k and ψ_k .

Next, we define $f_k = m \circ h : B_k \to A_k$ and $a_{i,k} = m \circ g \circ a_i : A_i \to A_k$. Note that the diagrams

commute for all i < k; and $b_{i,k} = b^* \circ b_i^*$. Then the diagrams

commute for all i < k, and the diagram

commutes. It is clear that $\psi_i = a_{i,k} \circ \psi_k$ and $a_{i,k} = a_{i,j} \circ a_{j,k}$ hold for all i < j < k. This completes the construction.

Put $A^* = colim(a_{i,j} : A_i \to A_j)_{i < j < \kappa}$ with coprojections $p_i : A_i \to A^*$. Since **A** is closed under κ -filtered colimits in **B**, $A^* \in \mathbf{A}$. Also, since $A_i \in \mathbf{B}_{\kappa_{i+1}} \subset \mathbf{B}_{\lambda}$ and $\kappa < \lambda$, we have that $A^* \in \mathbf{B}_{\lambda}$; that is, $A^* \in \mathbf{D}_{\lambda}$. By the construction above, we have $f^* : B \to A^*$ such that the diagrams

commute for all $i < \kappa$; also, we have $a^* : A^* \to A$ such that the diagrams

commute for all $i < \kappa$; hence we have that

$$f \circ \phi_i = \psi_i \circ f_i = a^* \circ p_i \circ f_i = a^* \circ f^* \circ \phi_i$$

for all $i < \kappa$. Since $\langle \phi_i \rangle_{i < \kappa}$ is a colimit cocone, we conclude that the diagram

commutes. This completes the proof.

Definition 2.2 For any locally presentable category \mathbf{B} , an accessibly embedded subcategory \mathbf{A} of \mathbf{B} is accessible iff \mathbf{A} is cone-reflective.

Proof: By Theorem 2.1 and Proposition 2.1.8. in [7].

Remark 2.3 Let A be an accessibly embedded subcategory of B closed under limits. J. Adámek and J. Rosický have shown in [2] that A is a reflective subcategory of B. Thus A is locally presentable.

Remark 2.4 Recall from [1] that Vopěnka's principle is the following statement: the category **Gra** of graphs does not have a large discrete full subcategory. It has been shown in [8] that Vopěnka's principle is equivalent to the following statement: every accessibly embedded subcategory of a locally presentable category is accessible. Thus, assuming Vopěnka's principle, every accessible embedding of a locally presentable category satisfies the solution set condition.

Remark 2.5 Let A be an accessible full subcategory of an accessible category B. Suppose that the inclusion functor from A to B satisfies the solution-set condition. J. Rosický and W. Tholen have recently proved that the inclusion functor is accessible (see Theorem 3.10 in [9]). Also, they have proved in [9] that Vopěnka's principle is equivalent to the the following statement: a functor between accessible categories is accessible if and only if it satisfies the solution-set condition.

References

- J.Adámek, J.Rosický and V.Trnková, Are all limit-closed subcategories of locally presentable categories reflective?, Lecture Notes in Math., no.1348, Springer-Verlag, 1988, 1-18
- [2] J.Adámek and J.Rosický, Reflection in locally presentable categories, Arch. Math. (Brno) 25 (1989), 89-94
- [3] J.Adámek and J.Rosický, On injectivity in locally presentable categories, to appear in Trans. Amer. Math. Soc.
- [4] P.Gabriel and F.Ulmer, Lokal präsentierbare kategorrien, Lecture Notes in Math., no.221, Springer-Verlag, 1971
- [5] H.Hu, Dualities for accessible categories, Canadian Math. Soc. Conference Proceeding, no.13, 1992, 211-242
- [6] S.Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971
- [7] M.Makkai and R.Paré, Accessible categories: the foundations of categorical model theory, Contemporary Math. 104 (1990)
- J.Rosický, V.Trnková and J.Adámek, Unexpected properties of locally presentable categories, Algebra Universalis 27(1990), 153-170

HU & MAKKAI - ACCESSIBLE EMBEDDINGS

[9] J.Rosický and W.Tholen, Accessibility and the solution set condition, to appear in J. Pure Appl. Algebra

HONGDE HU, DEPARTMENT OF MATHEMATICS AND STATISTICS, YORK UNIVER-SITY, NORTH YORK, ONT., CANADA, M3J 1P3 *E-mail address*: hhu@mathstat.yorku.ca

MICHAEL MAKKAI, DEPARTMENT OF MATHEMATICS AND STATISTICS, MCGILL UNIVERSITY, MONTREAL, PQ, CANADA, H3A 2K6 *E-mail address*: Makkai@triples.math.mcgill.ca