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CAHIERS DE TOPOLOGIE ET Volume XXXV-3 (1994)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

ON CERTAIN LOCALIC NUCLEI
by B. BANASCHEWSKI

In memoriam Jan Reiterman.

Résumeé. Cette note traite d'une méthode de construction des nuclei
localiques dans un quantale (bilatérale) qui ressemble a la maniére dont
on peut determiner ce nucleus le plus petit. En particulier, on
considére des conditions qui impliquent que les quotients qui en
résultent sont compacts, algebriques, on continus. En tant
qu'application, on obtient des résultats qui concernent ces propriétés
pour la reflection localique d’un quantale.

Introduction

This note deals with a method of constructing localic nuclei on a
(two—sided) quantale that resembles the procedure by which the smallest such
nucleus may be defined. Of particular interest will be conditions that ensure
certain properties for the corresponding quotient, such as being compact,
algebraic, or continuous. As an application, we then have results concerning
these properties for the localic reflection of a quantale.

First we recall some basic concepts. A guantale Q is a complete lattice
together with an associative multiplication such that, for all a € Q and S C Q,
a(Vs) = V{atltES} and (VS)a = V{ta|t€S},

called two—sided whenever, for all a,b € Q,

ab < aAb.
Since we shall only be dealing with two—sided quantales we let this
qualification be tacitly understood. For a general introduction to quantales, see
Rosenthal [7].
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ON CERTAIN LOCALIC NUCLEI

Principal examples of quantales are the quantales IdR and IdS of all
(two—sided) ideals of a ring R or a semigroup S, with the usual operation of
ideal multiplication. On the other hand, any locale (or: frame), that is, any
complete lattice L in which

aAVS = V{aAt|t€S} (a€L, S C L)
determines a quantale by putting ab = aAb. Moreover, one easily checks that
these are exactly the idempotent quantales. For an introduction to locales see
Johnstone [5] or Vickers [11].

An important process for quantales is the formation of quotients which
are locales. The standard tool for this, on any quantale Q, are the localic
nuclei on Q which are the closure operators k on Q such that k(ab) =
k(a)Ak(b) for all a,b € Q. The corresponding quotient of Q is then

Fix(k) = {a € Q|k(a) = a} = K[Q],
with partial order induced from Q. That this is indeed a locale is seen by very
simple calculation (Niefield—Rosenthal [7]).

In the following, a preclosure operator on a complete lattice L is a map

kO:L —+ L such that, for all a, b € L, a ko(a) and a { b implies ko(a) <

ko(b). Then, Fix(ko) is clearly a closure system in L, that is, closed under

arbitrary meet in L, and we let k be the associated closure operator, so that

k(a) = A{x € leo(x) = x}
We call k the closure operator generated by ko. We note that k may be

viewed as the stable transfinite iterate of ko for the usual definition of the

powers k‘: for all ordinals . However, the proofs given here will make no use .

of this particular representation of k.
A localic prenucleus on a quantale Q will be a preclosure operator ko on

Q which satisfies the inequalities
ko(a)b, a.ko(b), aAb ¢ ko(ab)

for all a,b € Q. Then, Fix (ko) is a closure system in Q, and for the closure
operator k generated by ko we have:

Lemma 1. k is a localic nucleus.
Proof. For any a, b € Q, consider the set
W = {x € Q| a < x < k(a), xb  k(ab)}
Then a € W trivially, and ko(x) € W for any x € W since xb € k(ab) and

ko(x)b < ko(xb) implies that ko(x)b < k(ab). Further, s = VW obviously
belongs to W by the laws of quantales, hence s = ko(s), and a € s € k(a) then
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implies s = k(a). This shows that k(a)b < k(ab), and the same type of
argument proves the analogous inequality ak(b) < k(ab). Now, by these
inequalities and the last inequality assumed for ko,
k(a)Ak(b) < k(k(a)k(b)) < k(ak(b)) < k(ab),

and hence k(ab) = k(a) kAk(b), as desired.

Remark. Lemma 1 is the counterpart for quantales of a corresponding
result for locales (Banaschewski [1]).

Next, we consider a particular situation that gives rise to a localic
prenucleus, and thus to a localic nucleus.

A nuclear system in a quantale Q is a family K = (Ka)aE Q of ideals in

Q such that, for all a,b € Q,
(NS1) aEKa.

(NS2) Ka C Kb
(NS3) Ka. n Kb C Kab'
Evidently, the a € Q such that x € Ka implies x { a form a closure

whenever a  b.

system in Q; we let k be the corresponding closure operator and put K(Q) =
Fix(k).

Lemma 2. k is a localic nucleus.

Proof. Obviously, k is generated by the preclosure operator ko defined

by ko(a) = VKa.’ which in turn is easily seen to be a localic prenucleus, by the

properties of quantales and the conditions (NS1) and (NS3). Hence the result,
by Lemma 1.

Note that, for any localic nucleus k on a quantale Q, the principal ideals
lk(a) = {x € L|x < k(a)}, a € Q, form a nuclear system, and hence any such
k trivially arises in the manner of Lemma 2.

Our principal non—trivial example, in any quantale Q, is given by

Ra={x€Q|aome x" < a} (a€Q)
which is easily checked to define a nuclear system. The corresponding locale
R(Q) then consists of all radical (or: semiprime) elements of Q, and is known
to be the localic reflection of Q (Niefield [6]). In the present context, the latter
is exhibited by the fact that, for any nuclear system K in Q, Ra C Ka for all a
€ Q: since Kx C Kxn for any n by (NS3), x < a implies x € Ka by (NS1)
and (NS2). One might add that, in general, the ideals Ra are not principal, as

seen for Q = IdR for suitable rings R, in which case they indeed do not fall
under the trivial situation mentioned earlier. On the other hand, though, if all

-229 -



ON CERTAIN LOCALIC NUCLEI

elements of Q are compact then of course r(a) € Ra for all a € Q, a familiar

case in point being Q = IdR for a commutative noetherian ring R.

Another source of nuclear systems in a given quantale Q are the
m—filters in Q, that is, the filters T C Q such that ab € T whenever a,b € T.
For any such T, one easily checks that

Ta={xEQIxVyETimpliesaVyGT,forallyEQ}

defines ideals satisfying (NS1) and (NS2). For the slightly less obvious (NS3)
one uses the fact that aVy, bVy € T implies first (aVy)(bVy) € T and then
abVy. € T since

(aVy)(bVy) = ab V ay V yb V y2 < ab V .
A particular case of localic nuclei thus derived was considered by
Banaschewski — Erné [4].
Finally, given any nuclear system K and any m — filter T in a quantale

Q
ia.—_-{xEQ|uvaKaforsomeu,vET} (a €

Q)
defines a nuclear system in Q, as follows readily from the inequalities
usxvt € uxv, sxt.

As indicated at the beginning of this note, we are interested in deriving
properties of K(Q) from suitable conditions on K. The first of these is
compactness.

In the following, a nuclear system K in a quantale Q will be called
transitive whenever Ka C Kb for all a € Kb' Further, recall that a subset U of

a complete lattice is called Scott open if U is an upset, that is, x € Uif x 2 y
and y € U, and for any updirected set D, VD € U implies that D meets U.
Finally, for any nuclear system K in a quantale Q, let EK ={a€ Qle € Ka}

where e is the top element of Q. Evidently, E_, is an upset by (NS1).

K
Now we have

Proposition 1. For any transitive nuclear system K in a quantale Q, if
EK is Scott open then k(a) = e iff & € EK' and K(Q) is compact.

Proof. Trivially, a € E

implies ko(a.) = ¢ and hence k(a) = e. For

if VK € E, then
a k

K
the converse, note first that ko(a.) € Ep implies a € E:
there exist x € K N E, since E_, is Scott open, hence ¢ € K_ while K. C K

a k K x x~ a
by transitivity, showing that ¢ € Ka and thus a € EK. Next, consider the set
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W={x€Q|a<lx<k(a),x¢€ EK impliesaEEK}. Here, a € W

trivially. Also, ko(x) € W for any x € W since ko(x)E EK implies x € E_, as

K

just shown, and this in turn implies a € E Finally, for any non—void chain

K
CCw,ifVCe EK then there exist x € C N EK, and hence a € EK’ showing
that VC € W. Now, by Bourbaki's Fixpoint Lemma [13], W contains a
fixpoint ¢ for ko’ and since a { ¢ € k(a) we have ¢ = k(a). It follows that

k(a) € EK implies a € EK’ and since e € EK we obtain that k(a) = e implies

a€ EK’ as desired.

Regarding compactness, consider any updirected D C K(Q) with join e

in K(Q), that is, k(VD) = e. Then VD € EK by our first result, hence there

exist a € D N EK and then e = k(a) = a, so that e € D as desired.

Remark 1. The following highlights the importance of the above
hypothesis that Ek be Scott open. In any quantale Q with idempotent top in

which x,y < e implies xVy < e but e = V{x € Q| x < e},
Ka={x€Q|x<e}(a<e),Ke=Q

defines a transitive nuclear system such that Ep = {e} but k(a) = e for all a

€Q

Remark 2. For any closure operator k on a complete lattice, one easily

sees that the top element of Fix(k) is compact iff k_l(e) is Scott open. The
point of Proposition 1 is that it suffices to have the generally smaller set EK to

be Scott open.
In order to apply Proposition 1 to R(Q), note first the nuclear system R

is indeed transitive: if a" < b and . € a for any a, b, x € Q and suitable n

nm .
and m then x < b, showing that Ra. C R’b whenever a € R'b Further, e €

Ra. will imply e = a, and therefore EK = {e}, provided e = e2. Finally {e} is

Scott open iff e is compact, that is, Q is compact. As a result, we have:
Corollary. For any compact quantale Q with idempotent top, r(a) = e

iff a = e, and R(Q) is compact.

Remark 1. The following observation shows that the hypothesis ¢ = e2
is crucial in this result. If L is any locale, define a quantale Q by adding a
new top u to L and putting
ab=aAb(a,b€EL)
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au=ua=a(a€lL)

u2 = e, top of L.
Then Q is compact, and r(a) = a for all a # e in L while r(e) = u = r(u).
Hence R(Q) = (L — {e}) U {u} which is isomorphic to L. This proves that,
for any locale L, there exists a compact quantale Q such that L ¥ R(Q).
Remark 2. The compactness of R(Q) does not imply that of Q even if
Q is commutative and its top is the unit for the multiplication. To see this,
let R be the subring without unit of the real number field consisting of all

rational linear combinations of the powers ta, @ positive rational, of a fixed
positive transcendental number t, and take Q to be the quantale of all ideals J

of R such that RJ = J. Then R € Q since 1% = '(ta/ 2)2 for all @, and hence
R is the multiplicative unit of Q. Further, R is not compact in Q, being the

union of the chain of all Rta. Concerning the localic nucleus r on Q, it is
easy to see that, for any I € Q,

(I) = Rﬁ where ﬁ ={x € R| some x" € I} which readily implies that
updirected joins in R(Q) are unions. On the other hand, R = r(Rt) since

(Rtl/n)n+1 C Rt
for all n, and this implies that R is compact in R(Q). Of course, R being a
domain, r(0) = 0 and hence R(Q) is non—trivial. In actual fact, R(Q) is

infinite so that its compactness is a non—trivial property: since that ta are
linearly independent over the rationals, any positive real algebraic number ¢

determines a homomorphism of R into the real number field, taking ta to ca,

whose kernel is a prime ideal, which actually turns out to be maximal.

Remark 3. An argument analogous to that in the first remark shows
that, for any locale L, there exists a non—compact quantale Q such that L ¥
R(Q). Instead of .adding a new unit to L, add an interval {utl 0<t<1}

isomorphic to the unit interval at the top of L such that u, = the unit of L,

and define
ab = aAb (a, b € L)
au, =ua (a€L,alt)
uu =uu =u =e (all t)

In particular, for compact L this also shows that R(Q) may be compact for
non—compact Q, but here the top element is not idempotent, let alone the unit
for the multiplication.

Remark 4. For any m—filter T in a quantale Q, the associated nuclear
system
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Ta. = {x € Q|xVy € T implies aVy € T, for all y € Q}
mentioned earlier is also transitive. Moreover, eETa holds iff a € T, and hence

Proposition 1 yields the following result of Banaschewski — Erné [4] for the

associated localic nucleus t on Q: If T is a Scott open m-—filter in any
quantale then t{(a) = e iff a € T and Fix(t) is compact.

Remark 5. For any m—filter T in a quantale Q, we further have the
nuclear system defined by

Ka={x€Q| uvaRaforsomeu,veT}

which again is transitive: for a, b, x € Q and u, v, 5, t € T, if (uav)n <b
and (sxt:)m € a for some n and m, then

(m;xtv)m < u(sxt)™ v € uav
and therefore

(usxtv)nm <b
while us, tv € T. In addition, e € Ka. holds iff a € T since uev € Ra for some

uv € T iff w € Ra for some w € T iff a € T, each step because T is an

m—filter. Hence, again by Proposition 1, for Scott open T, k(a) = e iff a € T
and K(Q) is compact. It is easily seen that the present localic nucleus is the
smallest localic nucleus k for which k(a) = a iff a € T. In general, it differs
from the localic nucleus described in the preceeding remark which, in fact, is
the largest localic nucleus of this kind. An obvious example is provided by any
compact locale L for which the nucleus associated with the Scott open {e} is
not the identity, such as any totally ordered L.

We now turn to deriving some other properties of K(Q) from suitable
conditions concerning a nuclear system K on a quantale Q.

Associated with K, we have a binary relation <«_ on Q defined as

K
follows:

X <y whenever y € Ks’ 8 = VD for some updirected set D, implies x
€ Kt for some t € D.

Further, we call ¢ € Q K—ompact if ¢ “g ©

Note that, for the trivial nuclear system on a locale given by the
principal ideals, this relation amounts to the familiar "way below" relation <<,
and the corresponding notion of compactness is ordinary compactness. Now,
recalling that a locale L is called

continuous if a = V{x € L|x <« a}, for all a € L,

algebraic if a = V{x € L| x <« x € a}, for all a € L, and

coherent if it is algebraic and the meet of any finite set of compact
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clements is compact, we shall call Q
K—continuous ifa=V{x€Q|x <<Ka}, for all a € Q,

K—algebraic if a=V{x € Q|x “gX < a}, for all a € Q, and
K—coherent if Q is K-—algebraic, ¢ is K-compact, and any

product of K—compact elements is K—compact. Note, incidentally, that e is
K—compact iff EK is Scott open.

Proposition 2. For any transitive nuclear system K on a quantale Q,
K(Q) is

(1)  continuous if Q is K—continuous,

(2) algebraic if Q is K—algebraic, and

(3)  coherent if Q is K—coherent.

Proof. Assume, to begin with, that Q is K—continuous. Our fist step is
to show ko is algebraic, that is, preserves all updirected joins. For any

updirected D C Q and a € KVD' if x “k
x < ko(t) and therefore x { V ko[D]. Thus, by K—continuity, a < V ko[D] and

a then x € Kt for some t € D, hence

consequently ko(VD) <V ko[D], the nontrivial part of the desired equality.
Next, we prove that ko = k. By transitivity, if x € Ka then Kx C Ka
so that ko(x) < ko(a), and hence V ko [Ka.] < ko(a). On the other hand,
ko(VKa) =V ko[Ka] by the preceding result, and this means ko(ko(a)) < ko(a),
making ko idempotent and therefore equal to k.
Finally, we obtain that k(x) < k(y) in K(Q) whenever x “x ¥ in Q.

Let D C K(Q) be updirected with join in K(Q) above k(y), that is k(y) <
k(VD). Now, by the results above, k(VD) = Vk[D] = VD, hence y < VD so0
that y € KVD and therefore x € Kt for some t € D, showing that x < ko(t) =

t and finally k(x) < t since t € K(Q).

It now follows easily that K(Q) is continuous: for any a € K(Q), the
fact that a = V{x € Q|x “k a} in Q implies that a = k(V{k(x)|x <<Ka})
while x “k @ implies k(x) << a in K(Q). The case of K—algebraic Q follows
analogously, but for K—coherent Q some additional considerations are needed.
To begin with, e “g e in Q implies e << e in K(Q) by the earlier parts of this

proof. Further, one readily sees that finite joins of K—compact elements in Q
are K—compact, and hence for any compact a € K(Q) there exists a
K—compact b € Q such that a = k(b). Thus, if also ¢ = k(d) with K—compact
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d € Q then aAc = k(b) A k(d) = k(bd) is compact in Q since bd is K~compact
by hypothesis.
Concerning the special case K = R, note that x «R Y means that, for

any updirected set D, yn € VD implies that < € t for some m and some t €
D. The obvious explicit formulation of the corresponding results for the localic
reflection R(Q) of Q given by Proposition 2 is left to the reader. There is,
however, a particular situation that might merit detailed mention.

Given that the difference between quantales and locales lies exactly in
non—idempotency, a natural definition of the "way below" relation in a

quantalic sense would be x <<q y whenever X"« yn, for all n.

Based on this, call a quantale continuous (in the quantalic sense) if a = V{x €
Ql x «g a} for each a € Q and use the quantalic terms algebraic and

coherent analogously. Note in particular that ¢ <<q c means that all powers -

are compact.
Now, x <<q y clearly implies x <<R y in any quantale, and hence we

have:

Corollary 1. R is_continuous, algebraic, or coherent whenever Q has
the corresponding quantalic property.

For the following, recall that a subset M of a complete lattice is called
join dense if every element is a join of elements in M. Then we have,
concerning coherence:

Corollary 2. R is _coherent for any compact quantale which
contains a join dense multiplicatively closed set of compact elements.

Proof. Let M be the set of compact elements in question. Then, for
any compact ¢ € Q, ¢ = 2 V...Va.n with suitable a €M, and if d = bIV...V

bm is another such element then ¢d = V{aibj|i=1,...,n; j=1,..., m} is again

compact by hypothesis on M. It follows from this that Q is coherent in the
quantalic sense, and hence R(Q) is coherent by the preceding corollary.

The last result has a nice application to ring theory. For this, recall
that, in a ring R, an element a € R is called quasicentral if Ra = aR, and that
R is said to have dense quasicentre if every ideal of R is generated by
quasicentral elements (van der Walt [10], Banaschewski— Harting [2]). Now,
for quasicentral a in a ring R with unit, the principal two—sided ideal (a)
generated by a is Ra = aR, and hence (a)(b) = (ab) for any quasicentral
a,bER where ab is of course also quasicentral. This means that, for a ring R
with unit and with dense quasicentre, the principal ideals generated by the
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quasi—central elements form a join dense multiplicatively closed set of compact
elements in IdR. Hence we have:

Corollary 3. R(IdR) is coherent for any ring R with unit which has

dense quasicentre.
Remark 1. Of course this corollary covers the familiar commutative

case. The result as such is essentially due to Banaschewski—Harting [2] who
proved that the locale L(IdR) of Levitzki radical ideals is coherent for these
rings, but an easy argument shows that L(IdR) = R(IdR) in this situation. A
direct proof was given by Sun [10].

Remark 2. It is known that, in general, R(IdR) need not be coherent,
as discussed by Banaschewski—Harting [2]. On the other hand, it seems to be
an open question whether it must always be algebraic.

Remark 3. A result similar to Proposition 2(1) for K = R, in the case
of a commutative quantale Q whose top element is its multiplicative unit was
obtained by Rosicky [9].

Remark 4. Sun [10] calls a ring R (i) an m*-ring if all powers of
principal ideals are finitely generated, and (ii) an m—ring if the product of any
two finitely generated ideal is finitely generated. Obviously, then, the quantale
IdR is aglebraic, or coherent, in the quantalic sense whenever R is an m*—ring,
or an m-—ring, respectively. Hence Corollary 1 implies the result of [10] that
R(IdR) is algebraic, or coherent, if R is an m*-ring, or an m-ring,
respectively. For the more general situation of a compact quantale Q for
which the top is the multiplicative unit, analogous conditions, with the
corresponding results for R(Q), were also presented by Banaschewski—Harting

3).
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