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A NEW PROOF OF REITERMAN’S THEOREM

by Grzegorz JARZEMBSKI

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Yolume ~XY 3 (1994)

In [3] J.Reiterman int,roduced a concept of an implicit operation in
order to get a very elegant, finite analog of the Birkhoff variety the-
orem. In t,his note we analyse implicit operations from a categorical
point of view. As a result we obtain a simple, purely categorical proof
of Reiterman theorem.

1 Basic concepts

For a.ll unexplaaned notions of category theory we refer the rea.der to [2].
We shall identify classes of objects of a ca.tegory considered with full

subcategories they genera.te. For every natural number n, by *. we denote

the set ~ 1, 2, ... , n} .
Let (A, U : ,~t --~ Set ) be an a.rbitrary concrete category over sets. For

any natura.l number 11., by a.n n-a,r.y lll7pj1C1~ operation in .~4 we mean any
natural transfoflnation 4&#x3E; : un 2013~ U [3].
Roughly speaking, an implicit operation is a family of functions (OA : U" A -
UA : A E ObA) "compa.tible" with a.ll A-morphisms.

By IO(A),, we shall denote the class of a.ll n-ary implicit operations in
. 

°

Definition 1 Any puir ( 4&#x3E;, 1/’) of U-(U.y im.plicit ope~~t.ions in A is called here
an "equation"; (notation (4) = 1/)) ).

We say that an equation (4) = 1/)) is satisfied in B E ObA iff ØB = IPB -

For a given set of equa.tions ~ , by ModE we denote the full subcategory
of ,A consisting of A-objects satisfying a.ll equa.tions in E.

We ca.ll a full subcategory D C A equationally defina.ble iff D = ModE
for some set of equations E.
The following observa.tion needs only a routine verification: 

° 

°

Lemma 1 we~~y etlztutiomully definable full subcategory D C A satisfies the
following:
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1. D is closed under formation of all exisiting concrete limits,

2. whenever A E D , h : A - B and Uh is a surjection, then B E D
(D is closed under formation of homomorphic images),

3. whenever A E D , m : B - A and Urrz is a monomorphism, then
B E V (D is closed under formation of subobjects).

J. Reiterman has proved the converse of Lemma 1 for equationally de-
finable classes of finite algebras of an a.rbitrary finite type S2 ([3]). His result
has been next generalized by Ba.na.schewski ([1]) for arbitrary finitary types.
In this paper we present a new proof of R.eiterman theorem based on a
categorical analysis of the concept of a.n implicit opera,tion.

2 Tvvo restrictions

Definition 2 A concrete category (A, U) is said to be small-based provided
for every natural nzcm,ber 11, IO(A)n is a set.

Let (ii t U ) denote the category of all U-morphisms with a doma,in n . Let

be the "forgetful functor’" i.e. Un(h : 11. - UA, A) = UA , for every
( h, A) in (n 1 U).

Lemma 2 A concrete category (A, U) is small-based if and only if for every
natural ntt1nber n. there exists c~ limit of tlae functor Un and then

Proof. A limit of Un is formed by the set IO(A),, together with limit
projections ~~h,A~ : IO (.A),~. - ~(/~,~4) = U A such tha,t

for every (h., A) E (h, I U) a.nd 4&#x3E; E IO(.A)n.



- 241 

Definition 3 We say that a concrete category (A, U) has enough implicit
operations iff for every A, B E A and h : UA - UB , h = Ug for
some ,r4-morphism g : A --~ B provided h preserves all implicit operations
(h ’ ~~, - ~B ’ hn for every n E N and 0 E 70(~4)~.

Lemma 3 Assume that a (A, U) is a concrete, small-based with enough
implicit operations. Then there exists a (finitary) monad T over Set such
that the follou;ing conditions are satisfied:

1. (A, if) is concretely isomorphic to a full subcategory of the Eilenberg-
Moore category ,SetT ,

2. for every n E N , 70(~4)~ ~ limun is a carrier of a finitely generated
monadic T-algebi-a, such that every limit projection is a T -morphism.

Proof. Since (A, U) is sma.ll-ba.sed, the family of all implicit operations
form a finitary type: /0 = {IO(.~4),~ : n E N) .

Let T be a. mona,d over Set such that, its Eilenberg-Moore category SetT
is the category of all IO-a,lgebra,s. Since the concrete category considered has
enough implicit opera,tions, it is concretely isomorphic to a full subca,tegory
of T-a,lgebra,s.

In the considered ca.se the functor Un factorizes through the forgetful
functor UT : Set’ --; Set in a.n obvious way. UT crea,tes limits, hence, by
Lemma, 2, every set IO(,~4)", ca.rries a structure of a mona.dic T-algebra such
that every limit-projection 7~ ~) : 70(~4)~ --~ A is a homomorphism.

Obviously, every IO(A)n is then a, finitely generated algebras of the type
10 - it is genera,ted by the set of natural projections {7ri : un -~ U : i =
1,2,...,n}.

It must be stressed however tha,t a monad T satisfying the conditions
of Lemma. 3 is not uniquely determined. It need not to be finitary too. An
embedding .A --~ SetT will be used only in order to support a.n investigation
on equa.tiona,lly definable subcategories of ,A. As we will show la,ter, in

particular ca,ses a "good" choice of a. monad T is crucial.
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3 Characterization of equationally definable sub-
categories

Assume tha,t a concrete ca.tegory (A, U) is a small-based category with

enough implicit operations. Let T = (T, p, 11) be an arbitrary but fixed
monad over Set such that the conditions stated in Lemma 3 are satisfied.
We shall assume tha.t .~4 is a full subca.tegory of the Eilenberg-Moore cate-
gory SetT . The T-a,lgebra of n-ary implicit operations will be denoted by
I O ( .~1 ),~ .

Let ~r’~ : n 2013~ IO(A)n be a, function such that for every i E ii
1rn( i) = 1ri1 : un --~ f7 = the i-th natural projection.

We assume a.Iso tha,t the extension of 1rn to the T-morphism (Th,, ~cn ) -
IO(A)n is surjective for every natural number n.

Definition 4 We call a T -algebra D a T~,-a,lgebra, iff for every n E N and
a fvnction f : ’Î7, --~ UT D tfieie exists a (unique) T -morphisn1
f * : IO(A),, ---~ D such that

We shall call f * an extension of f .

Clearly, .A is a, subclass of T A-algebras: for every B E ObA and h : n --~
UB its extension is the limit-projection 7~(~~,4) : IO(A),, --&#x3E; B (Lemma 2).

Notice also that every IO(A)n is a. TA-a~lgebra~. This is a consequence of
the fact that the class of 7~-algebras is closed under formation of limits. It

is easily checked that the class of T,~-a.lgebras is closed within ,5’etT under
formation of homomorphic images a.nd suba,lgebras, i.e. the class of TA-
algebras is the "Birkhoff subca.tegory generated by A" within SetT .

Definition 5 For each. ~ E IO(A)n and a TA-algebra D we define an n-ary
ope7’ation in D, ~D : ( UT D )’~ - UT D as follows:

for every h : it, - UT D .

Thus h,* gives "va,lues of all n-a,ry implicit operations in D at the valu-
a,tion h" .
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It is easily checked tha,t T-morphisms between T.A-algebras preserve these
operations.

Having all implicit operations extended to all T,~-algebras we extend also
a notion of satisfaction for equations of implicit opera,tions:

Definition 6 Let 4J, ’ljJ E IO(.A)n. A T,~-algebra A satisfies the equation
( 4J = ~) iff for every ja : il, --~ UT A ,

If A E ObA and h : : fi, --; UA then h,*(~) - ~(h,A)(~) _ OA(h) , i.e.
the newly defined concept of sa,tisfa,ction and that of Definition 1 coincide

for .A-ob jects.

For any cla.ss ,C~ of TA-a.lgebra,s we write H(,C3) , S(B) , P(B) in order
to denote the cla.ss of all homomorphic images, subalgebras and products of
the algebras from l1, resp.

We ca.ll a class an H,SP-cla.ss iff ,G = HSP(,t3) .
Since we dea.l with finitary implicit opera.tions only, we sha.ll use one more
closure opera,tor. In wha,t follows by C(,~) we shall denote the cla,ss of all T,~-
algebra,s with all finitely generated suba,lgebra.s in B (a. mona,dic T-a.lgebra
A is said to be fiiiiteky generated provided it is isomorphic to a quotient of
a free monadic T-a,lgebra, (Tii,, Jl,1) for some natural number n).

Theorem 4 For an orbitr~zry class B of TA-nlgebras the following conditions
are equivalent:

1. B is an ~I,S’P-cl crsa and l1 = C(B)

2. There exists a set E of equations (of implicit operations) such that 8
consists of all TA -algebras satisfying all equations in E.

Proof. 2. ~ 1. The equa.tions L3 = P(13) = H(B) = S(,C~) need only a
routine verifica,tion.

For every T~-a.lgebra. B a.nd a. function h : n - UT B its extension h,*

fa,ctorizes a,s a, surjective T-morphism followed by a monomorphism:

Clearly, Dh is a. finitely genera.ted T,~-a.lgebra. Hence a. T,~-algebra B satis-
fies an equation (0 = ’0) iff every finitely generated subalgebra of B satisfies
it.
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This proves C(B) C B.

1. # 2. Since ,~ is closed under products and subalgebras, for every natural
number n there exists a "reflection ma,p" - a surjective T-morphism en :
IO(A)n --~ Bn such tha,t B,, E L3 and every morphism of T-a,lgebra,s h :
IO(A)n --~ A with A E 6 factorizes through en. Let

and

We prove tha,t E is a set of equations we a,re looking for.
Clea,rly, ea,ch TA-a-Igebra, in 6 satisfies all equations in E.
Assume tha.t A is a. finitely generated TA-a-Igebra, satisfying all equations

in E. A is finitely generated hence there exists a surjective T-morphism
f : IO(A)n - A for some n E N . Since A satisfies all equations in E ,
we obtain E,, C ~ner f . Hence f - f ° ~ e,~ for some T-morphism f ° . f is

surjective, hence f° is a, surjective morphism, too.
Thus AE H(~)=,C~.
An arbitrary TA-a,lgebra, B satisfies a.ll equa,tions form E, iff all its finitely

generated subalgebras sa,tisfy all these equa,tions, i.e. if all those suba,lgebra,s
a,re in ,~. This mea.ns B E C(,C~) _ B.

The proof is complete.

Corollary 5 . For any closa B of T A -algebras, the class CHSP(B) is the
smallest equationally definable class of TA-algebras containing B.

Proof. Observe tha,t HC{,C) C CH(B) a,nd SPC(B) C CSP(B) for any
class of TA-a-Igebra-s ’D . We omit a routine calculation.

The next Corollary summarizes investigation of this section.

Corollary 6 For any class D C ..4, the follotoing conditions are equivalent

1. D is an equationally definable class,

2. D = CHSP(~?) n .A
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4 A new proof of Reiterman theorem

Consider now equationally definable classes in the concrete category Algf i,,f2
of all finite algebras of a given finitary type Q. We are going to give a
new proof of Reiterman characterization theorem based on the results of
the previous section. Our proof also covers the generalization of Reiterman
theorem given by Banaschewski ( ~1~ ).

Since Alg f~nSZ is a small category, it is small-based. It follows from

Lemma 2 that in this ca,se the set of n-ary implicit opera,tions is represented
as a limit of the poset of a.ll finite quotients of a free S2-algebra, generated
by the set it, = {l, 2,..., n.~ . From this it ea,sily follows tha,t every implicit
operation 0 is "loca.lly explicit" - i.e., for every finite algebra A there is a
term t with tA = OA ([3]).

Obviously, the concrete category Alg~snSZ has enough implicit opera,tions.
For the category Al g f~,~ S2 we may consider three (at least) concrete full

embeddings of it into the following Eilenberg-Moore categories over sets:
- the category Algn of a,ll Q-algebra,s,
- the category AlgIO , where 10 is the type built of a,ll implicit opera-

tions in ~4/~,~n,
- the ca.tegory of a,11 compa,ct Hausdorff 70-algebras and continuous ho-

momorphisms (by endowing each finite algebra with the discrete topology).
In our proof of R.eiterma,n theorem we shall use the third embedding.
Recall that by a, pseudova,riety of finite 9-algebras we mea,n each class

of finite algebras closed under formation of finite products, subalgebras and
homomorphic ima,ges.

Theorem 7 (Reite;nian theorem)
For any class D C AlgJinn the follo’loing conditions are equivalent:

1. D is a pse2~~lovoriFty ,

2. D = ModE for some set of equations of implicit operations of finite
algebras.

Proof. Ea,cl1 ModE is clea,rly a, pseudova,riety.
Conversely, let D be a pseudova,riety. To find E with D = ModE con-

sider the mona,d T over Set whose Eilenberg-Moore ca,tegory is the ca,tegory
of all compact Hausdorff IO-a,lgebra,s (a,nd continuous homomor phisms).
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Clearly, Alg fs,~~2 is a full concrete subcategory of Set’ and for every natu-
ral n, the set of n-a.ry implicit operations in Al g fi,; St is a carrier of a finitely
generated monadic T-algebra (Lemma 3).

By Corollary 6, it is enough to prove that D contains every finite algebra
C lying in HSP(D) C ,SetT . That is, there is a continuous and surjective
homomorphism e : B --~ C , where B is a compact Hausdorff IO-algebra,
and B is a closed suba.lgebra of rji E j Ai for a collection (~4, : ~ E I ) C D .

We may assume that every Ai has the form A= - Blpi for some congru-
ence pi on B. Then

where VB denotes the dia,gona,l in B x B.
Every congruence pi has a. finite index and it is a a kernel of a continuous

projection pri : B 2013~ ~ ? hence it is a, closed subset of the compact space
BxB.

The epimorphism e : B - C is continuous, the diagonal Vc is open in
the compact space C x C , hence the inverse image ker(e) _ (e x e)-1(~C)
is an open subset of B x B containig ~B. Hence

Since B x B is compact, there exists a. finite subset h C I such tha,t

Clearly, the congruence (~(p,~ : i E Ii ) has a finite index. Thus Bo =
B/ (~( ps : i E 7i) is a finite algebra and C is a homomorphic image of
Bo.
Moreover, Bo is a, suba,lgebra of the product of the family of finite algebras
~Ai:iEh}.

Hence C E P.
The proof is complete.
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