Algebras determined by their endomorphism monoids
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 35 (1994) no. 3, pp. 187-225.
@article{CTGDC_1994__35_3_187_0,
     author = {Koubek, V. and Radovansk\'a, H.},
     title = {Algebras determined by their endomorphism monoids},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {187--225},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {35},
     number = {3},
     year = {1994},
     mrnumber = {1295117},
     zbl = {0820.08002},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_1994__35_3_187_0/}
}
TY  - JOUR
AU  - Koubek, V.
AU  - Radovanská, H.
TI  - Algebras determined by their endomorphism monoids
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 1994
SP  - 187
EP  - 225
VL  - 35
IS  - 3
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://archive.numdam.org/item/CTGDC_1994__35_3_187_0/
LA  - en
ID  - CTGDC_1994__35_3_187_0
ER  - 
%0 Journal Article
%A Koubek, V.
%A Radovanská, H.
%T Algebras determined by their endomorphism monoids
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 1994
%P 187-225
%V 35
%N 3
%I Dunod éditeur, publié avec le concours du CNRS
%U http://archive.numdam.org/item/CTGDC_1994__35_3_187_0/
%G en
%F CTGDC_1994__35_3_187_0
Koubek, V.; Radovanská, H. Algebras determined by their endomorphism monoids. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 35 (1994) no. 3, pp. 187-225. http://archive.numdam.org/item/CTGDC_1994__35_3_187_0/

1 M.E. Adams and D.M. Clark, Endomorphism monoids in minimal quasi primal varieties, Techn. Report. State Univ. of New York (1984).

2 M.E. Adams, V. Koubek and J. Sichler, Homomorphisms And Endomorphisms in Varieties of Pseudocomplemented Distributive Lattices (with Applications to Heyting Algebras), Trans. Amer. Math. Soc. 285 (1984), 57-79. | MR | Zbl

3 M.E. Adams, V. Koubek and J. Sichler, Homomorphisms of distributive p-algebras with countably many prime ideals, Bull. Austral. Math. Soc. 35 (1987), 427-439. | MR | Zbl

4 M.E. Adams, V. Koubek and J. Sichler, Endomorphisms and homomorphismsof Heyting algebras, Algebra Universalis 20 (1985), 167-178. | MR | Zbl

5 H.J. Bandelt, Endomorphism semigroups of median algebras, Algebra Universalis 12 (1981), 262-264. | MR | Zbl

6 A.H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc., Providence, Rhode Island, 1961. | MR | Zbl

7 M. Demlová and V. Koubek, Endomorphism monoids of bands, Semigroup Forum 38 (1989), 305-329. | MR | Zbl

8 S. Foldes and G. Sabidussi, Recursive undecidability of the binding property for finitely presented equational classes, Algebra Universalis 12 (1981), 1-4. | MR | Zbl

9 L. Fuchs, Infinite Abelian Goups,, Academic Press, New York and London, 1970. | MR | Zbl

10 L.M. Gluskin, Semigroups of isolone transformations, Uspekhi Mat. Nauk 19 (1961), 157- 162. | Zbl

11 T. Hecht and T. Katrinák, Equational classes of relative Stone algebras, Notre Dame J. Forrnal Logic 13 (1972), 248-254. | MR | Zbl

12 P. Köhler, Endomorphism semigroups of Brouwerian semilattices, Semigroup Forum 15 (1978), 229-234. | MR | Zbl

13 V. Koubek and J. Sichler, On Priestley duals of products, Cahiers Topo. et Diff. Geo. 32 (1991), 243-256. | Numdam | MR | Zbl

14 K.B. Lee, Equational classes of distributive pseudocomplemented lattices, Canad. J. Math. 22 (1970), 881-891. | MR | Zbl

15 S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York Berlin Heidelberg, 1971. | MR | Zbl

16 K.D. Magill, The semigroup of endomorphisms of a Boolean ring, Semigroup Forum 4 (1972), 411-416. | MR | Zbl

17 C.J. Maxson, On semigroups of Boolean ring endomorphisms, Semigroup Forum 4 (1972), 78-82. | MR | Zbl

18 R. Mckenzie and C. Tsinakis, On recovering a bounded distributive lattices from its endomorphism monoid, Houston J. Math. 7 (1981), 525-529. | MR | Zbl

19 H.A. Priestley, Representation of distributive lattices by means of order Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190. | MR | Zbl

20 H.A. Priestley, The construction of spaces dual to pseudocomplemented distributive lattices, Quart. J. Math. Oxford 26 (1975), 215-228. | MR | Zbl

21 H. Prüfer, Untersuchungen über die Zerlegbarkeit der abzählbaren primären abelachen Gruppen, Math. Z. 17 (1923), 35-61. | JFM | MR

22 A. Pultr and V. Trnková, Combinatorial, algebraic and topological representations of groups, semigroups and categories, North Holland, Amsterdam, 1980. | MR | Zbl

23 H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Monogr. Mat.,, PWN, Warsaw, 1963. | MR | Zbl

24 P. Ribenboim, Characterization of the sup-complementin a distributive lattice with last element, Summa Brasil. Math. 2 (1949), 43-49. | MR | Zbl

25 B.M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math. 68 (1970), 31-50. | MR | Zbl

26 B.M. Schein, Bands with isomorphic endomorphism semigroups, J. Algebra 96 (1985), 548-562. | MR | Zbl

27 S. Shelah, Infinite abelian groups: Whitehead problem and some constuctions, Israel J. Math. 18 (1974), 243-256. | MR | Zbl

28 W. Taylor, The clone of a topological space, Volume 13 of Research and Exposition in Mathematics, Helderman Verlag, 1986. | MR | Zbl

29 C. Tsinakis, Brouwerian semilattices determined by their endomorphism semigroups, Houston J. Math. 5 (1979), 427-436. | MR | Zbl

30 V. Trnková, Semirigid spaces, preprint (1992). | MR | Zbl