CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

GRZEGORZ JARZEMBSKI A new proof of Reiterman's theorem

Cahiers de topologie et géométrie différentielle catégoriques, tome 35, n° 3 (1994), p. 239-247

<http://www.numdam.org/item?id=CTGDC_1994__35_3_239_0>

© Andrée C. Ehresmann et les auteurs, 1994, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A NEW PROOF OF REITERMAN'S THEOREM by Grzegorz JARZEMBSKI

In [3] J.Reiterman introduced a concept of an implicit operation in order to get a very elegant finite analog of the Birkhoff variety theorem. In this note we analyse implicit operations from a categorical point of view. As a result we obtain a simple, purely categorical proof of Reiterman theorem.

1 Basic concepts

For all unexplained notions of category theory we refer the reader to [2].

We shall identify classes of objects of a category considered with full subcategories they generate. For every natural number n, by \tilde{n} we denote the set $\{1, 2, ..., n\}$.

Let $(\mathcal{A}, U : \mathcal{A} \longrightarrow Set)$ be an arbitrary concrete category over sets. For any natural number n, by an *n*-ary implicit operation in \mathcal{A} we mean any natural transformation $\phi: U^n \longrightarrow U$ [3].

Roughly speaking, an implicit operation is a family of functions $(\phi_A : U^n A \longrightarrow UA : A \in ObA)$ "compatible" with all A-morphisms.

By $IO(\mathcal{A})_n$ we shall denote the class of all *n*-ary implicit operations in \mathcal{A} .

Definition 1 Any pair (ϕ, ψ) of n-ary implicit operations in \mathcal{A} is called here an "equation"; (notation $(\phi = \psi)$).

We say that an equation $(\phi = \psi)$ is satisfied in $B \in ObA$ iff $\phi_B = \psi_B$.

For a given set of equations E, by ModE we denote the full subcategory of A consisting of A-objects satisfying all equations in E.

We call a full subcategory $\mathcal{D} \subset \mathcal{A}$ equationally definable iff $\mathcal{D} = \text{Mod}E$ for some set of equations E.

The following observation needs only a routine verification:

Lemma 1 Every equationally definable full subcategory $\mathcal{D} \subset \mathcal{A}$ satisfies the following:

- 1. D is closed under formation of all exisiting concrete limits,
- 2. whenever $A \in \mathcal{D}$, $h : A \longrightarrow B$ and Uh is a surjection, then $B \in \mathcal{D}$ (\mathcal{D} is closed under formation of homomorphic images),
- 3. whenever $A \in \mathcal{D}$, $m : B \longrightarrow A$ and Um is a monomorphism, then $B \in \mathcal{D}$ (\mathcal{D} is closed under formation of subobjects).

J. Reiterman has proved the converse of Lemma 1 for equationally definable classes of finite algebras of an arbitrary finite type Ω ([3]). His result has been next generalized by Banaschewski ([1]) for arbitrary finitary types. In this paper we present a new proof of Reiterman theorem based on a categorical analysis of the concept of an implicit operation.

2 Two restrictions

Definition 2 A concrete category (\mathcal{A}, U) is said to be small-based provided for every natural number $n \ IO(\mathcal{A})_n$ is a set.

Let $(\tilde{n} \downarrow U)$ denote the category of all U-morphisms with a domain \tilde{n} . Let

$$U_n: (\tilde{n} \downarrow U) \longrightarrow Set$$

be the "forgetful functor", i.e. $U_n(h : \tilde{n} \longrightarrow UA, A) = UA$, for every (h, A) in $(\tilde{n} \downarrow U)$.

Lemma 2 A concrete category (\mathcal{A}, U) is small-based if and only if for every natural number n there exists a limit of the functor U_n and then

$$IO(\mathcal{A})_n \cong limU_n$$

Proof. A limit of U_n is formed by the set $IO(\mathcal{A})_n$ together with limit projections $\pi_{(h,A)}: IO(\mathcal{A})_n \longrightarrow U_n(h,A) = UA$ such that

$$\pi_{(h,A)}(\phi) = \phi_A(h)$$

for every $(h, A) \in (\tilde{n} \downarrow U)$ and $\phi \in IO(\mathcal{A})_n$.

Definition 3 We say that a concrete category (A, U) has enough implicit operations iff for every $A, B \in \mathcal{A}$ and $h : UA \longrightarrow UB$, h = Ug for some \mathcal{A} -morphism $g : A \longrightarrow B$ provided h preserves all implicit operations $(h \cdot \phi_A = \phi_B \cdot h^n \text{ for every } n \in N \text{ and } \phi \in IO(\mathcal{A})_n).$

Lemma 3 Assume that a (\mathcal{A}, U) is a concrete, small-based with enough implicit operations. Then there exists a (finitary) monad T over Set such that the following conditions are satisfied:

- (A, U) is concretely isomorphic to a full subcategory of the Eilenberg-Moore category Set^T,
- 2. for every $n \in N$, $IO(\mathcal{A})_n \cong \lim U_n$ is a carrier of a finitely generated monadic T-algebra such that every limit projection is a T-morphism.

Proof. Since (\mathcal{A}, U) is small-based, the family of all implicit operations form a finitary type: $IO = (IO(\mathcal{A})_n : n \in N)$.

Let T be a monad over Set such that its Eilenberg-Moore category Set^T is the category of all *IO*-algebras. Since the concrete category considered has enough implicit operations, it is concretely isomorphic to a full subcategory of T-algebras.

In the considered case the functor U_n factorizes through the forgetful functor $U^T : Set^T \longrightarrow Set$ in an obvious way. U^T creates limits, hence, by Lemma 2, every set $IO(\mathcal{A})_n$ carries a structure of a monadic *T*-algebra such that every limit-projection $\pi_{(h,\mathcal{A})} : IO(\mathcal{A})_n \longrightarrow A$ is a homomorphism.

Obviously, every $IO(\mathcal{A})_n$ is then a finitely generated algebra of the type IO - it is generated by the set of natural projections $\{\pi_i^n: U^n \longrightarrow U: i = 1, 2, ..., n\}$.

It must be stressed however that a monad T satisfying the conditions of Lemma 3 is not uniquely determined. It need not to be finitary too. An embedding $\mathcal{A} \longrightarrow Set^T$ will be used only in order to support an investigation on equationally definable subcategories of \mathcal{A} . As we will show later, in particular cases a "good" choice of a monad T is crucial.

3 Characterization of equationally definable subcategories

Assume that a concrete category (\mathcal{A}, U) is a small-based category with enough implicit operations. Let $T = (T, \mu, \eta)$ be an arbitrary but fixed monad over *Set* such that the conditions stated in Lemma 3 are satisfied. We shall assume that \mathcal{A} is a full subcategory of the Eilenberg-Moore category *Set*^T. The *T*-algebra of *n*-ary implicit operations will be denoted by $IO(\mathcal{A})_n$.

Let $\pi^n : \tilde{n} \longrightarrow IO(\mathcal{A})_n$ be a function such that for every $i \in \tilde{n}$, $\pi^n(i) = \pi_i^n : U^n \longrightarrow U =$ the i-th natural projection.

We assume also that the extension of π^n to the *T*-morphism $(T\tilde{n}, \mu_{\tilde{n}}) \longrightarrow IO(\mathcal{A})_n$ is surjective for every natural number *n*.

Definition 4 We call a T-algebra D a T_A -algebra iff for every $n \in N$ and a function $f: \tilde{n} \longrightarrow U^T D$ there exists a (unique) T-morphism $f^*: IO(\mathcal{A})_n \longrightarrow D$ such that

$$f^*\cdot\pi^n=f$$

We shall call f^* an extension of f.

Clearly, \mathcal{A} is a subclass of $T_{\mathcal{A}}$ -algebras: for every $B \in Ob\mathcal{A}$ and $h: \tilde{n} \longrightarrow UB$ its extension is the limit-projection $\pi_{(h,A)}: IO(\mathcal{A})_n \longrightarrow B$ (Lemma 2).

Notice also that every $IO(\mathcal{A})_n$ is a $T_{\mathcal{A}}$ -algebra. This is a consequence of the fact that the class of $T_{\mathcal{A}}$ -algebras is closed under formation of limits. It is easily checked that the class of $T_{\mathcal{A}}$ -algebras is closed within Set^T under formation of homomorphic images and subalgebras, i.e. the class of $T_{\mathcal{A}}$ -algebras is the "Birkhoff subcategory generated by \mathcal{A} " within Set^T .

Definition 5 For each $\phi \in IO(\mathcal{A})_n$ and a $T_{\mathcal{A}}$ -algebra D we define an n-ary operation in D, $\phi_D : (U^T D)^n \longrightarrow U^T D$ as follows:

$$\phi_D(h) = h^*(\phi)$$

for every $h: \tilde{n} \longrightarrow U^T D$.

Thus h^* gives "values of all n-ary implicit operations in D at the valuation h".

A NEW PROOF OF REITERMAN'S THEOREM

It is easily checked that T-morphisms between $T_{\mathcal{A}}$ -algebras preserve these operations.

Having all implicit operations extended to all T_A -algebras we extend also a notion of satisfaction for equations of implicit operations:

Definition 6 Let $\phi, \psi \in IO(\mathcal{A})_n$. A $T_{\mathcal{A}}$ -algebra A satisfies the equation $(\phi = \psi)$ iff for every $h : \tilde{n} \longrightarrow U^T A$,

$$h^*(\phi) = h^*(\psi)$$

If $A \in ObA$ and $h : \tilde{n} \longrightarrow UA$ then $h^*(\phi) = \pi_{(h,A)}(\phi) = \phi_A(h)$, i.e. the newly defined concept of satisfaction and that of Definition 1 coincide for A-objects.

For any class \mathcal{B} of $T_{\mathcal{A}}$ -algebras we write $H(\mathcal{B})$, $S(\mathcal{B})$, $P(\mathcal{B})$ in order to denote the class of all homomorphic images, subalgebras and products of the algebras from \mathcal{B} , resp.

We call a class \mathcal{B} an HSP-class iff $\mathcal{B} = HSP(\mathcal{B})$.

Since we deal with finitary implicit operations only, we shall use one more closure operator. In what follows by $C(\mathcal{B})$ we shall denote the class of all $T_{\mathcal{A}}$ -algebras with all finitely generated subalgebras in \mathcal{B} (a monadic *T*-algebra \mathcal{A} is said to be finitely generated provided it is isomorphic to a quotient of a free monadic *T*-algebra $(T\tilde{n}, \mu_{\tilde{n}})$ for some natural number n).

Theorem 4 For an arbitrary class \mathcal{B} of $T_{\mathcal{A}}$ -algebras the following conditions are equivalent:

- 1. \mathcal{B} is an HSP-class and $\mathcal{B} = C(\mathcal{B})$
- 2. There exists a set E of equations (of implicit operations) such that \mathcal{B} consists of all $T_{\mathcal{A}}$ -algebras satisfying all equations in E.

Proof. 2. \Rightarrow 1. The equations $\mathcal{B} = P(\mathcal{B}) = H(\mathcal{B}) = S(\mathcal{B})$ need only a routine verification.

For every $T_{\mathcal{A}}$ -algebra B and a function $h: \tilde{n} \longrightarrow U^T B$ its extension h^* factorizes as a surjective T-morphism followed by a monomorphism:

$$h^* = m \cdot e : IO(\mathcal{A}_n) \longrightarrow D_h \longrightarrow B$$

Clearly, D_h is a finitely generated T_A -algebra. Hence a T_A -algebra B satisfies an equation ($\phi = \psi$) iff every finitely generated subalgebra of B satisfies it.

This proves $C(\mathcal{B}) \subset \mathcal{B}$.

1. \Rightarrow 2. Since \mathcal{B} is closed under products and subalgebras, for every natural number *n* there exists a "reflection map" - a surjective *T*-morphism e_n : $IO(\mathcal{A})_n \longrightarrow B_n$ such that $B_n \in \mathcal{B}$ and every morphism of *T*-algebras *h* : $IO(\mathcal{A})_n \longrightarrow A$ with $A \in \mathcal{B}$ factorizes through e_n . Let

$$E_n = ker(e_n) = \{(\phi, \psi) : \phi, \psi \in IO(\mathcal{A})_n, e_n(\phi) = e_n(\psi)\}$$

and

$$E = \bigcup (E_n : n \in N)$$

We prove that E is a set of equations we are looking for.

Clearly, each $T_{\mathcal{A}}$ -algebra in \mathcal{B} satisfies all equations in E.

Assume that A is a finitely generated T_A -algebra satisfying all equations in E. A is finitely generated hence there exists a surjective T-morphism $f: IO(A)_n \longrightarrow A$ for some $n \in N$. Since A satisfies all equations in E, we obtain $E_n \subset kerf$. Hence $f = f^o \cdot e_n$ for some T-morphism f^o . f is surjective, hence f^o is a surjective morphism, too.

Thus $A \in H(\mathcal{B}) = \mathcal{B}$.

An arbitrary $T_{\mathcal{A}}$ -algebra *B* satisfies all equations form *E*, iff all its finitely generated subalgebras satisfy all these equations, i.e. if all those subalgebras are in \mathcal{B} . This means $B \in C(\mathcal{B}) = \mathcal{B}$.

The proof is complete.

Corollary 5. For any class \mathcal{B} of $T_{\mathcal{A}}$ -algebras, the class $CHSP(\mathcal{B})$ is the smallest equationally definable class of $T_{\mathcal{A}}$ -algebras containing \mathcal{B} .

Proof. Observe that $HC(\mathcal{B}) \subset CH(\mathcal{B})$ and $SPC(\mathcal{B}) \subset CSP(\mathcal{B})$ for any class of $T_{\mathcal{A}}$ -algebras \mathcal{D} . We omit a routine calculation.

The next Corollary summarizes investigation of this section.

Corollary 6 For any class $\mathcal{D} \subset \mathcal{A}$, the following conditions are equivalent

1. \mathcal{D} is an equationally definable class,

2. $\mathcal{D} = CHSP(\mathcal{D}) \cap \mathcal{A}$

4 A new proof of Reiterman theorem

Consider now equationally definable classes in the concrete category $Alg_{fin}\Omega$ of all finite algebras of a given finitary type Ω . We are going to give a new proof of Reiterman characterization theorem based on the results of the previous section. Our proof also covers the generalization of Reiterman theorem given by Banaschewski ([1]).

Since $Alg_{fin}\Omega$ is a small category, it is small-based. It follows from Lemma 2 that in this case the set of n-ary implicit operations is represented as a limit of the poset of all finite quotients of a free Ω -algebra generated by the set $\tilde{n} = \{1, 2, ..., n\}$. From this it easily follows that every implicit operation ϕ is "locally explicit" - i.e., for every finite algebra A there is a term t with $t_A = \phi_A$ ([3]).

Obviously, the concrete category $Alg_{fin}\Omega$ has enough implicit operations.

For the category $Alg_{fin}\Omega$ we may consider three (at least) concrete full embeddings of it into the following Eilenberg-Moore categories over sets:

- the category $Alg\Omega$ of all Ω -algebras,

- the category AlgIO, where IO is the type built of all implicit operations in $Alg_{lin}\Omega$,

- the category of all compact Hausdorff *IO*-algebras and continuous homomorphisms (by endowing each finite algebra with the discrete topology).

In our proof of Reiterman theorem we shall use the third embedding.

Recall that by a *pseudovariety* of finite Ω -algebras we mean each class of finite algebras closed under formation of finite products, subalgebras and homomorphic images.

Theorem 7 (Reiterman theorem)

For any class $\mathcal{D} \subset Alg_{fin}\Omega$ the following conditions are equivalent:

- 1. D is a pseudovariety,
- 2. D = ModE for some set of equations of implicit operations of finite algebras.

Proof. Each ModE is clearly a pseudovariety.

Conversely, let D be a pseudovariety. To find E with D = ModE consider the monad T over *Set* whose Eilenberg-Moore category is the category of all compact Hausdorff *IO*-algebras (and continuous homomorphisms).

Clearly, $Alg_{fin}\Omega$ is a full concrete subcategory of Set^T and for every natural *n*, the set of *n*-ary implicit operations in $Alg_{fin}\Omega$ is a carrier of a finitely generated monadic *T*-algebra (Lemma 3).

By Corollary 6, it is enough to prove that \mathcal{D} contains every finite algebra C lying in $\mathrm{HSP}(\mathcal{D}) \subset Set^T$. That is, there is a continuous and surjective homomorphism $e: B \longrightarrow C$, where B is a compact Hausdorff *IO*-algebra, and B is a closed subalgebra of $\prod_{i \in I} A_i$ for a collection $(A_i : i \in I) \subset \mathcal{D}$.

We may assume that every A_i has the form $A_i = B/\rho_i$ for some congruence ρ_i on B. Then

$$\bigcap(\rho_i:i\in I)=\nabla_B$$

where ∇_B denotes the diagonal in $B \times B$.

Every congruence ρ_i has a finite index and it is a kernel of a continuous projection $pr_i: B \longrightarrow A_i$, hence it is a closed subset of the compact space $B \times B$.

The epimorphism $e: B \longrightarrow C$ is continuous, the diagonal ∇_C is open in the compact space $C \times C$, hence the inverse image $ker(e) = (e \times e)^{-1}(\nabla_C)$ is an open subset of $B \times B$ containig ∇_B . Hence

$$\bigcap(\rho_i: i \in I) = \nabla_B \subset ker(e)$$

Since $B \times B$ is compact, there exists a finite subset $I_1 \subset I$ such that

 $\bigcap(\rho_i:i\in I_1)\subset ker(e)$

Clearly, the congruence $\bigcap(\rho_i : i \in I_1)$ has a finite index. Thus $B_0 = B / \bigcap(\rho_i : i \in I_1)$ is a finite algebra and C is a homomorphic image of B_0 .

Moreover, B_0 is a subalgebra of the product of the family of finite algebras $\{A_i : i \in I_1\}$.

Hence $C \in \mathcal{D}$.

The proof is complete.

References

[1] B.Banaschewski, The Birkhoff theorem for varieties of finite algebras, Algebra Universalis 17(1983), 360-368.

- [2] E.Manes, Algebraic Theories, Graduate Texts in Math. 26, Springer-Verlag, Berlin 1976.
- [3] J.Reiterman, The Birkhoff theorem for finite algebras, Algebra Universalis 14, no.1 (1982),1-10.

Institute of Mathematics N.Copernicus University, Toru n 87-100, ul.Chopina 12 POLAND